
www.SID.ir

Arc
hive

 of
 S

ID

ISeCure
The ISC Int'l Journal of
Information Security

January 2016, Volume 8, Number 1 (pp. 3–24)

http://www.isecure-journal.org

AShort Introduction to TwoApproaches in Formal Verification of

Security Protocols:Model Checking and TheoremProving

Mohsen Pourpouneh 1, and Rasoul Ramezanian 2,∗
1Mathematical Sience Department, Sharif University of Thechnology, Tehran, Iran
2Mathematical Sience Department, Ferdowsi University of Mashhad, Mashhad, Iran

A R T I C L E I N F O.

Article history:

Received: 4 September 2015

Revised: 10 December 2015

Accepted: 15 January 2016

Published Online: 17 January 2016

Keywords:

Cryptographic Protocols, Formal

Verification, Model Checking,

Theorem Proving.

A B S T R A C T

In this paper, we shortly review two formal approaches in verification of

security protocols; model checking and theorem proving. Model checking

is based on studying the behavior of protocols via generating all different

behaviors of a protocol and checking whether the desired goals are satisfied

in all instances or not. We investigate Scyther operational semantics as an

example of this approach and then we model and verify some famous security

protocols using Scyther. Theorem proving is based on deriving the desired goals

from assumption of protocols via a deduction system. We define a deduction

system named Simple Logic for Authentication to formally define the notion of

authenticated communication based on the structure of the messages, and then

we investigate several famous protocols using our proposed deduction system

and compare it with the verification results of Scyther model checking.

© 2016 ISC. All rights reserved.

1 Introduction

S
ecure communication is an important issue since

ancient times. The evergoing development of com-

puter networks and software system, increases the

likelihood of subtle errors in such systems. In order

to provide secure communication among two or more

agents, a lot of cryptographic protocols are designed

and implemented. However, if a protocol is not de-

signed correctly it may cause catastrophic loss of in-

formation. The adversary can replace or prevent some

of the messages in a protocol and therefore prevent

the protocol to reach its goals. Some of the most well

known security flaws are false authentication and key

compromised attacks. As an example, in 1978 Need-

∗ Corresponding author. The names are alphabetically sorted.

Email addresses: m pourpouneh@mehr.sharif.edu (M.

Pourpouneh), rramezanian@um.ac.ir (R. Ramezanian).

ISSN: 2008-2045 © 2016 ISC. All rights reserved.

ham and Schroeder published a key distribution pro-

tocol [1] which is the basis for a whole class of related

protocols. Although, in 1981 Denning and Sacco [2]

proposed an attack over Needham and Schroeder pro-

tocol, which allowed the intruder to pretense an old,

compromised key as a new key.

Due to the complexity of the environment in which

the protocol is used, it is usually difficult to find the

errors of a protocol manually or just by trial and er-

ror, or trusting the correctness of a protocol based on

intuition and informal arguments. Accordingly, auto-

matic methods are used for verifying the correctness

of cryptographic protocols. One way of achieving to

these methods is by using formal methods which are

are mathematically based languages, techniques, and

tools for describing, specifying and verifying crypto-

graphic protocols.

Specifications is the process of formally define de-

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

4 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

sired properties of a protocol (such as authentication,

secrecy, anonymity, etc) via an appropriate language.

Describing is the process of formally explaining the

behavior of the protocol using mathematical objects.

Verification is the process of proving that the protocol

is correct and reaches the desired protocol goals.

The rest of this paper is organized as follow: In Sec-

tion 2 we review different types of attacks as well as

security properties of cryptographic protocols. Then

in Section 3 we briefly discuss two different approaches

which is used in formal verification of protocols. ??

reviews the Scyther model checker as one of the latest

model checkers. In Section 5 we propose a deduction

system named Simple Logic for Authentication, and

in Section 6 we describe how to model and verify cryp-

tographic protocols using Simple Logic for Authentica-

tion. Section 7 provides several different examples of

how the protocols are verified in our proposed model.

Finally, Section 8 concludes the paper.

2 Background

A protocol is a finite sequence of messages between

two or more agents A1, A2, . . . , An as follows:

1. Ai1 7→ Aj1 : m1

2. Ai2 7→ Aj2 : m2

3. Ai3 7→ Aj3 : m3

.. ...

k. Aik 7→ Ajk : mk.

for some arbitrary k ∈ N where for every 1 ≤ t ≤ k,

it, jt ∈ {1, 2, ..., n}. In order to analyze the behavior of

a protocol, a protocol and its goals should be defined

formally, therefore two things should be described at

first 1- the assumptions of the protocol, and 2- the

goals of the protocol.

As an example consider the Needham-Schroeder

public key protocol [1]. Following, is the informal

description of the protocol.

1. A 7→ B : {A,NA}pkB

2. B 7→ A : {NA, NB}pkA

3. A 7→ B : {NB}pkB

Protocol 1. Needham-Schroeder public key.

The assumptions of this protocol is that the nonces

generate by each agents are fresh, and every agent can

verify their freshness. The other assumption is that,

the keys are initially secret and they are unknown

to the adversary. The goal of the protocol is mutual

authentication, i.e., to assure each agent that they are

communicating with the intended partner.

2.1 Security Attacks

In this section we review some list of typical weak-

nesses, that the protocols might be vulnerable against

them. Based on the adversary activity the protocols

can be divided in to two groups, Passive and Active

attacks. In a passive attack the adversary does not

interrupt the communications of the legitimate agents.

But, in an active attack the adversary is online and

he communicates with agents.

• Eavesdropping is a passive attack and it is the

most basic attack that applies to every protocol.

In this attack the adversary only eavesdrops the

communication channel and sees the messages

that are communicating between the agents. Gen-

erally, protocols are secured against this attack

by using encryption.

• Modification in a protocol if the messages are

not integrated or their fields are not redundant

then the protocol might be vulnerable against

modification attack. In modification attacks the

adversary is not required to know the exact con-

tent of the messages. As an example, assume that

the adversary flips some bits of a message which

contains a session key. If the message is not in-

tegrated, then the message might yield another

session key which is completely different from

the original. It is shown that encryption is not

enough for providing the required integrity. For

more information of this the reader is referred to

papers by Stubblebine and Gligor [3] and by Mao

and Boyd [4].

• Replay the adversary records the messages and

uses them at a later time in other protocols. The

replay attack is an active attack. As an example

consider the following protocol:

A 7→ B : · · ·

B 7→ A : {session Key}kAB

A 7→ B : · · ·

Protocol 2. An example of a protocol vulnerable to replay

attack.

Since, in this protocol A can not verify that

the message is generated at the time of protocol

run or prior to that, the adversary can replace

this message with an old one, which causes the

agents to have different key.

The solution to this problem is to use nonce

or timestamps which shows that the messages

are generated at the time of protocol run. In [5]

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 5

Syverson has produced a classification of different

types of replay attacks.

• Preplay is an extension of replay attack. In this

attack the adversary prepares for the attack by

running a the same protocol or another protocol

before running main protocol. An example of this

attack is triangle attack of Burmester [6]

• Reflection is one of the most important special

case of replay attack. This attack may be be pos-

sible only if parallel runs of the same protocol are

allowed. As an example of this situation consider

an Internet host, which accept sessions from mul-

tiple clients and uses the same identity and set

of cryptographic keys for each run.

As an example consider the following protocol

from [7]:

A 7→ B : {NA}kAB

B 7→ A : {NB}kAB
, NA

A 7→ B : NB

Protocol 3. A protocol vulnerable to reflection attack.

When agent A receives the second message he

concludes that the message is actually sent by

B because he is the only one that knows kAB.

However, if two parallel run of this protocol is

allowed then the adversary C can successfully

complete two runs of the protocol as follow:

1. A 7→ C : {NA}kAB

1′. C 7→ A : {NA}kAB

2′. A 7→ C : {N ′A}kAB
, NA

2. C 7→ A : {N ′A}kAB
, NA

3. A 7→ C : N ′A

3′. C 7→ A : N ′A

Protocol 4. Reflection attack on Protocol 3.

In this case, A believes that he completed two

run of the protocol with B whereas he is com-

municating with adversary and he has done all

cryptographic tasks himself.

Reflection attack are also called ‘oracle attacks’,

since of the agents acts as an oracle. A compre-

hensive treatment of reflection attacks is done by

Bird et al. [8]

• Denial of Service (usually contracted to as DoS

attack) are the attacks in which the adversary

prevents the agents to complete the protocol.

Denial of service usually occurs in practice against

servers who are required to interact with many

agents. However, it seems to be impossible to

completely prevent denial of service attack, but

there are certain methods to reduce the impact

of denial of service attacks. Examples of these

methods are Aura and Nikander [9], Meadows [10],

and Juels and Brainard [11].

• Typing Attacks in practice when the agents

receive a message they only see a string of bits

and they have to interpret and separate the sub-

messages. Typing attacks benefit from this fact

and cause the agent to misinterpret a message

and accept different sub-messages as each other.

As an example, consider the Otway-Rees key

transport protocol [12]:

1. A 7→ B : M,A,B, {NA,M,A,B}kAS

2. B 7→ S : M,A,B, {NA,M,A,B}kAS
, {NB ,M,A,B}kBS

3. S 7→ B : M, {NA, kAB}kAS
, {NB , kAB}kBS

4. B 7→ A : M, {NA, kAB}kAS

Protocol 5. Otway-Rees protocol.

A and B share long-term keys, KAS and KBS

with server S, respectively. S generates a new

session key kAB and sends it to B. M and NA
are the nonces chosen by A, and NB is the nonce

chosen by B. Assuming that M is 64 bits, A and

B 32 bits, and kAB 128 bits, then the adversary

can act in the following way:

1. A 7→ B : M,A,B, {NA,M,A,B}kAS

2. B 7→ S : M,A,B, {NA,M,A,B}kAS
, {NB ,M,A,B}kBS

3. S 7→ B : M, {NA, kAB}kAS
, {NB , kAB}kBS

4. C 7→ A : M, {NA,M,A,B}kAS

Protocol 6. Typing attack on Otway-Rees protocol.

i.e., the adversary replaces the last part of the

first message with the second part of the last

messages, which causes A to believe that the new

session key is the concatenation of M,A,B.

Type Confusion Attack type confusion attack,

which is very similar to typing attack. The following

example shows a protocol vulnerable to type confusion

attack.

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

6 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

1. B 7→ A : m1 = {↑B , ↓A, NB}KAB

2. A 7→ B : m2 = {↑A, ↓B , NA, NB}KAB

3. B 7→ A : m3 = {↑B , ↓A, NA + 1}KAB

4. A 7→ B : m4 = {↑A, ↓B ,K′AB , NB}KAB

Protocol 7. Protocol vulnerable to type confusion attack.

Assuming that nonce NA and K ′AB has the same

length, then the adversary can send message m2 in-

stead of m4. The between type confusion attack and

typing attack, is that it is possible to prevent typ-

ing attack by checking the components of a message,

whereas in type confusion attack this should be con-

sidered as an implementation issue.

2.2 Security Goals

In this section we review some important security

properties of protocols, which the designer of the

protocol regards them as the goals of the protocol.

Secrecy expresses that certain information is not

revealed to the adversary, even though this information

is communicated over a network, which is under full

control of adversary.

Authentication there exist many forms of authen-

tication in literature. Informally, authentication is a

simple statement about the existence of a communi-

cation partner. In every protocol, at least two agents

are communicating. However, since the network is un-

der complete control of the adversary, not every role

execution guarantees that there actually has been a

communication partner, and the message might be

sent by the adversary. The following are four forms of

authentication:

Aliveness is a form of authentication that aims to

establish that an intended communication partner is

‘alive’. In [13] defines four forms of aliveness, namely

weak aliveness, weak aliveness in the correct role,

recent aliveness and recent aliveness in the correct

role.

Weak Aliveness this is the weakest form of au-

thentication. If this property is satisfied in a protocol

for a role, then it means that communication partner

is alive.

Weak Aliveness in the Correct Role property

express that the communication partner is alive and

he is acting in his the role that is expected from the

protocol description.

Recent Aliveness when weak aliveness or weak

aliveness in correct role are satisfied, it means that the

communication partner is alive and he has provided

some messages which can be only generated by him.

But, they do not tell any thing about ‘when’ these

messages are generated. It is not known whether these

messages are generated before, after, or during the

protocol execution time. Recent aliveness expresses

that the messages are generated at the time of the

protocol execution.

Recent Aliveness in the Correct Role this se-

curity property is just a combination os the previous

two property. Informally speaking, it means that the

communication partner is alive, he is acting in the

expected role and he is alive at the execution time of

the protocol.

The relationship between aliveness properties are

shown in Figure 1.

Figure 1. Aliveness authentication hierarchy.

The aliveness properties requires that some event to

be executed by the communication partner, without

putting restrictions on the contents of the exchanged

messages. A much stronger authentication require-

ment is formed by synchronisation. Intuitively it re-

quires that all received messages were indeed sent by

the communication partner and that sent messages

have indeed been received by the communication part-

ner. This corresponds to the requirement that the

actual message exchange has occurred exactly as spec-

ified by the protocol description [14].

Non-injective Synchronisation this property

states that every thing that is intended to happen in

the protocol description also happens in the protocol

execution.

Injective Synchronisation since the agents may

execute multiple runs of the same protocol or several

protocols in parallel, possibly communicating with the

same agents, the adversary may still be able to induce

unexpected behaviour by replaying messages from

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 7

one session in another session. In particular, protocols

satisfying non-injective synchronisation may still be

vulnerable to replay attacks. This issue is overcomes by

requiring that there is an injective mapping between

the sent and received messages of each agent.

Message Agreement synchronisation ensures

that the specified protocol behaviour occurs even in

the presence of an adversary. The intuition behind

agreement is that after execution of the protocol, the

parties agree on the values of variables. The message

agreement requires that the contents of the received

messages correspond to the sent messages, as speci-

fied by the protocol. Therefore, it results in that the

contents of every message in the protocol is exactly

as specified by the protocol. Similar to synchronisa-

tion property it is possible to define Non-injective

Agreement and Injective Agreement.

The relation among synchronisation and agreement

properties are shown in Figure 2.

Figure 2. Synchronisation and agreement hierarchy.

3 Formal Verification Approaches

Generally speaking, in cryptographic protocol liter-

ature formal methods are mainly divided in to two

categories:

3.1 Model checking

Model checking methods are techniques that build a

relatively large, but finite, number of possible protocol

behaviours. In general a model checker is a procedure

that decides whether a given structure M is a model

of a logical formula φ, in other words, whether M

satisfies φ, abbreviated M |= φ [15]. Usually, in these

methods M is an (abstract) model of the protocol,

which is typically a finite automata-like structure, and

φ is the desired property, which is typically expressed

as a temporal or modal logic formula.

The protocol behavior is modeled as a directed

graph in which every node represents different states

of the protocol and edges are the possible transitions

among different sates. The verification is performed

with an exhaustive over the state space since the model

is finite it is guaranteed that the search terminates,

although it may take a long time even for simple

protocols.

Model checking methods are generally fully auto-

mated and they are more suitable for finding attacks

on protocols, however they are uninformative when

the protocol is actually correct, An important limita-

tion of the model checkers is that they only work for a

number of finite parallel runs of a protocol, therefore

when model checker does not report any attacks over

a protocol it just means that the protocol is secure re-

garding a finite number of parallel run of the protocol

or even when for multi-protocol verification i.e. when

the protocol is run in parallel with other protocols.

The first model checkers based on temporal models

are developed by Clarke and Emerson [16], Queille

and Sifakis [17] and Pnueli [18] in 1980s. Some of the

examples of model checkers are:

(1) Murφ pronounced as Murphi is a general-

purpose model checker. The Murphi description

language is a high-level description language

for finite-state asynchronous concurrent sys-

tems [19]. In 1997 Mitchell et. al. [20] used

Murφ in order to analyze Needham-Schroeder

public key protocol [1], the TMN protocol [21]

and the Kerberos protocol [22]. In each case

Murφ reported the previously known problems.

(2) Brutus is a model checking tool which is spe-

cially designed for cryptographic protocols anal-

ysis [23]. As well as application for key establish-

ment protocols, Brutus is also used to analyze

electronic payments protocols [23].

(3) Scyther is model checker developed in 2008 by

Cas Cremers [13]. The novel features of Scyther

is the possibility of unbounded verification of

protocols with guaranteed termination, analy-

sis of infinite sets of traces over the protocol

graph, and support for multi-protocol environ-

ments [24]. In Section 4 we review Scyther in

detail.

3.2 Theorem proving

These methods are generally more suitable for proving

protocols correctness, rather than finding attacks on

them. Theorem proving is usually based on formalisms

such as first order logic or higher order logic. The

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

8 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

techniques that is used by these tools for proving

the desired property are such as induction, rewriting,

simplification and logical reasoning.

In theorem proving techniques the protocol and

the required properties are modeled as logical propo-

sitions. Then a set of axioms and a set of inference

rules are defined. Finally the property is correct (sat-

isfied) if it can be inferred from the protocol by using

defined axioms. Unlike to model checking methods,

theorem proving techniques can be used for infinite

state spaces. In contrast to model checkers, theorem

proving methods are slow.

Some of the examples of model checkers are:

(1) BAN Logic in 1989, Burrows, Abadi and Need-

ham (BAN) [25, 26] presented a logic for formal

method for reasoning about authentication and

key establishment protocols. BAN logic was the

first formal verification method based on the

beliefs of the agents participating in a proto-

col. The proofs constructed using BAN logic are

usually short and even they can be obtained by

hand. BAN logic assumes that authentication is

a function of integrity and freshness, and uses

logical rules to trace both of those attributes

through the protocol [27].

BAN logic was successful to find flows is sev-

eral protocols including Needham-Schroeder [1]

and CCITT X.509 [28], and Needham-Schroeder,

Kerberos [29], but it also has several known lim-

itations including:

- BAN does not provide any way for reasoning

about what agents does not know,

- BAN does not provide any way for convert-

ing a protocol to a idealized one,

- BAN is unable to represent whether an

agent is honest or not.

Also, Nessett constructed a specific example

BAN is unable to find the flaws which violate

security in a basic sense [30]. In [31] Syverson ex-

plained a problem of informality in BAN logic’s

operational semantics and misunderstandings

about BAN logic’s goals. Due to this reasons

Mao and Boyd [32] presented a set of measures

to formalise BAN logic.

There are many extensions and improvements

over BAN logic including the logics proposed

by Gong, Needham, and Yahalom [33], Abadi

and Tuttle [34], Syverson and van Oorschot [35],

Kessler and Wedel [36], and van Oorschot [37].

(2) Simple Logic for Authentication (SLA) as

a new theorem prover presented in this paper.

The main idea behind SLA is to enable the

agents to authenticate each message based on

its contents and structure. In contrast to BAN

logic and its extension, SLA is not based on the

belief of agents, it is based on the structure of the

messages. We review SLA in more detail in ??.

4 Scyther Operational Semantics for
Security Protocols

In Scyther [24] protocols are modeled explicitly by

means of an operational semantics. The result is a role-

based security protocol model that is agnostic with

respect to the number of concurrent protocols. The

security properties are modeled as local claim events.

In this section we describe the operational semantic

of Scyther.

4.1 Labelled transition system

In this section, we review operational semantics for se-

curity protocols which Scyther tool as a model checker

works based on this semantics.

The operational semantics regards a protocol as

a labeled transition system, and based on the trace

space of the labelled transition system defines notions

of securities.

A labelled transition system (LTS) is a concept for

describing the behavior of a discrete system. A LTS

consists of states and edges that connects states to

each other. In an LTS the set of states, as well as the

set of transitions might not be finite, or even countable.

Formally, a LTS is a quadruple (S,L,→, s0), in which

• S is the set of states;

• L is the set of labels;

• →: S × L× S is a ternary transition relation;

• s0 ∈ S is the initial state.

In this paper (p, α, q) ∈→ is abbreviated as p
α−→ q for

p, q ∈ S and α ∈ L. A finite execution of a LTS P =

(S,L,→, s0), denoted by σ, is an alternating sequence

of states and labels with start state s0 and ending

state sn such that if σ = [s0, α1, s1, α2, . . . , αn, sn]

then ∀i ≤ i < n si
αi+1−−−→ si+1. For the finite execution

[s0, α1, s1, α2, . . . , αn, sn] a finite trace of P is the

sequence of the labels, i.e., [α1, α2, . . . , αn] ∈ L∗.

A labelled transition system is defined by of a set of

transition rules. A transition rule defines a number of

premises Q1, Q2, . . . , Qn(n ≥ 0) which must all hold

before a conclusion of the form p
α−→ q is drawn:

Q1, Q2, . . . , Qn

p
α−→ q

Every security protocol describes a number of be-

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 9

haviours, called as roles. Every role in a protocol

corresponds to a vertical axe of a Message Sequence

Charts 1 . The system running the protocol may con-

tain any number of agents. The same agent may ex-

ecute any instances of roles. Each such instance is

called a run. As an example, an agent can perform

one initiator run and two responder run in parallel.

The agents execute their runs to achieve some secu-

rity goal. It is assumed that the adversary tries to

oppose the agents security goals. Also, the agents tak-

ing part in a protocol run might be compromised by

the adversary and try to invalidate the security goals

of other agents. In order to prevent attacks, proto-

cols use cryptographic primitives such as encryption

or hash, signature. Throughout this paper we treat

cryptographic primitives in a black-box approach. It

is assumed that these primitives are idealized and we

do not consider implementation errors.

In Scyther operational semantics, protocol specifi-

cation describes the behaviour of every roles in the

protocol. The specification of a protocol includes the

initial knowledge of the roles, the declaration of func-

tions, global constant and variables and the keys that

are known to every role.

Agents execute the roles of the protocol. It is as-

sumed that honest agents only follow the behavior

described for their role in the protocol specification.

For example in Needham-Schroeder public key 1,

the agents are A and B, and they can have role

sender/receiver. Note that each agent might be the

sender in one run and the receiver in another parallel

run.

The threat model used in this paper is the one sug-

gested by Dolev and Yao in 1983 [39]. In this model

the adversary is in full control of the communication

network. The adversary is able to read, modify, create,

and delete messages. Also, the adversary can compro-

mise any number of agents and learn their secret keys.

The security requirements that are considered in

this paper are safety properties, which ensures that

nothing bad will happen.

4.2 Protocol Model

Every protocol is a set of messages terms exchange

between the different roles in the protocol. The terms

that are used in the specification of a protocol for

different roles are called “role terms”. The role terms

is constructed using the following sets:

1 Message Sequence Chart is an International Telecommuni-

cation Union standardised protocol specification language [38]

• Var, denotes variables that are used for storing

the received messages,

• Fresh, denotes freshly generated values for each

instantiation of a role,

• Role, denotes roles,

• Func, denotes function names.

Role terms are the basic term sets extended with

constructors such as function application, term pairing,

encryption.

RoleTerm ::= V ar|Fresh|Role|Func
| Func(Roleterm)

| (RoleTerm,RoleTerm)

| {|RoleTerm|}RoleTerm

Encryption is defined as a function and the encrypted

term can only be decrypted using the same term (for

symmetric encryption) or the inverse key (for asym-

metric encryption). Therefore, a function is defined

to that inverses any role term: _−1 : RoleTerm →
RoleTerm.

In Scyther the protocols are described as a set of

roles, for each agent. Each role is able to execute a set

of actions named RoleEvent. The set of events that

can be executed by role R are as follows:

RoleEventR ::= sendl(R,R
′, RoleTerm)

| recvl(R′, R,RoleTerm)

| claiml(R,Claim[, RoleTerm])

RoleEvent =
⋃

R∈Role

RoleEventR

in which event sendl(R,R
′, RoleTerm) denotes the

sending of message RoleTerm by R, intended for R′.

The event recvl(R,R
′, RoleTerm) the reception of

message RoleTerm by role R′, apparently sent by role

R. Event claiml(R, c,RoleTerm) expresses that R

upon execution of this event expects security goal c

to hold with optional parameter RoleTerm. A claim

event denotes a local claim, which means that it only

concerns role R and does not express any expectations

at other roles. l ∈ Lable are the labels which tags the

events. Taging the events is necessary for two reasons:

First, they are needed to disambiguate similar occur-

rences of the same event in a protocol specification.

Second, they are used to express the relation between

corresponding send and receive events.

As an example consider the following informal de-

scription of a protocol:

I 7→ R :
{
{ni}pk(R)

}
sk(I)

This protocol contains two roles, i.e. an initiator and

responder. ni is freshly generated nonce and pk(·) and

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

10 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

sk(·) are two functions. For this protocol we get the

following protocol specification:

Role I {

send_1(I, R, {{ni}_{pk(R)} }_{sk(I)});

}

Role R {

reciv_1(R, I, {{V}_{pk(R)} }_{sk(I)});

claim(R, secret, V);

}

in which V is the variable that is used for storing the

value of nonce ni.

A role specification is defined as a set of initial

knowledge(the initial knowledge needed to execute the

role), and a list of role events. A protocol specifies the

behavior of a number of a number of roles by means

of a partial function from the set Role to RoleEvent∗.

Therefore, each role description corresponds to a (to-

tally ordered) list of events.

A run is defined as an instantiated role. In order to

instantiate a role, it should be binded to the names of

actual agents and make the local constants unique for

each instantiation.

In fact a role term is transformed into a run term by

applying an instantiation from the set Inst, defined as

RID × (Role→ Agent)× (V ar → RunTerm)

The notation runidof(inst) denotes the run identifier

from an instantiation inst.

4.3 Protocol Execution

In the previous section a formal notion for a protocol

description is defined. The protocol description is a

static description of how a protocol should behave.

But, when a protocol description is executed, dynamic

aspects are introduced. In this section we review how

a protocol is executed in Scyther.

The semantics of a protocol description in the pres-

ence of an intruder is defined as the set of possible

execution traces. A trace is a totally ordered set of

events, in which no variables occur.

Each role in a protocol description can be executed

any number of times, possibly in parallel, by an un-

bounded number of agents. The unique execution of

a role in referred to as a run. A run is some specific

instance of a role by an agent. Each run is identified

using its identifier, which is a unique identifier at meta

level, and it is used to distinguish between different

runs. Each run can have unique variables and local

uniquely generated values such as nonces. Executing

a role turns a role description into a run. This process

is referred to as instantiation. Roles can be instanti-

ated multiple times in several runs. To ensure that the

freshly generated values are unique for each instanti-

ation, the identifier of the runs is appended to their

names.

In order to define a protocol behaviour, the protocol

descriptions (i.e., roles and their events) should be

connected to its execution (i.e., instantiation of role

events). Therefore, the combination of an instantiation

function with a role event a is called run event.

As mentioned before, Scyther uses a labelled transi-

tion system of the form (State,RunEvent ,→, s0(P)),

for a given protocol P , in which:

The States are the set of possible states of the

network of agents executing roles in a security protocol,

s0(P) is the initial state of the protocol. The initial

state of the system consists of the initial adversary

knowledge and the empty set of runs. The initial

adversary knowledge is the union of the fresh terms

generated by the adversary, the set of agent names,

and the initial knowledge of all compromised agents in

all roles. The transition relation is defined in Figure 3.

In each rule in this table, the left-hand side of the

conclusion is state 〈〈AKN , F 〉〉, where AKN is the

current intruder knowledge and F is the current set

of active runs. The system transition from this state

to the one on the right if the premises are satisfied.

The new state contains an update of the set of active

runs and the intruder knowledge. The transitions are

labelled with the executed run events.

Match is a predicate used to match an incoming

message to a pattern specified by a role term, in the

context of a particular instantiation. Formally speak-

ing, let inst(θ, ρ, σ), inst′ = (θ′, ρ′, σ′) ∈ Inst, pt ∈
RoleTerm and m ∈ RunTerm, then the predicate

Match(inst, pt,m, inst′) holds if and only if θ = θ′,

ρ = ρ′ and

〈inst′〉 = m ∧
∀v ∈ dom(σ′) : σ′(v) ∈ type(v) ∧
σ ⊆ σ′ ∧
dom(σ′) = dom(σ) sup vars(pt).

in which the type is a function which returns the type

of a variable that can be fresh, agent, Func, pk/sk and

symmetric key.

The runsof(P,R) is the runs that can be created by

a Protocol P for a roleR ∈ dom(P). Also, runIDs(F)

return the set of active run identifier for a given set

of runs F .

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 11

[createp]
R ∈ dom(P) ((θ, ρ, ∅), s) ∈ runsof(P,R) θ 6∈ runIDs(F)

〈〈AKN , F 〉〉 ((θ,ρ,∅),create(R))−−−−−−−−−−−−→ 〈〈AKN , F ∪ {((θ, ρ, ∅), s)}〉〉

[send]
e = sendl(R1, R2,m) (inst, [e].s) ∈ F

〈〈AKN , F 〉〉 (inst,e)−−−−−→ 〈〈AKN ∪ {〈inst〉(m)}, (F {(inst, [e].s)}) ∪ {(inst, s)}〉〉

[recv]
e = recvl(R1, R2, pt) (inst, [e].s) ∈ F AKN ` m Match(inst, pt,m, inst′)

〈〈AKN , F 〉〉 (inst′,e)−−−−−→ 〈〈AKN , (F {(inst, [e].s)}) ∪ {(inst′, s)}〉〉

[claim]
e = claiml(R, c) ∨ e = claiml(R, c, t) (inst, [e].s) ∈ F

〈〈AKN , F 〉〉 (inst,e)−−−−−→ 〈〈AKN , (F {(inst, [e].s)}) ∪ {(inst, s)}〉〉

Figure 3. Transition rules of Scyther.

The createP rule demonstrates that in any state a

new run from the set of possible runs runsof(P,R)

can be created. The only requirement for createP is

that its run identifier θ should not already occur in F .

The premises of the send rule state that there is

a run in current set of active runs (F), whose next

step is a send event. Upon execution of this send event

the adversary learns the sent message and the run

progresses to the next step. The premises of the recv

rule state that there is a run in F whose next step is

a receive event. The difference with the send rule is

that the transition is only enabled if the adversary can

infer a message m that matches the pattern pt. If pt

contains previously unbound variables, they are now

instantiated by updating inst to inst ′. The adversary

learns no new information and the run progresses.

The premises of the claim rule state that there is a

run in F whose next step is a claim event. Except for

progressing the run, they have no effect on the state.

5 SLA: A Theorem Prover

Simple Logic for Authentication is a theorem prover

which uses the structure of the messages to reason

about them. In this section we first provide the intu-

ition about an authenticated communication which

forms the basis of SLA, and then we prove SLA se-

mantics and finally give some examples of how SLA

works.

5.1 The Intuition of Glass Pipe

We introduce a notion named glass pipe to explain our

intuition of authentication, and based on this notion,

we propose a simple logic to formally support our

intuition of authentication.

Assume Alice and Bob want to share a key using

the Diffie-Hellman key agreement protocol [40]; Alice

wants to send the message ga to Bob, and Bob wants

to send the message gb to Alice 2 . Alice and Bob

seek for an authenticated connection to exchange their

messages through it. They simply take a glass pipe with

some balls satisfying the following three properties:

P1. ◦ Their glass pipe has just one tail, and just one

head.

◦ It is only possible to input a ball to the glass

pipe either through its head or its tail.

◦ The tail is only accessed by Bob and the head

is only accessed by Alice.

P2. The radius of each ball is 2
3 times of radius of

the pipe, and thus at each time only one ball can

pass through the pipe.

P3. The pipe is constructed by glass, and thus any-

body (adversary) can see inside it, but it is not

possible for anybody else (except Alice and Bob)

to input balls to the pipe.

Alice generates a random number a, write ga on a

ball, and derives the ball away through the glass pipe

to Bob. Bob receives the ball, generates a random

number b, write gb on another ball, and derives it away

through the glass pipe to Alice. Then, they agree on

gab as the session key.

The glass pipe with above three properties plays

the role of an authenticated connection for Alice and

Bob. Alice and Bob via the glass pipe, could complete

a version of Diffie-Hellman key exchange protocol in

an authenticated way. The authentication property in

this version is concluded of three assumed properties

P1, P2, and P3 for the glass pipe. We may say that

the key exchange Diffie-Hellman in glass pipe has per-

2 g is assumed as a generator of a multiplicative group Z∗p
for some large prime number p (where the discrete logarithm

problem is hard), and a, and b are two random numbers

generated by Alice and Bob, respectively.

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

12 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

fect forward secrecy 3 in the following meaning:

If the glass pipe is broken at some time, as the construc-

tion of the glass pipe is independent of the agreed keys

gab, and it is possible for the adversary to see inside

the glass pipe, after breaking the pipe, the knowledge

of the adversary does not change about the before

agreed keys.

In the sequel, by the notion of the authenticated

connection we mean a glass pipe with properties P1,

P2, and P3.

Informally “Authentication” is the answer to the

following question:

Who is on the other side of the Glass Pipe?

At the first look it may seem it is enough to answer to

the question of “who constructed the message?” But,

it is possible that the message is not freshly generated

and it is sent by adversary. Knowing that the message

is freshly constructed by the intended communication

partner is not enough for authentication. There is

a possibility that the actual “destination” for the

message is some else, and the adversary redirected

this message to the agent. Hence, the answer to the

following questions provides the answer to “ Who is

on the other side of the line?”

(1) Who is thesource of the received message?

(2) Who is thedestination of the received message?

(3) Is the message constructed by the intended com-

munication partner?

(4) Is the message freshly generated?

(5) Is the message protected against modification,

i.e. is it integrated?

In the following sections we try to formally answer to

these questions.

5.2 A Simple Logic

In this section, we propose our simple logic, SL, for

formally resembling the notion of pipe glass via cryp-

tographic attributes of messages. We first introduce

the syntax of the logic, and then its deduction system.

5.2.1 Syntax

We first define a set of constant symbols, denoted by

M , which formally presents the set of cryptographic

messages.

We let Agent = {a1, a2, ..., b1, b2, ...c1, c2, ..} be a

set of symbols regarded as principle’s name.

3 A protocol is said to have perfect forward secrecy if compro-

mise of long-term keys does not compromise past session keys

We let P be a set of symbols with regard to primitive

messages containing following special kinds of symbols

- IDpro.IDses.IDstep which refers to the identifi-

cation of a protocol, the identification of a session

of the protocol, and the identification of the step

of the protocol.

- For each a ∈ Agent, ↑a and ↓a are two symbols

belong to P .

We let Key = {kiab, skia, pkia | i ∈ N, a, b ∈ Agent} be

a set of symbols for keys where

- kiab is a symbol to refer to the ith shared key

between two agents a and b, assuming kiab = kiba.

- skia is a symbol for the ith secret-key of the agent

a which corresponds to the symbol pkia as the

public-key.

We also assume F = {f1, f2, ...} be a set of sym-

bols regarded as one-way functions, and HMAC =

{MAC1,MAC2, ...} be a set of symbols regarded as

hash message authenticated codes.

Definition 1. The set of constants symbolsM of the

SL logic, is defined as follows:

1- P ∪Key ∪Agent ⊆M .

2- m1,m2, ...,mt ∈ M ⇒ tuplet(m1,m2, ...,mt) ∈
M ,

3- m ∈ M ⇒ {m}kab
, {m}ska , {m}pka ∈ M , for all

kab, ska, pka ∈ Key,

4- m ∈ M ⇒ MAC(kab,m), f(m) ∈ M , for all

MAC ∈ HMAC, kab, ska ∈ Key, and f ∈ F .

5- Each member of M is obtained inductively by

items 1-4.

The following definition introduces the set of for-

mulas of the SL logic.

Definition 2. The set of formulas, denoted by

Formu, of the SL is defined as below.

Hid(k), Fresha(m), Intega(m), Constb(a,m),

Sourcb(a,m), Destb(a,m), Suba(d,m), senda(m),

V accessa(b, d) and PIPE(a, 〈d,m〉, b) are formulas

in Formu where k ∈ Key, a, b ∈ Agent, and d,m ∈
M .

• Hid(k) has to be read as ‘the key k is hidden from

adversary ’.

• Fresha(m) has to be read as ‘the principal a can

verify that m is fresh’.

• Intega(m) informally means that ‘the principal

a can verify that m is integrated ’.

• Constb(a,m) informally means that ‘the principal

b can verify that whether principal a has the ability

to construct m’.

• Destb(a,m) has to be read as ‘the principal b can

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 13

verify that the destination of the message m is the

principal a’.

• Sourceb(a,m) has to be read as ‘the principal b

can verify that the source of the message m is the

principal a’.

• Suba(d,m) informally means that ‘the principal a

can derive d as a sub-message of the message m’.

• senda(m) means that ‘principle a sends the mes-

sage m through protocol.

• V accessa(b, d) informally means that ‘principal

a can verify that only principals b has access to

message d

• PIPE(a, 〈d,m〉, b) has to be read as ‘the structure

of the message m resembles a glass pipe such that

the principal a sends the message d (where d is a

sub-message of m) to the principal b through it ’.

The SL logic is a simple logic, where all formulas

of SL are atomic 4 . Any formula of SL is simple;

and contains no logical connectives as ∧,∨,¬,→, no

quantifiers ∃,∀, and no modal operators. It is why we

call our logic simple logic.

5.2.2 Deduction System

In this part, we introduce the set of deduction rules

of the SL. By these rules, we formally determine the

meaning of the formulas of the SL logic.

• Tuple rules: Informally these rules enables the

principles to be able to distinguish different parts

of a messages, therefore it prevents attacks such

as “typing attack”.

For every t, j ∈ N, and for everym,m1, . . . ,mt,

d1, d2, . . . , dj ∈M ,

◦ tuplet(m1, ...,mt) = tuplej(d1, ..., dj)

t = j m1 = d1 ... mt = dj
(p1.rule)

◦
tuple1(m) = m

(p2.rule)

◦ m1 = d1 ... mt = dt
tuplet(m1, ...,mt) = tuplet(d1, ..., dt)

(p3.rule)

Sub-message rules: These rules allows the

agents to verify and extract every single part of

a recieved tuple.

Let m,m′, d, d1, d2, ..., dj ∈ M and a, b ∈
Agent, then for every j ∈ N,

◦
Suba(di, tuplej(d1, d2, . . . , dj))

(s1.rule)

4 Note that the language of SL does not have any predicate.

For example, for every k ∈ Key, Hid(k) is an atomic formula,

and we do not have Hid(−) as a predicate in SL.

◦
Suba(d, {d}kab

)
(s2.rule)

◦
Suba(d, {d}skb)

(s3.rule)

◦
Suba(d, {d}pka)

(s4.rule)

◦ Suba(d,m) Suba(m,m′)

Suba(d,m′)
(s5.rule)

Freshness rules: These rules ensures an agent

that the received messages are fresh.

For every t ∈ N, for every d,m1,m2, ...,mt ∈M ,

for every a, b ∈ Agent, for every kab, skb, pka ∈
Key, and a known one-to-one function f (such

as +, -, *,...),

◦ Fresha(d)

Fresha(tuplet+1(m1, . . . , d, . . . ,mt))
(f1.rule)

◦ Fresha(d)

Fresha({d}skb)
(f2.rule)

◦ Fresha(d)

Fresha({d}pka)
(f3.rule)

◦ Fresha(d)

Fresha({d}kab
)

(f4.rule)

◦ Fresha(d)

Fresha(f(d))
(f5.rule)

Construction rules: for every d,m ∈ M , for

every a, b ∈ Agent, for every MAC ∈ HMAC,

for every kab, ska ∈ Key,

◦ Hid(kab)

Constb
(
a, (d,MAC(kab, d))

) (c1.rule)

◦ Hid(kab)

Constb
(
b, (d,MAC(kab, d))

) (c2.rule)

◦ Hid(kab)

Constb(a, {d}kab
)

(c3.rule)

◦ Hid(kab)

Constb(b, {d}kab
)

(c4.rule)

◦ Hid(ska)

Constb(a, {d}ska)
(c5.rule)

◦

Fresha(d) Suba(d, {m}pka)

Vaccessa(b, d) Hid(ska)

Consta(b, {m}pka)
(c6.rule)

Informally rule c6 means that if agent a can verify

the freshness of message d and d is a one of the

components of message m that is encrypted using

his public key, and the only one who has access

to d is agent b, then he is assured that {m}pka is

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

14 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

For every a, b ∈ Agent, and d,m ∈M ,

Freshb(m) Integb(m) Sourcb(a,m) Subb(d,m) Destb(b,m)

PIPE(a, 〈d,m〉, b)
(pipe.rule)

(3)

constructed by agent b.

Integrity rules: for every d ∈ M , for every

a, b ∈ Agent, for every MAC ∈ HMAC, for ev-

ery kab, skb ∈ Key,

◦ Hid(kab)

Intega(d,MAC(kab, d))
(i1.rule)

◦ Hid(kab)

Intega({d}kab
)

(i2.rule)

◦
Hid(skb)

Intega({d}skb)
(i3.rule)

◦
Hid(kab) Suba(d, d′)

Intega(d, {d′}kab
)

(i4.rule)

◦

Fresha(d) Suba(d, {m}pka)

Vaccessa(b, d) Hid(ska)

Intega(b, {m}pka)
(i5.rule)

Informally rule i5 means that if agent a can ver-

ify the freshness of message d and d is a one of the

components of message m that is encrypted using

his public key, and the only one who has access

to d is agent b, then he is assured that {m}pka is

integrated, and it has not been modified, since

its modification requires to decrypt the message,

but it is assumed that sk(b) is hidden.

Destination rule: for every a, b ∈ Agent, for

every m ∈M ,

◦ Subb(↓a,m)

Destb(a,m)
(d.rule)

Source rule: for every a, b ∈ Agent, for every

m ∈M ,

◦ Subb(↑a,m) Constb(a,m)

Sourcb(a,m)
(so.rule)

Acommon rule for Freshness and Integrity:

for every a ∈ Agent, for every d,m ∈M ,

◦ Fresha(m) Suba(d,m) Intega(m)

Fresha(d)
(fi.rule)

The fi.rule means that if agent a can verify the

integration and freshness of messagem then every

sub-message of m is also fresh.

Access rule: for every a, b ∈ Agent, for every

m ∈M ,

◦

Senda({m}pkb) Subb(d,m)

V accessa(a, d) Hid(skb)

V accessa(b, d)
(ac.rule)

The access rule shows how an agents shares a

value with another agent.

Glass Pipe rule: The pipe rule is shown in Equa-

tion 3.

The glass pipe rule says that if d is sub-message

of m, and principal b, from the structure of mes-

sage m, can verify that

◦ m is fresh,

◦ m has integrity,

◦ the source of the message m is principal a,

◦ d is a sub-message of m, and

◦ the message m is sent for b (b is the destination

of m),

then

the message m plays the function of a glass

pipe that principal a has sent the message d to

principal b through it.

The glass pipe rule is the core of our formal approach

where we formally describe our intuition of how we

can resemble a glass pipe.

• Formulas Sourcb(a,m), and Destb(b,m) formal-

ize property (P1) of glass pipe (see Section 5.1).

• Freshb(m) formalizes property (P2),

• and formulasFreshb(m), Integb(m),Sourcb(a,m),

and Destb(b,m) all together formalize property

(P3).

5.3 Complete Authentication

Glass pipe rule does not support security in the case

of multi-session executions. For example, the protocol

presented in Section 7.7 satisfies its goals, but there

is an attack on in the situation of multi-session execu-

tion. To over come this condition, it is needed to add

protocol ID, session ID and step ID. Therefore, we add

a new predicate to the language of our proposed logic:

• PSSa(m) informally means that agent a can de-

rive from structure of the message m that this

message has sent according to which step of what

protocol in what session.

• Protocol.Session.Step rule:

suba(IDpro.IDses.IDstep,m)

PSSa(m)
(PSS.rule)

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 15

Therefore, the following rule, called a.pipe rule, be-

comes the main rule:

PSSb(m) PIPE(a, 〈d,m〉, b)
Auth(a, 〈d,m〉, b)

(a.pipe rule)

6 How to Model and Verify a Security
Protocol

In this section, we describe how to model and verify

the security protocols.

A protocol PRO is assumed as a finite sequence

of communications between two or more principals

A1, A2, ..., An as follows:

The symbol M [PRO] refers to the set message

{m1,m2, ...,mk} which are exchanged to complete

the protocol. For each i, 1 ≤ i ≤ n, MAi
[PRO] ⊆

M [PRO] is the set of all messages received by princi-

pal Ai.

To formally model a protocol two things should be

described: 1- the assumptions of the protocol, and 2-

the goals of the protocol.

1. Assumptions of the protocol:

◦ Nonce. The freshness of Nonce which are gen-

erated by principals are considered as assump-

tions. For example, if n is a nonce generated

by a principal a in a protocol, we consider

Fresha(n) as an assumption of the protocol.

◦ Keys. keys which are initially assumed to be

secret from the adversary in a protocol are

assumed to be hidden. For example, if ska is

a secret key of the principal a in a protocol,

we regard Hid(ska) as an assumption of the

protocol.

2. Goals of the protocols: the goals of the proto-

col are the set of those messages which the proto-

col is designed to exchange them between some

principals in an authenticated manner (for ex-

ample PIPE(Ait , 〈d,mt〉, Ajt) is used to assert

that the message d is transferred through a glass

pipe from principal Ait to principal Ajt where the

message mt plays the function of the glass pipe.

We refer to the set of all assumption of a protocol

PRO by Γpro where the elements of Γpro are all atomic

formulas like Fresha(d) and Hid(k) for a ∈ Agent,
d ∈ M , and k ∈ Key. We also refer to goals of the

protocol by G1, G2, ..., Gl, where each Gi is a formula

like PIPE(...).

In this way, a formal model of a protocol is a tuple

〈Γpro, G1, G2, ..., Gl〉

where Γpro is the set of assumptions, and each Gi is a

goal of the protocol.

Verifying a protocol model 〈Γpro, G1, G2, ..., Gl〉 is

to show that each goal Gi (1 ≤ i ≤ l) can be derived

from the set of assumptions Γpro using the deduction

system of our simple logic SL.

6.1 Some Examples of Modeling and

Verifying

To illustrate the operation of modeling and verifying

protocols via SL, in following, we formally model and

verify two simple protocols. The first protocol is a

key exchange protocol and the second protocol is the

Needham-Schroeder public key protocol.

6.1.1 A Key Exchange Protocol

The following protocol is an authenticated version of

Diffie-Hellman key exchange protocol.

• Informal Description of the Protocol:

1. A 7→ B : m1 (where m1 = {tuple4(↑A, ↓B , ni, g
i)}skA

)

2. B 7→ A : m2 (where m2 = {tuple5(↑B , ↓A, ni, nr, gr)}skB
)

3. A 7→ B : m3 (where m3 = {tuple6(↑A, ↓B , nr, ni, g
r, gi)}skA

)

Protocol 8. Diffie-Hellman key exchange protocol.

• Formal Model of the Protocol: the set of as-

sumptions of the above protocol is

Γ = {FreshA(ni), F reshB(nr), Hid(skA), Hid(skB)}.

We assume fx(y) = xy as symbols for one-way

function. Goals of the protocol are

G1 = PIPE(A, 〈fg(i),m1〉, B),

and

G2 = PIPE(B, fg(r),m2, A)

• Verification: Applying the deduction rules of

our proposed logic, we prove Γ ` G1, and Γ ` G2.

C1. Γ ` FreshB(m3) (by rules f1, f2 and assump-

tion FreshB(nr)).

C2. Γ ` IntegB(m3) (by rule i3 and assumption

Hid(skA)).

C3. Γ ` FreshB(ni) (by rule fi and consequences

C1, and C2).

C4. Γ ` FreshB(m1) (by rules f1,f2 and conse-

quence C3).

C5. Γ ` IntegB(m1) (by rule i3 and assumption

Hid(skA)).

C6. Γ ` ConstB(A,m1) (by rule c5 and assump-

tion Hid(skA)).

C7. Γ ` SubB(fg(i),m1) (by rules s1, s3, s5).

C8. Γ ` DestB(B,m1) (by rule d).

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

16 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

C9. Γ ` PIPE(A, 〈fg(i),m1〉, B) (by pipe.rule).

6.1.2 Needham-Schroeder Protocol

The Needham-Schroeder public key protocol [1] is

intended to provide mutual authentication between

two parties. The protocol was proved to be correct

via BAN logic but Lowe found that the protocol is

vulnerable to a man in the middle attack [41]. We

show that it is not verified in SL, either.

• Informal Description of the Protocol:

1. A 7→ B : m1 = {↑A, NA}pkB

2. B 7→ A : m2 = {NA, NB}pkA

3. A 7→ B : m3 = {NB}pkB

Protocol 9. Needham-Schroeder public key protocol.

• Formal Model of the Protocol: the set of as-

sumptions of the Needham-Schroeder protocol is

ΓNS = {Hid(skA),Hid(skB),

F reshA(NA), F reshB(NB)}.

Goals of the protocol are

G1 = PIPE(A, 〈NB ,m3〉, B),

and

G2 = PIPE(B, 〈NA,m2〉, A).

• Verification: We show that ΓNS 6` G1, and

ΓNS 6` G2. It is obvious that ΓNS 6` G2 since

I can not verify DestA(A, {NA, NB}pkA) and

sourceA(B, {NA, NB}pkA)

• Modification: We modify the structure of mes-

sages of the Needham-Schroeder protocol such

that goals G1 and G2 can be derived from ΓNS .

1. A 7→ B : m1 = {↑A, ↓B , NA}pkB

2. B 7→ A : m2 = {↑B , ↓A, NA, NB}pkA

3. A 7→ B : m3 = {↑A, ↓B , NB}pkB

Protocol 10. Modified Needham-Schroeder public key proto-

col.

Now we can verify that

G1 = PIPE(A, 〈NB ,m3〉, B)

C1. Γ ` FreshB(m3) (by rules f1, f3 and assump-

tion FreshB(NB)).

C2. Γ ` SubB(NB ,m3) (by rules s1, s4).

C3. Γ ` DestB(B,m3) (by rule s1, s4 and d).

C4. Γ ` V accessB(B,NB) (by assumption

Hid(skA) and ac rule).

C5. Γ ` ConstB(A,m3) (by C1, C4, c6 and as-

sumption FreshB(NB)).

C6. Γ ` SourceB(A,m3) (by rules so and C5).

C7. Γ ` IntegB(m3) (by rule i5 and C5).

C8. Γ ` PIPE(A, 〈NB ,m3〉, B) (by pipe.rule).

• Resistance against known attacks: Lowe

found that this protocol is vulnerable to a man in

the middle attack since the sender in the second

message is not determined. In our modification in

order to achieve PIPE property, we need to spec-

ify sender and receiver of a each message. So, this

attack does not apply to our modified protocol.

7 Modeling and Verification of Some
Protocols

In this section, in order to explain both theorem prover

and model checking approaches, we model and verify

some security protocols.

7.1 Bellare-Rogaway MAP1 Protocol

The MAP1 is a mutual authentication protocol pre-

sented by Bellare and Rogaway [42].

• Informal Description of the Protocol:

1. A 7→ B : m1 = NA

2. B 7→ A : m2 = NB , {↑B , ↓A, NA, NB}KAB

3. A 7→ B : m3 = {↑A, NB}KAB

Protocol 11. MAP1 protocol.

• Formal Model of the Protocol: the set of as-

sumptions of the Bellare-Rogaway MAP1 proto-

col is

ΓBR = {Hid(KAB), F reshA(NA), F reshB(NB)}.

Goals of the protocol are

G1 = PIPE(B, 〈NA,m2〉, A),

and

G2 = PIPE(A, 〈NB ,m3〉, B).

Informally speaking, goal G1 is modeling the

case in which agent A gives his nonce to B and in

order to verify him, asks B to send this message

to him trough a glass pipe.

• Verification: We show that ΓBR ` G1, but

ΓBR 6` G2.

C1. Γ ` FreshA(m2) (by rules f1 f4 and assump-

tion FreshA(NA)).

C2. Γ ` IntegA(m2) (by rule i2 and assumption

Hid(KAB)).

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 17

C3. Γ ` ConstA(B,m2) (by rule c3 and assump-

tion Hid(KAB)).

C4. Γ ` SubA(↑B ,m2) (by rules s1, s2, s5).

C5. Γ ` SourceA(B,m2) (by rules so, C3 and C4).

C6. Γ ` SubA(NA,m2) (by rules s1, s2, s5).

C7. Γ ` DestA(A,m2) (by rule d).

C8. Γ ` PIPE(B, 〈NA,m2〉, A) (by pipe.rule).

In order to see that ΓBR
?

` G2 we should have

Γ ` DestB(B,m3) but since B cannot verify

SubB(↓B ,m3) we have ΓBR 6` G2.

• Modification: We modify the structure of mes-

sages of Bellare-Rogaway MAP1 protocol such

that goals G1 and G2 can be derived from ΓBR.

1. A 7→ B : m1 = tuple1(NA)

2. B 7→ A : m2 = tuple2(tuple1(NB), {tuple4(↑B , ↓A
, NA, NB)}KAB

)

3. A 7→ B : m3 = {tuple3(↑A, ↓B , NB)}KAB

Protocol 12. Modified MAP1 protocol.

It is obvious that we have ΓBR ` G1 and ΓBR `
G2.

• Resistance against known attacks: Alves-

Foss [43] show that Bellare-Rogaway MAP1 is

vulnerable against a chosen protocol attack. This

attack does not apply to our modified version.

• Code for verification using Scyther

usertype SessionKey;

#const Fresh: Function;

protocol MAP1(A,B)

{

role A

{

fresh NA: Nonce;

var NB: Nonce;

send_1(A,B, NA);

recv_2(B,A, NB,{B,A,NA,NB}k(A,B));

send_3(A,B, {A,B,NB}k(A,B));

claim_A1(A,Nisynch);

}

role B

{

var NA: Nonce;

fresh NB: Nonce;

recv_1(A,B, NA);

send_2(B,A, NB,{B,A,NA,NB}k(A,B));

recv_3(A,B, {A,B,NB}k(A,B));

claim_B1(B,Nisynch);

Figure 4. Simulation results for Bellare-Rogaway MAP1 pro-

tocol.

}

}

• Result of the simulation

7.2 Andrew Secure RPC Protocol

The Andrew Secure RPC protocol performs handshake

using a key that both parties already share and then

establishes a new new session key [44].

• Informal Description of the Protocol:

1. A 7→ B : m1 = {NA}KAB

2. B 7→ A : m2 = {NA + 1, NB}KAB

3. A 7→ B : m3 = {NB + 1}KAB

4. B 7→ A : m4 = {K′AB , N ′B}KAB

Protocol 13. Andrew secure RPC protocol.

• Formal Model of the Protocol: the set of as-

sumptions of the Andrew Secure RPC protocol is

ΓAndrew = {Hid(KAB), F reshA(NA),

F reshB(NB), F reshB(N ′B)}.

Goals of the protocol are

G1 = PIPE(A, 〈NB + 1,m3〉, B),

G2 = PIPE(B, 〈NA + 1,m2〉, A),

and

G3 = PIPE(B, 〈K ′AB ,m4〉, A).

• Verification: It is easily seen that ΓAndrew 6`
G1, ΓAndrew 6` G2, and ΓAndrew 6` G3.

• Modification: We modify the structure of mes-

sages of Andrew Secure RPC protocol such that

goals G1, G2, G3 can be derived from ΓAndrew.

1. A 7→ B : m1 = {tuple3(↑A, ↓B , NA)}KAB

2. B 7→ A : m2 = {tuple4(↑B , ↓A, NA + 1, NB)}KAB

3. A 7→ B : m3 = {tuple3(↑A, ↓B , NB + 1)}KAB

4. B 7→ A : m4 = {tuple5(↑B , ↓A,K′AB , N ′B , NA)}KAB

Protocol 14. Modified Andrew secure RPC protocol.

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

18 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

Now we prove that ΓAndrew ` G1, ΓAndrew `
G2, and ΓAndrew ` G3.

C1. Γ ` FreshB(m3) (by rules f1, f4, f5 and as-

sumption FreshB(NB)).

C2. Γ ` IntegB(m3) (by rule i2 and assumption

Hid(KAB)).

C3. Γ ` ConstB(A,m3) (by rule c3 and assump-

tion Hid(KAB)).

C4. Γ ` SubB(↑A,m3) (by rules s1, s2, s5).

C5. Γ ` SourceB(A,m3) (by rules so, C3 and C4).

C6. Γ ` SubB(NB ,m3) (by rules s1, s2, s5).

C7. Γ ` DestB(B,m3) (by rule d).

C8. Γ ` PIPE(A, 〈NB + 1,m3〉, B) (by pipe.rule).

A similar proof shows that ΓAndrew ` G2 and

ΓAndrew ` G3

• Resistance against known attacks: Against

Clark-Jacob [45] attack.

• Code for verification using Scyther

usertype SessionKey;

const succ: Function;

const Fresh: Function;

const sender: Function;

const reciever: Function;

protocol andrew(A,B)

{

role A

{

fresh NA: Nonce;

var NB,NB’: Nonce;

var k’AB: SessionKey;

send_1(A,B, {A, B, NA}k(A,B));

recv_2(B,A, {B, A, succ(NA),NB}k(A,B));

send_3(A,B, {A, B, succ(NB)}k(A,B));

recv_4(B,A, {B, A, k’AB,NB’, NA}k(A,B));

claim_A1(A,Nisynch);

}

role B

{

var NA: Nonce;

fresh NB,NB’: Nonce;

fresh k’AB: SessionKey;

recv_1(A,B,{A, B, NA}k(A,B));

send_2(B,A, {B, A, succ(NA),NB}k(A,B));

recv_3(A,B, {A, B, succ(NB)}k(A,B));

send_4(B,A, {B, A, k’AB,NB’, NA}k(A,B));

claim_B1(B,Nisynch);

}

}

• Result of the simulation

Figure 5. Simulation results for Andrew Secure RPC protocol.

7.3 Revised Andrew Protocol of Burrows

The Revised Andrew protocol [25].

• Informal Description of the Protocol:

1. A 7→ B : m1 =↑A, NA

2. B 7→ A : m2 = {NA,K′AB}KAB

3. A 7→ B : m3 = {NA}K′
AB

4. B 7→ A : m4 = {N ′B}KAB

Protocol 15. Revised Andrew protocol of Burrows et al.

• Formal Model of the Protocol: the set of as-

sumptions of the Revised Andrew protocol is

ΓRA = {Hid(KAB), Hid(K ′AB),

F reshA(NA), F reshB(N ′B)}.

Goals of the protocol are

G1 = PIPE(B, 〈K ′AB ,m2〉, A),

and

G2 = PIPE(A, 〈NA,m3〉, B).

• Verification: It is easily seen that ΓRA 6` G1,

and ΓRA 6` G2.

• Modification: We modify the structure of mes-

sages of Revised Andrew protocol such that goals

G1 and G2 can be derived from. ΓRA.

1. A 7→ B : m1 = {tuple3(↑A, ↓B , NA)}KAB

2. B 7→ A : m2 = {tuple4(↑B , ↓A, NA,K′AB)}KAB

3. A 7→ B : m3 = {tuple3(↑A, ↓B , NA)}K′
AB

4. B 7→ A : m4 = {tuple3(↑B , ↓A, N ′B)}KAB

Protocol 16. Modified revised Andrew protocol of Burrows

et al.

Now we prove that ΓRA ` G1 and ΓRA ` G2.

• Resistance against known attacks: Mirror

attack by Lowe.

• Code for verification using Scyther

usertype SessionKey;

#const Fresh: Function;

protocol andrew-revised(A,B)

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 19

Figure 6. Simulation results for revised Andrew protocol of

Burrows.

{

role A

{

fresh NA: Nonce;

var NB,NB’: Nonce;

var k’AB: SessionKey;

send_1(A,B, {A,B,NA}k(A,B));

recv_2(B,A, {B,A,NA,k’AB}k(A,B));

send_3(A,B, {A,B,NA}k’AB);

claim_A1(A,Nisynch);

recv_4(B,A, {B,A,NB’}k(A,B));

}

role B

{

var NA: Nonce;

fresh NB,NB’: Nonce;

fresh k’AB: SessionKey;

recv_1(A,B, {A,B,NA}k(A,B));

send_2(B,A, {B,A,NA,k’AB}k(A,B));

recv_3(A,B, {A,B,NA}k’AB);

send_4(B,A, {B,A,NB’}k(A,B));

claim_B1(B,Nisynch);

}

}

• Result of the simulation

7.4 ISO/IEC 9798-2 Protocol

The ISO/IEC 9798-2 provides mutual authentication

[46].

• Informal Description of the Protocol:

1. B 7→ A : m1 = NB

2. A 7→ B : m2 = {NA, NB , ↓B}KAB

3. B 7→ A : m3 = {NB , NA}KAB

Protocol 17. ISO/IEC 9798-2 three-pass mutual authentica-

tion protocol.

• Formal Model of the Protocol: the set of as-

sumptions of the ISO/IEC 9798-2 protocol is

ΓISO = {Hid(KAB), F reshA(NA), F reshB(NB)}.

Goals of the protocol are

G1 = PIPE(A, 〈NB ,m2〉, B),

and

G2 = PIPE(B, 〈NA,m3〉, A).

• Verification: It is easily seen that ΓISO 6` G1

and ΓISO 6` G2.

• Modification: We modify the structure of mes-

sages of ISO/IEC 9798-2 protocol such that goals

G1 and G2 can be derived from ΓISO.

1. B 7→ A : m1 = tuple1(NB)

2. A 7→ B : m2 = {tuple4(↑A, ↓B , NA, NB)}KAB

3. B 7→ A : m3 = {tuple4(↑B , ↓A, NB , NA)}KAB

Protocol 18. Modified ISO/IEC 9798-2 protocol.

Now we prove that ΓISO ` G1.

C1. Γ ` FreshB(m2) (by rules f1, f4 and assump-

tion FreshB(NB)).

C2. Γ ` IntegB(m2) (by rule i2 and assumption

Hid(KAB)).

C3. Γ ` ConstB(A,m2) (by rule c3 and assump-

tion Hid(KAB)).

C4. Γ ` SubB(↑B ,m2) (by rules s1, s2, s5).

C5. Γ ` SourceB(A,m2) (by rules so, C3 and C4).

C6. Γ ` SubB(NB ,m2) (by rules s1, s2, s5).

C7. Γ ` DestB(B,m2) (by rule d).

C8. Γ ` PIPE(A, 〈NB ,m2〉, B) (by pipe.rule).

A similar proof shows that ΓISO ` G2.

• Resistance against known attacks:

In some especial environments the receiver of

the message can not determine who sent the first

message, so is obvious to use the text field Text1

to indicate this, so the protocol becomes:

1. B 7→ A : m1 = NB , B

2. A 7→ B : m2 = {NA, NB , ↓B}KAB

3. B 7→ A : m3 = {NB , NA}KAB

Protocol 19. ISO/IEC 9798-2 three-pass mutual authentica-

tion protocol version 2.

In such case, an intruder E starts a second

protocol run, impersonating A to B, with send-

ing message (NB , B). B accepts this and replies

with the appropriate response {N ′B , NB , ↓B}KAB

and then proceeds the first protocol run imper-

sonating A. In our modified version this attack

is not possible since, when B, replies the first

message with {tuple4(↑B , ↓A, N ′B , NB)}KAB
and

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

20 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

Figure 7. Simulation results for ISO/IEC 9798-2 protocol.

therefore the intruder can not use this message

in the first run.

• Code for verification using Scyther

usertype SessionKey;

#const Fresh: Function;

protocol andrew-LoweBan(B,A)

{

role B

{

fresh NB: Nonce;

var NA: Nonce;

send_1(B,A, NB);

recv_2(A,B, {A,B,NA,NB}k(A,B));

send_3(B,A, {B,A,NB,NA}k(A,B));

claim_B1(B,Nisynch);

}

role A

{

var NB: Nonce;

fresh NA: Nonce;

recv_1(B,A, NB);

send_2(A,B, {A,B,NA,NB}k(A,B));

recv_3(B,A, {B,A,NB,NA}k(A,B));

claim_A1(A,Nisynch);

}

}

• Result of the simulation

7.5 ISO/IEC 11770-2

The ISO/IEC 11770-2 is a Key Establishment protocol

[47].

• Informal Description of the Protocol:

1. B 7→ A : m1 = NB

2. A 7→ B : m2 = {NB , ↓B ,K′AB}KAB

Protocol 20. ISO/IEC 11770-2 key establishment.

• Formal Model of the Protocol: the set of as-

sumptions of the ISO/IEC 11770-2 protocol is

Figure 8. Simulation results for ISO/IEC 11770-2 protocol.

ΓISO = {Hid(KAB), Hid(K ′AB), F reshB(NB)}.

Goal of the protocol is

G1 = PIPE(A, 〈K ′AB ,m2〉, B),

and

• Verification: It is easily seen that ΓISO 6` G1.

• Modification: We modify the structure of mes-

sages of ISO/IEC 11770-2 protocol such that goal

G1 can be derived from. ΓISO.

1. B 7→ A : m1 = tuple1(NB)

2. A 7→ B : m2 = {tuple4(↑A, ↓B , NB ,K′AB)}KAB

Protocol 21. Modified ISO/IEC 11770-2 key establishment.

Now we prove that ΓISO ` G1.

• Resistance against known attacks: SG logic

• Code for verification using Scyther

usertype SessionKey;

#const Fresh: Function;

protocol ISOIEC117702(B,A)

{

role B

{

fresh NB: Nonce;

var NA: Nonce;

var k’AB: SessionKey;

send_1(B,A, NB);

recv_2(A,B, {A,B,NB,k’AB}k(A,B));

claim_B1(B,Nisynch);

}

role A

{

var NB: Nonce;

fresh NA: Nonce;

fresh k’AB: SessionKey;

recv_1(B,A, NB);

send_2(A,B, {A,B,NB,k’AB}k(A,B));

}

}

• Result of the simulation

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 21

7.6 ISO/IEC 9798-3 Protocol

The ISO/IEC 9798-3 protocol [48].

• Informal Description of the Protocol:

1. B 7→ A : m1 = NB

2. A 7→ B : m2 = NA, NB , ↓B , {NA, NB , ↓B}skA

3. B 7→ A : m3 = N ′B , NA, ↓A, {N ′B , NA, ↓A}skB

Protocol 22. ISO/IEC 9798-3 three-pass mutual authentica-

tion.

• Formal Model of the Protocol: the set of as-

sumptions of the ISO/IEC 9798-3 protocol is

ΓISO = {Hid(skB), Hid(skA),

F reshA(NA), F reshB(NB)}.

Goals of the protocol are

G1 = PIPE(A, 〈NB ,m2〉, B),

and

G2 = PIPE(B, 〈NA,m3〉, A).

• Verification: It is easily seen that ΓISO 6` G1

and ΓISO 6` G2.

• Modification: We modify the structure of mes-

sages of ISO/IEC 9798-3 protocol such that goals

G1 and G2 can be derived from ΓISO.

1. B 7→ A : m1 = tuple1(NB)

2. A 7→ B : m2 = tuple2(tuple3(NA, NB , ↓B),

{tuple4(↑A, ↓B NA, NB)}skA
)

3. B 7→ A : m3 = tuple2(tuple3(N ′B , NA, ↓A),

{tuple4(↑B , ↓A, N ′B , NA)}skB
)

Protocol 23. Modified ISO/IEC 9798-3 three-pass mutual

authentication.

Now we prove that ΓISO ` G1 and ΓISO ` G2.

C1. Γ ` FreshB(m2) (by rules f1, f2 and assump-

tion FreshB(NB)).

C2. Γ ` IntegB(m2) (by rule i3 and assumption

Hid(skA)).

C3. Γ ` ConstB(A,m2) (by rule c5 and assump-

tion Hid(skA)).

C4. Γ ` SubB(↑A,m2) (by rules s1,s3,s5).

C5. Γ ` SourceB(A,m2) (by rules so, C3 and C4).

C6. Γ ` SubB(NB ,m2) (by rules s1, s3, s5).

C7. Γ ` DestB(B,m2) (by rule d).

C8. Γ ` PIPE(A, 〈NB ,m2〉, B) (by pipe.rule).

A similar proof shows that ΓISO ` G2.

7.7 ISO/IEC 11770-3 Protocol

The ISO/IEC 11770-3 protocol [49].

• Informal Description of the Protocol:

1. A 7→ B : m1 = NA

2. B 7→ A : m2 =↓A, NA, NB , {↑B ,KAB}pkA
, {↓A

, NA, NB , {↑B ,KAB}pkA
}skB

Protocol 24. ISO/IEC 11770-3 key transport.

• Formal Model of the Protocol: the set of as-

sumptions of the ISO/IEC 11770-3 protocol is

ΓISO = {Hid(skB), F reshA(NA), F reshB(NB)}.

Goal of the protocols are

G = PIPE(B, 〈KAB ,m2〉, A).

• Verification: We show that ΓISO ` G
C1. Γ ` FreshA(m2) (by rules f1, f2 and assump-

tion FreshA(NA)).

C2. Γ ` IntegA(m2) (by rule i3 and assumption

Hid(skB)).

C3. Γ ` ConstA(B,m2) (by rule c5 and assump-

tion Hid(skB)).

C4. Γ ` SubA(↑B ,m2) (by rules s1, s3, s4, s5).

C5. Γ ` SourceA(B,m2) (by rules so, C3 and C4).

C6. Γ ` SubA(KAB ,m2) (by rules s1, s3, s4, s5).

C7. Γ ` DestA(A,m2) (by rule d).

C8. Γ ` PIPE(B, 〈KAB ,m2〉, A) (by pipe.rule).

• Code for verification using Scyther

usertype SessionKey;

#const Fresh: Function;

protocol ISOIEC117703(B,A)

{

role A

{

fresh NA: Nonce;

var NB: Nonce;

var kAB: SessionKey;

send_1(A,B, NA);

recv_2(B,A, NA,NB,{B,kAB}pk(A),{A,

NA,NB,{B,kAB}pk(A)}sk(B));

claim_A1(A,Nisynch);

}

role B

{

fresh NB: Nonce;

fresh NA: Nonce;

fresh kAB: SessionKey;

recv_1(A,B, NA);

send_2(B,A, NA,NB,{B,kAB}pk(A),

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

22 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

Figure 9. Simulation results for ISO/IEC 11770-3 protocol.

{A,NA,NB,{B,kAB}pk(A)}sk(B));

claim_B1(B,Nisynch);

}

}

• Result of the simulation

8 Conclusion

Different protocols are used for different purposes.

The most important aspect of every protocol is that

whether they satisfy the required purposes or not.

There are many instances of protocols in the literature

that were assumed to be secure for many years, but

they had serious flows. Verifying the correctness of the

protocols are a very tedious task. In order to overcome

this, automatic methods are used. The most famous

approaches in this regard are model checking and

theorem proving. In model checking different behavior

of a protocol is modeled as a graph and the different

paths show different behavior of the protocol. Theorem

proving tries to proof the properties of the protocol

by logical reasoning about different implications of a

protocol.

In this paper we first discuss different security at-

tacks and goals, and introduced the Scyther as one

of the latest model checking tools. After that, we

provided an intuition about a new theorem proving

named Simple Logic for Authentication, which tries

to reason about a protocol based on the structure of

its messages.

References

[1] Roger M Needham and Michael D Schroeder. Us-

ing encryption for authentication in large net-

works of computers. Communications of the ACM,

21(12):993–999, 1978.

[2] Dorothy E Denning and Giovanni Maria Sacco.

Timestamps in key distribution protocols. Com-

munications of the ACM, 24(8):533–536, 1981.

[3] Stuart G Stubblebine and Virgil D Gligor.

On message integrity in cryptographic protocols.

IEEE, 1992.

[4] Wenbo Mao and Colin Boyd. On the use of

encryption in cryptographic protocols. Codes

and Cyphers: Cryptography and Coding IV, pages

251–262, 1995.

[5] Paul Syverson. A taxonomy of replay attacks

[cryptographic protocols]. In Computer Security

Foundations Workshop VII, 1994. CSFW 7. Pro-

ceedings, pages 187–191. IEEE, 1994.

[6] Mike Burmester. On the risk of opening dis-

tributed keys. In Advances in Cryptology-

CRYPTO94, pages 308–317. Springer, 1994.

[7] Colin Boyd and Anish Mathuria. Protocols for

authentication and key establishment. Springer

Science & Business Media, 2013.

[8] Ray Bird, Inder Gopal, Amir Herzberg, Philippe

Janson, Shay Kutten, Refik Molva, Moti Yung,

et al. Systematic design of a family of attack-

resistant authentication protocols. Selected Areas

in Communications, IEEE Journal on, 11(5):679–

693, 1993.

[9] Tuomas Aura and Pekka Nikander. Stateless

connections. Information and Communications

Security, pages 87–97, 1997.

[10] Catherine Meadows. A formal framework and

evaluation method for network denial of service.

In Computer Security Foundations Workshop,

1999. Proceedings of the 12th IEEE, pages 4–13.

IEEE, 1999.

[11] Ari Juels and John G Brainard. Client puzzles:

A cryptographic countermeasure against connec-

tion depletion attacks. In NDSS, volume 99, pages

151–165, 1999.

[12] Dave Otway and Owen Rees. Efficient and timely

mutual authentication. ACM SIGOPS Operating

Systems Review, 21(1):8–10, 1987.

[13] Casimier Joseph Franciscus Cremers. Scyther:

Semantics and verification of security protocols.

Eindhoven University of Technology, 2006.

[14] Cas Cremers and Sjouke Mauw. Operational

semantics and verification of security protocols.

Springer Science & Business Media, 2012.

[15] Markus Müller-Olm, David Schmidt, and Bern-

hard Steffen. Model-checking. In Static Analysis,

pages 330–354. Springer, 1999.

[16] Edmund M Clarke and E Allen Emerson. Design

and synthesis of synchronization skeletons using

branching time temporal logic. Springer, 1982.

[17] Jean-Pierre Queille and Joseph Sifakis. Specifi-

cation and verification of concurrent systems in

cesar. In International Symposium on Program-

ming, pages 337–351. Springer, 1982.

[18] Amir Pnueli. The temporal semantics of con-

current programs. Theoretical computer science,

13(1):45–60, 1981.

[19] David L Dill. The mur φ verification system.

In Computer Aided Verification, pages 390–393.

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

January 2016, Volume 8, Number 1 (pp. 3–24) 23

Springer, 1996.

[20] John C Mitchell, Mark Mitchell, and Ulrich Stern.

Automated analysis of cryptographic protocols

using murϕ. In Security and Privacy, 1997. Pro-

ceedings., 1997 IEEE Symposium on, pages 141–

151. IEEE, 1997.

[21] Makoto Tatebayashi, Natsume Matsuzaki, and

David B Newman Jr. Key distribution protocol

for digital mobile communication systems. In

Advances in CryptologyCRYPTO89 Proceedings,

pages 324–334. Springer, 1990.

[22] B Clifford Neuman and Theodore Ts’ O. Ker-

beros: An authentication service for computer

networks. Communications Magazine, IEEE,

32(9):33–38, 1994.

[23] Edmund M Clarke, Somesh Jha, and Will Mar-

rero. Verifying security protocols with brutus.

ACM Transactions on Software Engineering and

Methodology (TOSEM), 9(4):443–487, 2000.

[24] Cas JF Cremers. The scyther tool: Verification,

falsification, and analysis of security protocols.

In Computer Aided Verification, pages 414–418.

Springer, 2008.

[25] Michael Burrows, Martin Abadi, and Roger M

Needham. A logic of authentication. In Proceed-

ings of the Royal Society of London A: Mathemat-

ical, Physical and Engineering Sciences, volume

426, pages 233–271. The Royal Society, 1989.

[26] Michael Burrows, Martin Abadi, and Roger M

Needham. A logic of cryptographic. ACM Trans-

actions on Computer Systems, 8(1):18–36, 1990.

[27] Stefanos Gritzalis, Diomidis Spinellis, and Pana-

giotis Georgiadis. Security protocols over open

networks and distributed systems: Formal meth-

ods for their analysis, design, and verification.

Computer Communications, 22(8):697–709, 1999.

[28] Recommendation X CCITT. 509: The directory

authentication framework, 1988.

[29] Steven P Miller, B Clifford Neuman, Jeffrey I

Schiller, and Jermoe H Saltzer. Kerberos authen-

tication and authorization system. In In Project

Athena Technical Plan. Citeseer, 1987.

[30] Dan M Nessett. A critique of the burrows, abadi

and needham logic. ACM SIGOPS Operating

Systems Review, 24(2):35–38, 1990.

[31] Paul Syverson. The use of logic in the analysis

of cryptographic protocols. In Research in Secu-

rity and Privacy, 1991. Proceedings., 1991 IEEE

Computer Society Symposium on, pages 156–170.

IEEE, 1991.

[32] Wenbo Mao and Colin Boyd. Towards formal

analysis of security protocols. In Computer Secu-

rity FoundationsWorkshop VI, 1993. Proceedings,

pages 147–158. IEEE, 1993.

[33] Li Gong, Roger Needham, and Raphael Yahalom.

Reasoning about belief in cryptographic proto-

cols. In Research in Security and Privacy, 1990.

Proceedings., 1990 IEEE Computer Society Sym-

posium on, pages 234–248. IEEE, 1990.

[34] Martin Abadi and Mark R Tuttle. A semantics

for a logic of authentication. In Proceedings of

the tenth annual ACM symposium on Principles

of distributed computing, pages 201–216. ACM,

1991.

[35] Paul F Syverson and Paul C Van Oorschot. On

unifying some cryptographic protocol logics. In

Research in Security and Privacy, 1994. Proceed-

ings., 1994 IEEE Computer Society Symposium

on, pages 14–28. IEEE, 1994.

[36] Volker Kessler and Gabriele Wedel. Autlog-an ad-

vanced logic of authentication. In Computer Se-

curity Foundations Workshop VII, 1994. CSFW

7. Proceedings, pages 90–99. IEEE, 1994.

[37] Paul van Oorschot. Extending cryptographic log-

ics of belief to key agreement protocols. In Pro-

ceedings of the 1st ACM Conference on Computer

and Communications Security, pages 232–243.

ACM, 1993.

[38] ITU-TS, Recommendation Z.120: Message Se-

quence Chart (MSC) ITU-TS, Geneva. 1999.

[39] Danny Dolev and Andrew C Yao. On the security

of public key protocols. Information Theory,

IEEE Transactions on, 29(2):198–208, 1983.

[40] Whitfield Diffie and Martin E Hellman. New

directions in cryptography. Information Theory,

IEEE Transactions on, 22(6):644–654, 1976.

[41] Gavin Lowe. Breaking and fixing the needham-

schroeder public-key protocol using fdr. In Tools

and Algorithms for the Construction and Analysis

of Systems, pages 147–166. Springer, 1996.

[42] Mihir Bellare and Phillip Rogaway. Entity au-

thentication and key distribution. In Advances in

CryptologyCRYPTO93, pages 232–249. Springer,

1994.

[43] Jim Alves-Foss. Provably insecure mutual au-

thentication protocols: The two party symmetric

encryption case. In Proc. 22nd National Informa-

tion Systems Security Conference, pages 44–55.

Citeseer, 1999.

[44] Mahadev Satyanarayanan. Integrating security in

a large distributed system. ACM Transactions on

Computer Systems (TOCS), 7(3):247–280, 1989.

[45] John Clark and Jeremy Jacob. Attacking au-

thentication protocols. High Integrity Systems,

1:465–474, 1996.

[46] ISO. Information Technology - Security Tech-

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

24 Formal Verification of Security Protocols — M. Pourpouneh, and R. Ramezanian

niques - Entity Authentication - Part 2: Mech-

anisms Using Symmetric Encipherment Algo-

rithms ISO/IEC 9798-2, 2nd edition, 1999, Inter-

national Standard.

[47] ISO. Information Technology - Security Tech-

niques - Key Management - Part 2: Mechanisms

Using Symmetric Techniques ISO/IEC11770-2,

2nd edition, 1996, International Standard.

[48] ISO. Information Technology - Security Tech-

niques - Entity Authentication Mechanisms - Part

3: Entity Authentication Using a Public Key Al-

gorithm ISO/IEC 9798-3, 2nd edition, 1998, In-

ternational Standard.

[49] ISO. Information Technology - Security Tech-

niques - Key Management - Part 3: Mechanisms

Using Asymmetric Techniques ISO/IEC 11770-3,

2nd edition, 1999, International Standard.

Mohsen Pourpouneh was born in

1989 in Isfahan. He got his B.Sc.

(2011) and M.Sc. (2013) in Computer

Science, from Shahid Beheshti Uni-

versity and Tehran University, respec-

tively. He started his career as a Ph.D.

student at Sharif University of Tech-

nology, Tehran, Iran in 2013. His research interest

includes formal method, electronic voting protocols,

and multi-agent systems.

Rasoul Ramezanian was born in

Mashhad in 1979. He got his B.S.

and M.S. in Mathematics. In 2008,

he graduated from a Ph.D. program

of Mathematical Science Department

of Sharif University of Technology,

Tehran, Iran. He is an assistant pro-

fessor at the faculty of Mathematical Sciences at Fer-

dowsi University of Mashhad. His research interests in-

clude formal method, specifying and verifying security

protocols, multi-agent systems, and process algebra.

ISeCure

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

ISeCure
The ISC Int'l Journal of
Information Security

January 2016, Volume 8, Number 1 (p. 85)

http://www.isecure-journal.org

Persian Abstract

قضيه اثبات و مدل وارسی امنيتی: پروتکل های صوری سازی روش دو بر کوتاه مقدمه ای
رمضانيان۲ رسول و پورپونه۱ محسن

ايران تهران، شريف، صنعتی دانشگاه رياضی، علوم ۱دانشکده

ايران مشهد، مشهد، فردوسی دانشگاه رياضی، علوم ۲دانشکده

يک درستی يابی که دارد نام مدل وارسی اول، روش پرداخت. خواهيم امنيتی پروتکلهای درستی يابی عمده روش دو مطالعه به مقاله اين در
نسبتا ابزارهای از يکی عنوان به می گيرد. صورت ممکن مسيرهای همه روی امنيت خواص بررسی و آن پردازه ای گراف ساخت با پروتکل
قضيه اثبات روش يک معرفی برای ساده منطق يک معرفی به ادامه در سپس پرداخت. خواهيم Scyther ابزار معرفی به روش اين از جديد
از تعدادی درنهايت پرداخت. خواهيم امنيتی های پروتکل درستی يابی چگونگی به روش اين استنتاجی قواعد شرح با و پرداخت خواهيم

کرد. خواهيم بررسی روش دو اين از استفاده با را شده شناخته پروتکل های

قضيه. اثبات مدل، وارسی صوری سازی، روش های امنيتی، پروتکل های کليدی: واژه های

ISeCure

www.SID.ir

