
ISeCure
The ISC Int'l Journal of
Information Security

July 2018, Volume 10, Number 2 (pp. 93–105)

http://www.isecure-journal.org

Impossible Differential Cryptanalysis onDeoxys-BC-256

Alireza Mehrdad 1, Farokhlagha Moazami 1,∗, and Hadi Soleimany 1

1Cyberspace Research Institute, Shahid Beheshti University, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 9 January 2018

First Revised: 20 January 2018

Last Revised: 4 May 2018

Accepted: 30 May 2018

Published Online: 5 July 2018

Keywords:
CAESAR Competition,
Deoxys-BC, Impossible Differential
Cryptanalysis, Distinguisher.

A B S T R A C T

Deoxys is a final-round candidate of the CAESAR competition. Deoxys is

built upon an internal tweakable block cipher Deoxys-BC, where in addition to

the plaintext and key, it takes an extra non-secret input called a tweak. This

paper presents the first impossible differential cryptanalysis of Deoxys-BC-256

which is used in Deoxys as an internal tweakable block cipher. First, we find a

4.5-round ID characteristic by utilizing a miss-in-the-middle-approach. We then

present several cryptanalysis based upon the 4.5 rounds distinguisher against

round-reduced Deoxys-BC-256 in both single-key and related-key settings.

Our contributions include impossible differential attacks on up to 8-round

Deoxys-BC-256 in the single-key model. Our attack reaches 9 rounds in the

related-key related-tweak model which has a slightly higher data complexity

than the best previous results obtained by a related-key related-tweak rectangle

attack presented at FSE 2018, but requires a lower memory complexity with

an equal time complexity.

c© 2018 ISC. All rights reserved.

1 Introduction

R ecent real-world applications that need to protect
both confidentiality and authentication have led

to a renewed interest in designing novel authenticated
encryption. Due to the lack of well-studied authenti-
cated encryption schemes with the desirable level of se-
curity and performance, an ongoing CAESAR compe-
tition, funded by NIST, plans to identify a promising
new portfolio of reliable and efficient authenticated
encryptions that are suitable for widespread applica-
tions. A total of 58 diverse proposals from interna-
tional cryptographers have been submitted on March
2014. According to the results of a public evaluation,
the CAESAR committee has announced 7 schemes as
the final round candidates.

∗ Corresponding author.

Email addresses: a.mehrdad@mail.sbu.ac.ir (A. Mehrdad),

f moazemi@sbu.ac.ir (F. Moazami), h soleimany@sbu.ac.ir

(H. Soleimany)

ISSN: 2008-2045 c© 2018 ISC. All rights reserved.

Deoxys is one of the final-round authenticated en-
cryption candidates in the CAESAR competition. De-
oxys is built upon an internal tweakable block cipher
Deoxys-BC, where in addition to the plaintext and
key, it takes an extra non-secret input called a “tweak.
Deoxys-BC is an AES-like design with the SPN struc-
ture which is based on the TWEAKEY framework.
The inner tweakable block cipher Deoxys-BC has two
variants, each with a block size of 128 bits and a tweak
size of 128 bits, but two different key lengths: 128 and
256 bits. These variants are called Deoxys-BC-256
and Deoxys-BC-384, respectively. We note that the
specification of Deoxys-BC has been slightly changed
during the competition. In this paper, we study the
last version submitted to the CAESAR competition
called Deoxys v1.41.

The security of Deoxys-BC was studied against a
wide variety of cryptanalyses by the designers and
as was proved by them, the cipher is secure against
several known attacks. However, impossible differen-
tial cryptanalysis was not covered by the designers in

ISeCure

94 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

the original proposal, instead, third-party experts are
encouraged to investigate the security of Deoxys-BC
against impossible differential cryptanalysis in differ-
ent settings. The aim of this work is to evaluate the
security of Deoxys-BC-256 against impossible differ-
ential cryptanalysis which is an important class of
cryptanalytic techniques applicable to a wide variety
of block ciphers. Impossible differential cryptanaly-
sis was proposed by Knudsen and independently by
Biham. Impossible differential cryptanalysis exploits
differential characteristic with a probability of (ex-
actly) zero to eliminate the wrong key candidates of
some key bits involved in outer rounds that lead to
such impossible differences.

Previous Work and Our Contributions

Carlos Cid et al. [1], present a related-key related-
tweak rectangle attack against up to 9 rounds of
Deoxys-BC-256 with a data complexity of 2117, a
memory complexity of 2117 states and a time complex-
ity of 2118. They also present a related-key related-
tweak cryptanalysis on a particular variant of 10-round
Deoxys-BC-256 in which the key length is greater
than 204 and the tweak length is less than 52. The
described cryptanalysis is not applicable to the cipher
with the key length of 128-bits. In addition, the pro-
posed cryptanalysis on the 10-round Deoxys-BC-256
requires 2127.58 chosen plainetexts while the maximum
permitted amount of data for a given key in the Doexys
scheme is 2t−4 where t denotes the size of the tweak.

In this paper, we present several impossible differ-
ential cryptanalysis on the round-reduced variants of
Deoxys-BC-256:

• First, we study the security of Deoxys-BC-256 in
the related-tweak single-key model. We describe
how to mount an impossible differential attack
on the 8 rounds of Deoxys-BC-256 given 2118

plaintext-ciphertext pairs and 2102 memories.
• After that we propose a related-key related-

tweak impossible differential attack on 8-round
Deoxys-BC-256 with a memory complexity of
244, a data complexity of 2116.5 chosen plain-
texts and a time complexity of 2116.5 full en-
cryptions. Then we exploit a precomputation
phase to apply a similar attack on the 9 rounds
of Deoxys-BC-256 which comes with the cost of
increasing the required memory to 2102 states.

The results of our attacks compared with the previ-
ous attacks on Deoxys-BC-256 in the single-key and
related-key models are summarized in Table 1. The
designers presented an upper bound for an efficient
related-key related-tweak differential cryptanalysis
on 8 rounds of Deoxys-BC-256 without proposing a
specific attack. However, our contributions include

impossible differential attacks on 8-round Deoxys-BC-
256 in the related-tweak single-key model. In addition,
we present an impossible differential cryptanalysis on
9-round Deoxys-BC-256 in the related-key related-
tweak model in which the required data is two times
more than the rectangle attack while the memory
complexity is decreased by a factor of 215.

After the submission of this paper and uploaded
our results in Cryptology ePrint Archive, we noticed
that Jiang and Jin presented a single-key impossible
differential cryptanalysis on 8-Round Deoxys-BC-256
in [2]. In addition, during the preparation the final
version of this paper Zong et al. published a key-
recovery attack on 10 rounds of Deoxys-BC-256 which
is applicable only when the key size ≥ 174 and the
tweak size ≤ 82 [3]. However, the h permutation is
not considered correctly in both published papers and
it should be interpreted the other way. So the results
are not valid. In addition, our paper includes more
results in both single-key and related-key settings.

Outline of the Paper

The paper is organized as follows: Section 2 starts
with a short description of Deoxys. This is followed
by a brief introduction of the internal tweakable block
cipher Deoxys-BC-256 and some notations that are
used throughout the paper. After that we introduce a
4.5-round impossible differential characteristic which
can be utilized in both single-key and related-key
settings. Then we describe related-tweak impossible
differential cryptanalysis on 8-round Deoxys-BC-256
in Section 4. We also present impossible differential
characteristic of the 8-round and 9-round of the cipher
in the related-key related-tweak model in Section 5
and Section 6, respectively. We conclude the paper
in Section 7.

2 Description of Deoxys and
Deoxys-BC

In this section, we describe Deoxys and Deoxys-BC-
256. The section starts with a short description of
Deoxys authenticated encryption. This is followed by
a specification of the internal tweakable block cipher
Deoxys-BC-256. We assume the reader is familiar with
the concept of tweaks and keys for block ciphers and
also the standard block cipher AES; otherwise, we
refer to [5] and [6], respectively for the full specification
details.

2.1 Deoxys Authenticated Encryption
Scheme

The designers of Deoxys proposed two operating
modes, called Deoxys-I and Deoxys-II. The former

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 95

Table 1. Results of attacks on Deoxys-BC-256.

Rds
Attack
type

Attack
mode

Key size
Tweak
size

Time
Complexity
Date (CP)

Memory Ref.

8 MitM SK 128 128 ≤ 2128 [4]

8 Differential SK 128 128 ≤ 2128 [4]

8 Imp. dif. SK 128 128 2118 2118 2102 Section 4

8 Imp. dif. RK 128 128 2116.5 2116.5 244 Section 5

9 Rectangle RK 128 128 2118 2117 2117 [1]

9 Imp. dif. RK 128 128 2118 2118 2102 Section 6

CP=chosen plaintext; RK= related-key; SK= single-key.

mode, Deoxys-I, is a nonce-based scheme which is
proven to be secure against nonce-respecting adver-
saries. The latter mode, Deoxys-II, is a nonce-based
AEAD scheme that provides security in the nonce
misuse model in which the adversary can query dif-
ferent plaintexts while keeping the nonce constant.
In this section, we only present a brief description of
Deoxys-I. We refer the readers to the original proposal
[4] for more details.

The encryption process, in the nonce-respecting
mode with no padding is described in Table 2.

Table 2. Encryption algorithm when we have no padding to
associated data and message.

Processing associated data

1 divide A to 128-bit blocks A1 to Ala

2 Auth ← 0

3 for i = 0 to la− 1 do

4 Auth ← Auth ⊕ EK(0010||i, Ai+1)

5 end

Message encryption and tag generation

6 divide M to 128-bit blocks M1 to Ml

7 Checksum ← 0

8 for j = 0 to l − 1 do

9 Checksum ← Checksum ⊕ Mj

10 Cj ← EK(0000||N ||j,Mj+1)

11 end

12 Final ← EK(0001||N ||l, Checksum)

13 tag ← Final ⊕ Auth

2.2 Deoxys-BC-256

Deoxys utilizes a dedicated tweakable block cipher,
Deoxys-BC as its internal encryption. The inner tweak-
able block cipher Deoxys-BC is an AES-based tweak-
able block cipher that makes use of the TWEAKEY
framework. The TWEAKEY framework is a general

Tweakey Schedule (ρ = 2)

Figure 1. TWEAKEY framework for Deoxys-BC.

method to concatenate the tweak and key as a unified
state called tweakey. Deoxys-BC has two variants, each
with a block size of 128 bits, but a different tweakey
size of 128 and 256 bits which are called Deoxys-BC-
256 and Deoxys-BC-384, respectively. Since the aim
of this paper is to study the security of to Deoxys-BC-
256 against impossible differential cryptanalysis, we
only describe Deoxys-BC-256 in this section.

Deoxys-BC-256 has 14 rounds. The round function
reuses the existing components of AES, with the main
differences with the tweakeys that are used every
round as the round subkeys. One round of the Deoxys-
BC (f -function in Figure 1) consists of the following
four transformations:

• AddRoundTweakey – XoR the subtweakey
and internal state.

• SubBytes – Apply the AES S-box to the 16
bytes of the internal state.

• ShiftRows – Rotate i-th row left by i positions,
where i = (0, 1, 2, 3).
• MixColumns – Multiply the four input bytes

in each column by the MDS matrix of AES.

To achieve the ciphertext, a final AddRoundTweakey
operation is performed after the last round.

Definition of the subtweakeys.

Let KT be the concatenation of key and tweak. In
Deoxys-BC-256, we denote the most significant 128-
bit of KT by TK1

0 and the least significant 128-bit

ISeCure

96 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

of KT by TK2
0 . For Deoxys-BC-256, a subtweakey

STKi is defined as STKi = TK1
i ⊕TK2

i ⊕RCi where
TK1

i is the most significant 128-bit and TK2
i is the

least significant 128-bit of the tweakey of round i.

The 128-bit words TKj
i+1 produces recursively from

TKj
i by a byte permutation h and an LFSR as follows:

TK1
i+1 = h(TK1

i), TK2
i+1 = h(LFSR(TK2

i)),

where the byte permutation h, is defined as: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

 ,

in which we use the byte indexing as follows:
0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 .

Also, the LFSR function is defined as follows:

LFSR :

 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0)

↓

(x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0 ‖ x7 ⊕ x5)

2.3 Notations

We use the following notations throughout the paper:

• xIi : The input of the round i.
• xSi : The SubBytes output of the round i.
• xRi : The ShiftRows output of the round i.
• xMi : The MixColumns output of the round i.
• xOi : The AddRoundTweakey output of the round

i.
• xi,col(j): The j-th column of xi, where j=

(0,1,2,3).
• STKi: The Subtweakey of the round i.
• Ki: The Subkey of the round i.
• Ti: The tweak of the round i.
• RCi: The key schedule round constant of round

i.
• TRi: The result of XoRing of Ti and RCi.

Also, we use the following enumeration [0, 1, 2, · · · , 15].
By this enumeration, x[l] represents the l-th byte of
the x.

Since MixColumns and AddRoundTweakey opera-
tions are linear, they can be interchanged, that is, we
can first do AddRoundTweakey and then MixColumns.
Hence, we first begin by XoRing the internal state
with a corresponding subkey and after that use the
MixColumns and finally, XoR the obtained value with

Figure 2. Subtweakeys difference Schedule used for impossible

differential characteristic.

round tweak and RCi. We indicate the corresponding
subkey by wi = MC−1(ki). Let xAw

i represent the
result of the XoRing of xRi and wi of the round i.

3 4.5-round Impossible Differential
Characteristic

Impossible differential attack was first introduced at
[7] and [8]. This attack mainly composed of two parts.
The first section is to find impossible characteristic
with maximum length. The second part of the attack
is to use this characteristic to recover (part of) round
subkeys, which is also called the key filtering step.
This attack has become one of the most important
attacks in the field of cryptanalysis, and has been
used in several articles such as [9–13], to attack a large
number of ciphers.

By the subtweakey schedule, one can easily check
that if4STKi[15] is an active byte then the structure
of the subtweakey of other rounds is like Figure 2.
Since the difference of subtweakeys is only due to the
difference between tweaks and keys, the difference
values of gray bytes can be zero in special cases.

That is to say, after eight rounds, the subtweakeys
difference, is just like the arrangement of first round
difference(4STKi = 4STKi+8). This repetition
may be efficient for some future probable attack.

Figure 3 shows an illustration of an impossible dif-
ferential of 4.5-round Deoxys. The gray boxes denote
the (active) bytes in which the pair differs while the
white boxes refer to the equal (passive) bytes in the
pair. The black boxes refer to the byte that can be
active or passive.

In forward direction, we use a tweakey difference
with one non-zero difference byte 4STKi[0] 6= 0 that
leads to one active byte, xOi [0]. According to the pro-
cess of producing subtweakey, we know4STKi[0] 6= 0
leads to 4STKi+1[7] 6= 0. That leads to the five ac-
tive bytes, xOi+1[0, 1, 2, 3, 7]. This process always gives
eleven active bytes, xOi+2[0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 15],
at the end of round i+2.

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 97

Figure 3. 4.5-round impossible differential characteristic of

Deoxys

In backward direction, three active bytes, xRi+4[8, 9, 10]
or xRi+4[8, 9, 11] or xRi+4[8, 10, 11] afford one zero dif-
ference column in xRi+3. This passive column brings
one zero difference byte at each column of xIi+3 which
contradicts with 4xOi+2,col(0,1) 6= 0.

Thus, according to this 4.5-round impossible dif-
ferential, a plaintext pair which is equal at all bytes,
after 4.5-round Deoxys encryption cannot convert to
the ciphertext pair which is equal at all bytes except
three bytes: [8, 9, 10] or [8, 9, 11] or [8, 10, 11].

We will use this 4.5-round impossible characteristic
for both the single key mode and related key mode.
What’s important is that in single key mode, the sub-
tweakey differences are only caused by the difference
of the tweaks (4STKi = 4Ti), but in the case of
the related key attack, the subtweakey differences are
due to the both differences of the tweaks and the
keys(4STKi = 4Ti ⊕4Ki).

4 8-round Single-Key Impossible
Differential Attack

We achieve a single key impossible differential crypt-
analysis of 8-round Deoxys, using impossible differen-
tial characteristic of 4.5-round Deoxys as shown in Fig-

Figure 4. 8-round single key impossible differential trail

ure 3. We extend our impossible differential charac-
teristic by one round at the beginning and 2.5-round
at the end. Figure 4 shows this attack.

In this attack, we use an improvement that is sug-
gested by Lu et al. [14] and is based on the following
observation.

Observation I: Given a random pair (4X,4Y)
as input and output differences of the AES S-box,
there is on average one pair of (X,X ′), such that
S(X)⊕ S(X ′) = 4Y .

Before we explain details of the attack, we define
the concept of structure and set of plaintexts.

A structure L consists of 240 plaintexts Pi which all
of them are different in the bytes Pi[0, 5, 6, 10, 15] and
equal at other bytes. Each 232 plaintexts Pi of one
structure that have equal 6th byte value of plaintexts
Pi, form a set S. The value of T i

0[6] is equal to Pi[6], so
a dedicated tweak T i

0[6] (and Pi[6]) is assigned to each
set. Clearly, there exist 28 sets in each structure. In our
attack procedure, we need the pair of plaintext-tweaks
((P, T), (P ′, T ′)) such that P ⊕P ′ has active bytes in
positions [0, 5, 6, 10, 15] and P [6]⊕P ′[6] = T [6]⊕T ′[6].
We can build about 232×(28−1)4 ≈ 264 distinct pairs
that have four active bytes [0, 5, 10, 15]. Also, we can

choose
(
28

2

)
different sets from a structure to be sure

that the 6th byte is active too. Totally, we can build

about
(
28

2

)
× 232× (28− 1)4 ≈ 279 pairs per structure,

that have five active bytes in positions [0, 5, 6, 10, 15].

The attack procedure has two phases, online phase
and precomputation (offline phase). Algorithm 1 illus-
trates a high level of the attack procedure. The details
of the attack are as follows.

ISeCure

98 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

Algorithm 1 8-round Single-Key Attack on Deoxys-
BC

Precomputation Phase make a list Hp of 240 valid
first round constructions.
Online Phase

for all 2118 chosen plaintexts do
keep corresponding ciphertexts which have only
two active last columns xI8,col(2,3).

for all 28 possible values of4xAw
7 [15] that leads

to 4xR8 [3, 6, 9, 12] do
compute w8[3, 6, 9, 12].
for all 28 possible values of4xAw

7 [8] that leads
to 4xR8 [2, 5, 8, 15] do

compute w8[2, 5, 8, 15].
for all 3× 255 possible values of 4xAw

6,col(2)

that leads to 4xR7 [8, 15] do
compute w7[8, 15].
for all 237 remaining pairs do

discard each STK0[0, 5, 10, 15] that is
in Hp.

end for
end for

end for
end for

end for
Do exhaustive search for all remaining subkey bits.

4.1 Precomputation Phase

The number of pairs (xM1,col(0), x
′M
1,col(0)) that are dif-

ferent only in byte position xM1 [1] and the difference
is equal to the difference of two tweaks T1[1] and T ′1[1]
(4xM1 [1] = 4T1[1] 6= 0), is equal to 8 × (28 − 1) ×
(28)3 ≈ 240. For all these 240 pairs, compute four bytes

[0, 5, 10, 15] of xI1 and x′
I
1:

xI1[0, 5, 10, 15] = SB−1 ◦SR−1 ◦MC−1(xM1,col(0)) and

x′
I
1[0, 5, 10, 15] = SB−1 ◦ SR−1 ◦MC−1(x′

M
1,col(0)).

Then, store the pairs (xI1, x
′I
1) in a hash table Hp in-

dexed by (4xI1 || 4T1[1]). By considering the fact
that 4T0[6] = T0[6] ⊕ T ′0[6] = 4T1[1] the value of
(4xI1 || 4T1[1]) is equal to (4xI1 || 4T0[6]). These
parameters can take 240 different values (232 distinct
values for 4xI1 and 28 unequal values for 4T0[6]).
Each value represents a row in the Hp. Since, we have

240 pairs (xM1 , x
′M
1), then on average Hp has one pair

(xI1, x
′I
1) in each row; where first parameter specifies

the difference 4xI1, and second parameter determines
the difference 4T0[6].

4.2 Online Phase

(1) We take 2n structures, which produce about
2n × 279 = 2n+79 possible plaintext pairs.
Then we ask for the corresponding cipher-
texts: Ci = ET i

K (Pi). The difference of last

round subtweakey 4STK8 is only depen-
dent on the difference of tweaks 4T8 that we
know. So we can invert the final subtweakey
XoR and mixcolumn and compute 4xR8 =
MC−1 ◦ (4C ⊕ 4STK8). We just select the
pairs that corresponding to 4xR8 , have eight
active bytes [2, 3, 5, 6, 8, 9, 12, 15]. Since we
must have eight equal bytes 4xR8 in positions
[0,1,4,7,10,11,13,14], the expected number of
remaining pairs is 2n+79 × 2−64 = 2n+15.

(2) Since we know the value of (C,C ′) and4STK8,
the difference 4xS8,col(3) can be determined.

Thus, by knowing the value of 4xAw
7,col(3), we

can obtain the values of xS8,col(3) and x′
S
8,col(3)

according to observation I. Since we know
4xAw

7 [15] 6= 0, we have only 28 − 1 different
possible values of 4xAw

7,col(3). Therefore, this
step can be done as follows:
Initialize 232 empty lists, for each guess of
w8[3, 6, 9, 12].
For each remaining pair (C,C ′), and for each
possible value of 4xAw

7 [15], calculate the key
w8[3, 6, 9, 12] that leads the pair (C,C ′) to
4xAw

7,col(3), and add this pair to the list related
to the guessed key.
Due to observation I, for each pair and dis-
tinction guess, on average we have one key
suggestion. Since these 2n+15 × 255 ≈ 2n+23

suggestions are distributed over all 232 possible
keys, we have about 2n+23/232 = 2n−9 pairs for
each guess of w8[3, 6, 9, 12].

(3) Similar to step 2, we initialize 232 empty lists
for each guess of w8[2, 5, 8, 15].
For each remaining pair (C,C ′), and for each
possible value of 4xAw

7 [8], calculate the key
w8[2, 5, 8, 15] that leads the pair (C,C ′) to
4xAw

7,col(2), and add this pair to the list related
to the guessed key.
Due to observation I, for each pair and distinc-
tion guess, on average we have one suggested
key. Since these 2n−9 × 255 ≈ 2n−1 suggestions
are distributed over all 232 possible keys, we
have about 2n−1/232 = 2n−33 pairs for each
guess of w8[2, 5, 8, 15].

(4) We use Lu et al. improvement again. Since we
want4xAw

6,col(2) to have an active byte in the 8th

position and two of three other bytes, there are
3× 2553 possible differences and only 3× 255 of
these differences lead to a difference of4xM6,col(2)
where only two bytes 4xM6 [8, 11] are active. So,
for each pair and each guess of w7[8, 15] we must
check whether4xM6,col(2) belongs to these 3×255
differences. According to observation I, when
we have 4xAw

7 [8, 15] as output and 4xM6 [8, 11]
as input difference of the S-box, we can compute

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 99

the values of xM6 [8, 11] and x′
M
6 [8, 11] and there-

fore determine the value ofw7[8, 15]. At this step,
we have about 3×2n−25 candidates for w7[8, 15].
From the 2n−33 pairs and the 3×255 differences
which are distributed over the 216 possible val-
ues of w7[8, 15]. Consequently, for a given guess
of w7[8, 15], we have about 3 × 2n−25/216 =
3× 2n−41 pairs which for each guess of the con-
sidered bytes in w8 and w7, lead the input dif-
ference to the impossible differential.

(5) First we create a list A of all 232 4-byte keys
STK0[0, 5, 10, 15] and for all remaining pairs
(Pi, Pj), we compute four bytes [0, 5, 10, 15] of

xI1 and x′
I
1:

xI1 = Pi[0, 5, 10, 15]⊕ STK0[0, 5, 10, 15],

x′
I
1 = Pj [0, 5, 10, 15]⊕ STK0[0, 5, 10, 15].

Note that the STK0 only has one non-zero dif-
ference byte 4STK0[6] 6= 0, and 4STK0[6] =
4P [6].
From precomputation, we know on average Hp

has one pair (xI1, x
′I
1) in each row. For each tuple

(xI1, x
′I
1,4T0[6]) which is obtained at this stage,

we discard the P ⊕ xI1 from the related indexed
row of the hash table. Since with respect to the
precomputation (offline phase), we are sure that
such a a key leads to an impossible differential,
resulting in a wrong key.

Finally, if A is not empty, output the remain-
ing value(s) in A with corresponding key guess
of w7[8, 15] and w8[2, 3, 5, 6, 8, 9, 12, 15].

4.3 Complexity Analysis

• Data Complexity
We know 2−(cin+cout) = 2−32 × 2−48 × 3 ×

2−8 ≈ 2−86.4 and we guessed 32-bit of kin and
(64 + 16)-bit of Kout. So, we can easily compute
the data complexity D:

(1− 2−(86.4))D < 1/2112 → e−(2
−86.4×D) <

1/2112 →
→ D ≈ 293 = 2n+15 → n = 78.

Since n = 78 then 278 × 240 = 2118 chosen
plaintexts, are required for the attack.

• Time Complexity
(1) The precomputation requires about 2×

240 × 4/16 = 239 one-round decryptions,
which is equal to 239/8 = 236 8-round de-
cryptions.

(2) Since we need n to be equal to 78, step
1 requires 2(78+40) = 2118 8-round encryp-
tions.

(3) Based on observation I, step 2 can be done
by a look-up table. So, this step needs about
255× 278+15 ≈ 2101 memory accesses.

(4) We considered 255 differences of the 32-bit
key guesses w8[3, 6, 9, 12] and 255 differ-

ences for 32-bit guesses of keyw8[2, 5, 8, 15].
Therefore, Step 3 requires about 255 ×
255× 278+15 ≈ 2109 memory accesses.

(5) For each 264 guesses ofw8[2, 3, 5, 6, 8, 9, 12, 15],
we need 278−33 × 3× 255 ≈ 278−23.4 mem-
ory accesses in a lookup table to achieve
the guess for w7[8, 15] from the differences

4xM,col(2)
6 . So, step 4 requires about

264 × 278−23.4 = 2118.6 memory accesses.
(6) For each remaining pair, step 5 is repeated

280 times (for each possible values of w7

and w8), and on average for each repetition,
we need to access to hash table Hp and list
A. So, this step requires about 2 × 280 ×
278−39.4 = 2119.6 memory accesses.

(7) We already have obtained eight bytes of
the key w8 and an exhaustive search is
needed to achieve the remaining key bytes
which cost 28×8 = 264 encryption. But the
time complexity of this step is negligible
compared to the other steps.

As a rule of thumb method adopted in most
of the works (e.g. [12]), we assume the time
complexity of 16 memory access equals to the
time complexity of one round, since in each
round the Sbox is called 16 times. Consequently,
the 8 rounds are at least equal to 16 × 8 = 27

memory accesses. So we can assume that each
memory access is equivalent to 1/(16×8) = 2−7

8-round encryption.
Totally, time complexity is about (236 +

2118)Enc+ (2101 + 2109 + 2118.6 + 2119.6)MA ≈
(2118 + 2120.2 × 2−7)Enc ≈ 2118Enc.

• Memory Complexity
The precomputation phase needs about

240 × (4 + 4 + 1) ≈ 243.2 bytes of memory
for storing xI1[0, 5, 10, 15], xI1[0, 5, 10, 15] and
4T0[6]. With the simple approach, we need
28×(8+2+4) bytes to store the deleted val-
ues of w8[2, 3, 5, 6, 8, 9, 12, 15], w7[8, 15] and
K0[0, 5, 10, 15]. But if we use Lu et al. improve-
ment, we can apply the attack individually
for each guess of the key; and for the remain-
ing bytes of each guess that is not discarded,
perform an exhaustive search. So, instead
of the simple approach, we can store about
2n+23 = 2101 suggestions that remain after
step 2. Each suggestion consists of one pair. So,
the memory complexity of the attack is about
243.2+(2101×2×16) ≈ 2106 bytes or 2102 states.

5 8-round Related-Tweakey
Impossible Differential Attack

In this section, we present a related key impossible
differential cryptanalysis of 8-round Deoxys by ex-

ISeCure

100 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

Figure 5. 8-round related key impossible differential trail

tending our impossible differential characteristic by
two rounds at the beginning and 1.5-round at the end.
This attack on the reduced 8-round Deoxys requires
about 2116.5 chosen plaintexts, 248 words of memory
and 2116.5 8-round Deoxys encryptions. Figure 5 illus-
trates this attack.

For our analysis, we consider a situation in which
the value of the key difference in round 2 is exactly
equal to the value of the tweak difference in the second
round (4K2[1] = 4T2[1]). In other words, we assume
that two users encrypt data with two different keys,
and that these two keys have a non-zero difference of
one byte, 4K0[15]. In this case, we select the tweaks
in a way that the value of the4K2[1] exactly matches
the value of the 4T2[1]. Considering this condition,
the definition of structure and set of plaintexts is a
little different from what described in Section 4.

A structure L consists of 240 plaintexts Pi all of
which are different in bytes Pi[3, 4, 9, 14, 15] and equal
at other bytes. Each 232 plaintexts Pi of one structure
that have equal 15th byte value of plaintexts Pi, form
a set S. The value of STKi

0[15] is equal to Pi[15], so a
dedicated STKi

0[15] (and Pi[15]) is assigned to each
set. Clearly, there exist 28 sets in each structure. In
our attack procedure, we need the pair of plaintext-
tweakeys ((P, STK), (P ′, STK ′)) such thatP⊕P ′ has
an active byte in positions [3, 4, 9, 14, 15] and P [15]⊕
P ′[15] = STK[15] ⊕ STK ′[15]. We can build about
232×(28−1)4 ≈ 264 distinct pairs that have four active

bytes [3, 4, 9, 14]. Also, we can choose
(
28

2

)
different sets

from a structure to be sure that the 15th byte is active

too. Totally, we can build about
(
28

2

)
×232×(28−1)4 ≈

279 pairs per structure, that have five active bytes in
positions [3, 4, 9, 14, 15].

5.1 Attack Procedure

Algorithm 2 illustrates a high level of the attack pro-
cedure. In what follows, we describe the attack proce-
dure in details:

Algorithm 2 8-round Related-Key Attack on
Deoxys-BC

for all K2[1] = T2[1] & K ′2[1] = T ′2[1] do
for all 2116.5 chosen plaintexts do

keep corresponding ciphertexts which have
only two active last columns.
for all 291.5 remaining ciphertext pairs do

check if only two bytes xR8 [8, 15] are active.
for all 216 possible values of w8[8, 15] do

compute xO7,col(2).

for all 243.5 remaining pairs do
check if xR7,col(2) have only one passive

byte at xR7 [9] or xR7 [10] or xR7 [11].
for all remaining pairs do

discard each STK0[3, 4, 9, 14] leads
to passive xO1 .

end for
end for

end for
end for

end for
end for
Do exhaustive search for all remaining subkey bits.

(1) We take 2n × 279 = 2n+79 possible plaintext
pairs. Then we ask for the corresponding cipher-
texts: Ci = ET i

Ki
(Pi). We just select the pairs,

so that corresponding pairs (xM8 , x
′M
8), have

just eight active bytes in the last two columns.
So the expected number of remaining pairs is
2n+79 × 2−64 = 2n+15.

(2) For all pairs (xM8 , x
′M
8) that passed step 1, we

compute4xAw
8,col(2,3):4x

Aw
8 = MC−1 ◦(4xM8).

We keep pairs where only4xAw
8 [8, 12, 13, 14, 15]

are active bytes and also the differences of
bytes in the positions 4xAw

8 [12, 13, 14] are
equal to the differences of bytes in the positions
4w8[12, 13, 14]. Since we must have three zero-
difference bytes, 4xAw

8 [9, 10, 11] = 0 and three
special difference bytes 4xAw

8 [12, 13, 14] =
4w8[12, 13, 14], the number of remaining pairs
is 2n+15 × (2−8)3 × (2−8)3 = 2n−33.

(3) We guess the 16-bit values of w8[8, 15]. Since
we know the relation of subtweakeys, we can
compute w′8[15] easily. Then for each pairs
(C,w8), (C ′, w′8) that has passed step 2, com-

pute four bytes of xO7,col(2) and x′
O
7,col(2):

xO7 = SB−1◦SR−1◦(w8⊕(MC−1◦(TR8⊕C))),

x′
O
7 = SB−1 ◦ SR−1 ◦ (w′8 ⊕ (MC−1 ◦ (TR′8 ⊕

C ′))).

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 101

From step 1 we are sure that only two bytes
4xO7 [8, 11] are active. So we have no filtering
here.

(4) Consider the value of 4STK7[8], check that
4xR7,col(2) has three active bytes in positions

[8, 9, 11] or [8, 9, 11] or [8, 10, 11]. At the end of
this step, the expected number of remaining
pairs is about 2n−33 × 2−8 × 3 ≈ 2n−39.4.

(5) We guess 32-bit values of STK0[3, 4, 9, 14] and
for all remaining pairs from the above steps, we
compute four-bytes xM1,col(1) and x′

M
1,col(1):

xM1 = MC ◦ SR ◦ SB ◦ (P ⊕ STK0),

x′
M
1 = MC ◦ SR ◦ SB ◦ (P ′ ⊕ STK ′0).

We only consider the pairs that 4xM1,col(1) =
4STK1,col(1). So, we only choose pairs in which
4xM1 [6] = 4STK1[6] and 4xM1 [4, 5, 7] = 0. In
other word, we only choose pairs that at the end
of round one, we are sure that there is no active
byte at 4xO1,col(1). Since, we must have four

zero-difference bytes4xO1,col(1) = 0, the number

of remaining pairs is about 2n−39.4 × (2−8)4 =
2n−71.4.
Since we initially considered the difference
4K2[1] equal to 4T2[1], then we are sure that
the differential characteristic passes the forward
path correctly.
The keys that pass all the above steps and
lead such a difference (that is impossible), are
wrong keys and must be discarded. We remove
such a key K0 for each 16-bit guess of output
corresponding key w8. Since only one of the
keys is the correct key, if we choose proper data
complexity and perform the above operation for
all remaining pairs of step 4, we can be sure we
have reached the correct key.

5.2 Complexity Analysis

• Data Complexity
The bit conditions are about 2−(cin+cout) =

2−32×2−48×3×2−8 ≈ 2−86.4 and | kin
⋃
kout |

is equal to 32 + 16 = 48 so the data complexity
D is:

(1− 2−(86.4))D < 1/248 → e−(2
−86.4×D) <

1/248 →
→ D ≈ 291.5 = 2n+15 → n = 76.5.

Since n = 76.5 then 276.5 × 240 = 2116.5 chosen
plaintexts, are required for the attack.

• Time Complexity
(1) Step 1 requires 2(76.5+40) = 2116.5 8-round

encryptions.
(2) Complexity of step 3 is about 2 × 216 ×

2(76.5−33) = 260.5 one-round 4/16 decryp-
tions, which means 260.5 × 4/16 × 1/8 =
255.5 8-round encryptions.

Figure 6. 9-round related key impossible differential trail

(3) Step 5 needs about 2 × 216 × 232 ×
276.5−39.4 = 286.1 one-round 4/16 encryp-
tions, which is equal to 286.1×4/16×1/8 =
281.1 8-round encryptions.

Consequently, total complexity is about
(2116.5 + 255.5 + 281.1)Enc ≈ 2116.5Enc.

• Memory Complexity
For storing the list of discard keys, we need

28×(2+4) = 248 bytes of memory for storing
the deleted values of w8[8, 15] and K0[3, 4, 9, 14].
Therefore, memory complexity is 248 bytes or
244 states.

6 9-round Related-Tweakey
Impossible Differential Attack

Similar to the attack that was applied to the 8-round
Deoxys, we can analyse the 9-round Deoxys, using
impossible differential characteristic of 4.5-round De-
oxys as shown in Figure 3. We extend our impossible
differential by two rounds at the beginning and 2.5-
round at the end. Figure 6 shows this attack. In this
section, we use observation I again.

The attack procedure has two phases, online phase
and precomputation (offline phase). Algorithm 3 illus-
trates a high level of the attack procedure. The details
of the attack are as follows.

6.1 Precomputation Phase

The number of pairs (xM1,col(1), x
′M
1,col(1)) that are dif-

ferent only in byte position xM1 [6] and the difference
is equal to the difference of two subtweakeys STK1[6]

ISeCure

102 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

Algorithm 3 9-round Related-Key Attack on
Deoxys-BC

Precomputation Phase make a list Hp of 240 valid
first round constructions.
Online Phase

for all K2[1] = T2[1] & K ′2[1] = T ′2[1] do
for all 2118 chosen plaintexts do

keep corresponding ciphertexts which have
only two active last columns xI9,col(2,3).

for all 28 possible values of 4xAw
8 [15] that

leads to 4xR9 [3, 6, 9, 12] do
compute w9[3, 6, 9, 12].
for all 28 possible values of 4xAw

8 [8] that
leads to 4xR9 [2, 5, 8, 15] do

compute w9[2, 5, 8, 15].
for all 3×255 possible values of4xAw

7,col(2)

that leads to 4xR8 [8, 15] do
compute w8[8, 15].
for all 237 remaining pairs do

discard each STK0[3, 4, 9, 14] that is
in Hp.

end for
end for

end for
end for

end for
end for
Do exhaustive search for all remaining subkey bits.

and STK ′1[6] (4xM1 [6] = 4STK1[6] 6= 0), is equal to
28 × (28 − 1) × (28)3 ≈ 240. For all these 240 pairs,

compute four bytes [0, 5, 10, 15] of xI1 and x′
I
1:

xI1[3, 4, 9, 14] = SB−1 ◦ SR−1 ◦MC−1(xM1,col(1)) and

x′
I
1[3, 4, 9, 14] = SB−1 ◦ SR−1 ◦MC−1(x′

M
1,col(1)).

Since the 4STK1[6] leads to a special 4STK0[15],

we can store the pairs (xI1, x
′I
1) in a hash table Hp

indexed by (4xI1 || 4STK0[15]). These parameters
can take 240 different values (232 distinct values for
4xI1 and 28 unequal values for 4STK0[15]). Each
value represents a row in Hp. Since, we have 240 pairs

(xM1 , x
′M
1), then on average Hp has one pair (xI1, x

′I
1)

in each row. In which the first parameter specifies the
value of 4xI1, and the second parameter determines
the value of 4STK0[15].

6.2 Online Phase

(1) We take 2n structures, which produce about
2n × 279 = 2n+79 possible plaintext pairs. Then
we ask for the corresponding ciphertexts: Ci =
ET i

K (Pi). We can invert the final subtweaky XoR
and compute 4xR9 = MC−1 ◦ (4C ⊕4STK9).
We just select the pairs that corresponding4xR9 ,
have eight active bytes [2, 3, 5, 6, 8, 9, 12, 15].
Since we must have eight equal bytes4xR9 in po-

sitions [0,1,4,7,10,11,13,14], the expected num-
ber of remaining pairs is 2n+79 × 2−64 = 2n+15.

(2) Since we know the value of (C,C ′) and4STK9,
the difference 4xS9,col(3) can be determined.

Thus, by knowing the value of 4xAw
8,col(3), we

can obtain the values of xS9,col(3) and x′
S
9,col(3)

according to observation I. Since we have 28− 1
different values of 4xR8 [15], because of fix sub-
key difference notice to the tweak difference,
finally we have only 28 − 1 different values of
4xAw

8,col(3). Therefore, this step can be done as
follows:
Initialize 232 empty lists, for each guess
of w9[3, 6, 9, 12] we can easily obtain the
value of w′9[3, 6, 9, 12], which is different from
w9[3, 6, 9, 12] only at w9[6] due to the sub-
tweakey difference schedule.
For each remaining pair (C,C ′), and for each
possible value of 4xAw

8,col(3), calculate the key

w9[3, 6, 9, 12] that leads the pair (C,C ′) to
4xAw

8,col(3) and add this pair to the list related
to the guessed key.
Due to observation I, for each pair and dis-
tinction guess, on average we have one key
suggestion. Since these 2n+15 × 28 = 2n+23

suggestions are distributed over all 232 possible
keys, we have about 2n+23/232 = 2n−9 pairs for
each guess of w9[3, 6, 9, 12].

(3) Similar to step 2, we initialize 232 empty lists
for each guess of w9[2, 5, 8, 15].
For each remaining pair (C,C ′), and for each
possible value of 4xAw

8 [8], calculate the key
w9[2, 5, 8, 15] that leads the pair (C,C ′) to
4xAw

8,col(2), and add this pair to the list related
to the guessed key.
Due to observation I, for each pair and distinc-
tion guess, on average, we have one suggested
key. Since these 2n−9 × 255 ≈ 2n−1 suggestions
are distributed over all 232 possible keys, we
have about 2n−1/232 = 2n−33 pairs for each
guess of w9[2, 5, 8, 15].

(4) We use Lu et al. improvement again. Since we
want4xR7,col(2) to have an active byte in the 8th

position and two of other three bytes and also
the subkey difference is fix, there are 3× 2553

possible differences for 4xAw
7,col(2) and only 3×

2553/2552 = 3 × 255 of these differences lead
to a difference 4xM7,col(2) so that only two bytes

4xM7 [8, 11] are active.
So, for each pair and each guess of w8[8, 15]

we must check whether 4xM7,col(2) belongs to
these 3 × 255 differences. According to obser-
vation I, when we have 4xR8 [8, 15] as output
and 4xM7 [8, 11] as input difference of the S-
box, we can compute the values of xM7 [8, 11]

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 103

and x′
M
7 [8, 11] and therefore determine the value

of w8[8, 15]. At this step, we have about 3 ×
255× 2−33 = 3× 2n−25 candidates for w8[8, 15].
From the 2n−33 pairs and the 3×255 differences
which are distributed over the 216 possible val-
ues of w8[8, 15]. Consequently, for a given guess
of w8[8, 15], we have about 3 × 2n−25/216 =
3× 2n−41 pairs which for each guess of the con-
sidered bytes in w9 and w8, lead the input dif-
ference to the impossible differential.

(5) First we create a list A of all 232 4-byte keys
STK0[3, 4, 9, 14] and for all remaining pairs
(Pi, Pj), we compute four bytes [3, 4, 9, 14] of

xI1 and x′
I
1:

xI1 = Pi[3, 4, 9, 14]⊕ STK0[3, 4, 9, 14],

x′
I
1 = Pj [3, 4, 9, 14]⊕ STK0[3, 4, 9, 14].

Note that the STK0 only has one non-
zero difference byte 4STK0[15] 6= 0, which
4STK0[15] = 4P [15].
From precomputation, we know on average Hp

has one pair (xI1, x
′I
1) in each row. For each

tuple (xI1, x
′I
1,4STK0[15]), which is obtained

at this stage, we discard the P ⊕ xI1 from the
related indexed row of the hash table. Since
with respect to the precomputation (offline
phase), we are sure that such a key leads to the
impossible differential, resulting in a wrong key.
Since we initially considered the difference
4K2[1] to be equal to 4T2[1], then we are sure
that the differential characteristic passes the
forward path correctly.

Finally, if A is not empty, output the remain-
ing value(s) in A with corresponding key guess
of w8[8, 15] and w9[2, 3, 5, 6, 8, 9, 12, 15].

6.3 Complexity Analysis

• Data Complexity
The data complexity D is:
(1− 2−(86.4))D < 1/2112 → e−(2

−86.4×D) <
1/2112 →

→ D ≈ 293 = 2n+15 → n = 78.
Where 2−(cin+cout) = 2−32×2−48×3×2−8 ≈

2−86.4 and | kin
⋃
kout | is equal to 32+64+16 =

112. Since n = 78 then 278 × 240 = 2118 chosen
plaintexts, are required for the attack.

• Time Complexity
(1) The precomputation requires about 2×

240 × 4/16 = 239 one-round decryptions,
which is equal to 239/9 ≈ 235.9 9-round
decryptions.

(2) Since n was considered to be 78, step 1 re-
quires 2(78+40) = 2118 9-round encryptions.

(3) Based on Lu et al. method, step 2 can
be done by a look-up table. So, this step
needs about 255× 278+15 ≈ 2101 memory

accesses.
(4) Step 3 requires about 255×255×278+15 ≈

2109 memory accesses.
(5) For each 264 guesses ofw9[2, 3, 5, 6, 8, 9, 12, 15],

we need 278−33 × 3× 255 ≈ 278−23.4 mem-
ory accesses in a lookup table to achieve
the guess for w8[8, 15] from the differences

4xM,col(2)
7 . So, step 4 requires about

264 × 278−23.4 = 2118.6 memory accesses.
(6) For each remaining pair, step 5 is repeated

280 times (for each possible values of w8

and w9), and on average for each repetition,
we need to access to hash table Hp and list
A. So, this step require about 2 × 280 ×
278−39.4 = 2119.6 memory accesses.

(7) Exhaustive search is negligible.
As it is mentioned before in Section 4, the time
complexity of 9 rounds is equal to at least 16×9
memory access. So we can estimate each memory
access as 1/(16× 9) ≈ 2−7 9-round encryption.

Totally, time complexity is about (235.9 +
2118)Enc+ (2101 + 2109 + 2118.6 + 2119.6)MA ≈
(2118 + 2120.2 × 2−7)Enc ≈ 2118Enc.

• Memory Complexity
The precomputation phase needs about

240 × (4 + 4 + 1) ≈ 243.2 bytes of memory
for storing xI1[3, 4, 9, 14], xI1[3, 4, 9, 14] and
4STK0[15]. we apply the attack individually
for each guess of the key and for the remaining
bytes of each guess that is not discarded, per-
form an exhaustive search. So, we store about
2n+31 = 2109 suggestions that remain after
Step 2. Each suggestion consists of one pair. So,
the memory complexity of the attack is about
243.2 + 2114 ≈ 2114 bytes or 2110 states.

7 Conclusion

This paper describes several impossible differential
cryptanalysis on the round-reduced variants of Deoxys-
BC-256. As a possible direction for future research,
one can investigate the security of Deoxys-BC-256
against impossible differential by considering a beyond
full-codebook scenario, since the tweak in Deoxys-
BC can provide extra plaintext-ciphertext pairs in
contradiction to the classical model.

This paper describes several impossible differential
cryptanalysis on the round-reduced variants of Deoxys-
BC-256. This work presents the first third-party crypt-
analysis of the tweakable block cipher Deoxys-BC-256
in the single-key model. We also propose impossible
differential attacks up to the 9-round Deoxys-BC-256
in the related-tweak related-key model which has a
lower memory complexity than the best previous at-
tack.

ISeCure

104 Impossible Differential Cryptanalysis on Deoxys-BC-256 — A. Mehrdad et al.

The cryptanalysis presented in this paper cannot be
exploited to mount a key-recovery attack on Deoxys-
II authenticated encryption scheme. However, as it is
discussed in Section 6 of [1] the results can be applied
on the Deoxys-I authenticated encryption.

As a possible direction for future research, one can
investigate the security of Deoxys-BC-256 against
impossible differential by considering a beyond full-
codebook scenario, since the tweak in Deoxys-BC can
provide extra plaintext-ciphertext pairs in contradic-
tion to the classical model.

8 Acknowledgement

The work of Hadi Soleimany is partly supported by
grants from Shahid Beheshti University and by the
Iranian National Science Foundation (grant number
95835673).

References

[1] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and
L. Song, “A security analysis of Deoxys and its
internal tweakable block ciphers”, IACR Trans-
actions on Symmetric Cryptology, 2017(3):73107,
2017.

[2] Z. Jiang and C. Jin, “Impossible Differential Crypt-
analysis of 8-Round Deoxys-BC-256”, IEEE Ac-
cess, Vol. 6, pp. 8890–8895, 2018.

[3] R. Zong, X. Dong, X. Wang, “Related-Tweakey
Impossible Differential Attack on Reduced-Round
Deoxys-BC-256”, SCIENCE CHINA Information
Sciences.

[4] J. Jean, I. Nikolic, T. Peyrin, and Y. Seurin, “De-
oxys v1.41”, Submitted to CAESAR, October
2016.

[5] J. Jean, I. Nikolić, and T. Peyrin, “Tweaks and
Keys for Block Ciphers : the TWEAKEY Frame-
work”, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory
and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II, volume 8874 of
Lecture Notes in Computer Science, pages 274288.
Springer, 2014.

[6] J. Daemen, V. Rijmen, “AES Proposal : Rijndael”,
NIST AES proposal, 1998.

[7] E. Biham, A. Biryukov, A. Shamir, “Miss in the
middle attacks on IDEA and Khufu”, In L. Knud-
sen, editor, Fast Software Encryption, 6th interna-
tional Workshop, Volume 1636 of Lecture Notes
in Computer Science, pages 124138, Rome, Italy,
Springer-Verlag 1999.

[8] E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis
of Skipjack Reduced to 31 Rounds using Impos-
sible Differentials”, in International Conference
on the Theory and Applications of Cryptographic

Techniques, 1999, pp. 12-23.
[9] M. Minier and M. Naya-Plasencia, “A related key

impossible differential attack against 22 rounds
of the lightweight block cipher LBlock”, In Infor-
mation Processing Letters, Volume 112, Issue 16,
2012, Pages 624-629, ISSN 0020-0190.

[10] J. Chen, Y. Wei, Y. Hu, “A New Method for
Impossible Differential Cryptanalysis of 7-round
Advanced Encryption Standard”, Proceedings of
International Conference on Communications, Cir-
cuits and Systems Proceedings 2006, Vol. 3, pp.
1577-1579, IEEE, 2006.

[11] C. Boura, M. Naya-Plasencia, and
V. Suder,“Scrutinizing and Improving Impossible
Differential Attacks: Applications to CLEFIA,
Camellia, LBlock and Simon”, In ASIACRYPT
2014, Lecture Notes in Computer Science , volume
8873, pages 179-199, Springer, 2014.

[12] B. Bahrak and M. R. Aref, “Impossible differ-
ential attack on seven-round AES-128”, IET In-
formation Security journal, Vol. 2, Number 2, pp.
2832, IET, 2008.

[13] B. Bahrak and M. R. Aref, “A Novel Impossible
Differential Cryptanalysis of AES”, proceedings
of the Western European Workshop on Research
in Cryptology 2007, Bochum, Germany, 2007.

[14] J. Lu, O. Dunkelman, N. Keller, and J. Kim,
“New Impossible Differential Attacks on AES”, IN-
DOCRYPT 2008. LNCS, vol. 5365, pp. 279293.
Springer, Berlin, 2008.

[15] C. Dobraunig and E. List, “Impossible-
Differential and Boomerang Cryptanalysis of
Round-Reduced Kiasu-BC”, pp. 207222. Cham:
Springer International Publishing, 2017.

Alireza Mehrdad is a master of
science. He received his M.S. in se-
cure communications and cryptogra-
phy from Shahid Beheshti University,
Tehran, Iran, in 2018. He had received
his bachelor in communication from
Noshirvani Institute of Technology,

Babol, Iran, in 2015. His main research interests are
symmetric cryptography, post-quantum cryptography,
and authenticated encryption.

ISeCure

July 2018, Volume 10, Number 2 (pp. 93–105) 105

Farokhlagha Moazami is an assis-
tant professor at the Cyber Space Re-
search Institute at Shahid Beheshti
University, Iran, Tehran, since 2013.
She received B.S. and Ph.D. degrees
in mathematics from Alzahra Univer-
sity, Tehran, Iran, in 2004 and 2012,

respectively and M.S. degree in mathematics from
Sharif University of Technology, Iran, Tehran, in 2006.
She was a postdoctoral at Sharif University of Tech-
nology, Iran, Tehran, from 2012 to 2013. Her main
research interests is theoretical and practical aspects
of cryptography.

Hadi Soleimany is an assistant pro-
fessor at Cyberspace Research Insti-
tute at Shahid Beheshti University,
Iran, since 2015. He received his Ph.D.
in theoretical computer science from
Aalto University, Finland, in 2015.
He was a postdoctoral researcher at

Technical University of Denmark (DTU), Denmark,
in summer 2016 and 2017. His main research interests
are practical aspects of cryptography.

ISeCure

