
ISeCure
The ISC Int'l Journal of
Information Security

July 2018, Volume 10, Number 2 (pp. 129–139)

http://www.isecure-journal.org

Enforcing RBAC Policies over Data Stored on Untrusted ServerI

Naeimeh Soltani 1, Ramin Bohlooli 1, and Rasool Jalili 1
1Department of Computer Engineering Sharif University of Technology Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 5 April 2018

First Revised: 29 May 2018

Last Revised: 23 June 2018

Accepted: 11 July 2018

Published Online: 15 July 2018

Keywords:

Access Control, Outsourced Data,

Role-Based Access Control,
Chinese Remainder Theorem.

A B S T R A C T

One of the security issues in data outsourcing is enforcement of the data owner’s

access control policies. This includes some challenges. The first challenge is

preserving confidentiality of data and policies. One of the existing solutions

is encrypting data before outsourcing which brings new challenges; namely,

the number of keys required to access authorized resources, efficient policy

updating, write access control enforcement, overhead of accessing/processing

data at the user/owner side. Most of the existing solutions address only

some of challenges, while imposing high overhead on both owner and users.

Though, policy management in the Role-Based Access Control (RBAC) model

is easier and more efficient due to the existence of role hierarchical structure

and role inheritance; most of the existing solutions address only enforcement

of policies in the form of access control matrix. In this paper, we propose an

approach to enforce RBAC policies on encrypted data outsourced to a service

provider. We utilize Chinese Remainder Theorem for key management and

role/permission assignment. Efficient user revocation, efficient role hierarchical

structure updating, availability of authorized resources for users of new roles,

and enforcement of write access control policies as well as static separation of

duties, are of advantages of the proposed solution.

c© 2018 ISC. All rights reserved.

1 Introduction

D ue to reducing communication costs and increas-
ing storage space and flexibility in resource man-

agement, Database-as-a-Service (DBaaS) model, in
which an organization outsources its data to a service
provider (SP), becomes a popular paradigm. Though
data outsourcing helps to reduce cost and complexity
in the maintenance and management of data, it in-

I An earlier version of this paper has already been presented
in ISCISC2017.
∗ Corresponding author.

Email addresses: nsoltani@ce.sharif.edu (N. Soltani),

rbohlooli@ce.sharif.edu (R. Bohlooli), jalili@sharif.edu
(R. Jalili)

ISSN: 2008-2045 c© 2018 ISC. All rights reserved.

troduces new security challenges because data is out
of the owner’s control and also service providers are
assumed to be honest-but-curious. They are honest in
executing protocols, but curious to learn information
about the stored and exchanged data. The easiest
way to overcome this issue is to encrypt data before
outsourcing.

Because of storing encrypted data on SPs, access
control policy enforcement faces some challenges,
namely the number of keys needed to access autho-
rized resources, distributing required keys among au-
thorized users, efficient policy updating, write access
control enforcement, overhead of accessing data at
user side, overhead of processing data at owner side,
and preserving confidentiality of data and policies.
Most of the existing solutions address only enforce-

ISeCure



130 Enforcing RBAC Policies over Data Stored on Untrusted Server — Soltani et al.

ment of policies in the form of access control ma-
trix, while in the Role-Based Access Control model
(RBAC), policy management is easier and more effi-
cient due to the existence of role hierarchical struc-
ture and role inheritance.

According to the prevalence use of RBAC model
in most organizations, we propose an approach to
enforce RBAC policies on encrypted data stored on
external SPs. We use Chinese Remainder Theorem
(CRT) for key management and role/permission as-
signment. We support efficient revocation of role
membership from a user and update of role hierarchi-
cal structure. Also, users of newly added roles have
access to all authorized resources without the need
to re-encrypt resources. Enforcement of write access
control policies and static separation of duties (SSD)
are of advantages of the proposed approach.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 describes
our proposed approach in detail. Section 4 analyzes
our solution and describes its advantages. Finally,
Section 5 concludes the paper.

2 Related Work

Existing approaches in enforcement of access control
policies enforce policies either in the form of access
control matrix or in the RBAC model.

Solutions of the first group have used tree-based
key derivation techniques ([1, 2]), attribute-based en-
cryption ([3–5]), and CRT ([6, 7]) to preserve confi-
dentiality of data and policies and also to distribute
each resource encryption key among authorized users.
Solutions of tree-based key derivation techniques are
not scalable as producing unique keys for users and
resources is a serious bottleneck. Solutions using
attribute-based encryption are scalable but inefficient.
They are scalable, because each user is assigned a
key derived from his attributes which allows him to
access an arbitrary number of resources, and they are
inefficient due to using bilinear map that increases
computational overhead.

CP-ABE 1 is a variation of ABE which is used
in several schemes (e.g. [8], [9]). In CP-ABE, a set
of attributes are associated with the decryption key
and the access policy. A decryption key can decrypt
a ciphertext only if it’s associated attributes satisfy
the access policy of the ciphertext[8]. A trusted au-
thority sends or distributes these attributes to in-
tended users for decryption purpose which also allow
access to shared data by having these required at-
tributes [10]. In [8] a CP-ABE was proposed which
introduced a scalable immediate revocation scheme,

1 Ciphertext-Policy Attribute-Based Encryption

named SPIRC 2 . The proposed scheme in [9] sepa-
rates the duty of enforcing access control policy from
enforcing constraint policy to enhance security. This
scheme also defined and used the “Sensitive Data Set
Constraint” concept to prevent conflict of interests.

For efficient user revocation and reducing the
overhead of policy update at owner side, proxy re-
encryption, over-encryption, and lazy revocation
are used in such solutions. In proxy re-encryption
[3, 4, 11] data owner produces a new key and delivers
it to the SP to re-encrypt the data. The concept of
over-encryption was proposed in [12]. This approach
uses two-layer encryption. The first layer is done by
the owner to provide initial protection. The second
layer is done by the service provider and enables
fine-grained access control to data. When a user is
revoked, the new encryption key of the second layer
would be sent to the server to re-encrypt this layer.
In [13] an effective design and implementation of this
approach is presented with detailed design choices.
The idea behind the lazy revocation [14] is, since the
user had access to the old data before eviction, it
can be assumed that the user had cached that data,
therefore it is not important to re-encrypt old data.
Based on this idea, if the user’s access is revoked
from data, the data are not re-encrypted immediately.
Instead, only the new data are encrypted with a new
version of the key so that the evicted user can no
longer access the new data. In CRT-based solutions
which use CRT for key management, update of poli-
cies is equivalent to add/remove an equation to/from
the CRT equation set.

Enforcement of write access control policies [5, 15,
16] is another challenge. A proposed solution to this
challenge is granting a token to authorized users. This
token would be used by the users to prove their write
permission to the SP. Also, signing the resources
by the owner and authorized users after each write
operation is used to prevent unauthorized write and
to guarantee the integrity of data.

In the second group focusing on RBAC, an ap-
proach is to use Hierarchical ID-based in which iden-
tities are organized in a hierarchical structure. A
key associated to an identity can decrypt resources
encrypted to itself as well as its descendant identi-
ties, but cannot decrypt resources intended for other
identities. In the case of any hierarchy change, the
identities and their associated keys may need to be
changed. In addition, the size of the keys increases
corresponding to the growth in the hierarchical struc-
ture of identities [17, 18]. Attribute-based encryption
has similar problems [19].

2 Scalable Proxy-based Immediate Revocation

ISeCure



July 2018, Volume 10, Number 2 (pp. 129–139) 131

Asghar et al. [20] proposed a different solution
in which policies and user’s requests are encrypted
and no common key exists among users. So, user
revocation is done without re-encryption.

In 2011, Zhou et al. [21] proposed an access control
scheme based on Identity-based broadcast encryption
(IBBE), which suffers from changing the specification
of all roles when a user is revoked. In IBBE, a broad-
caster sends the encrypted message for a set of users
based on their identities.

The same authors in 2013[22] proposed a role-based
encryption (RBE) scheme that achieves efficient user
revocation. They present an RBE-based hybrid cloud
storage architecture that allows an organization to
store data securely in a public cloud, while maintain-
ing the sensitive information such as role hierarchical
structure, in a private cloud. In this architecture, de-
cryption of resources is done in two steps; the first
step is done at the cloud and the second step is done
at the user side, so the overhead of accessing the re-
sources would be increased. In addition, in order to
enable users of newly added roles to access the autho-
rized resources, re-encryption is needed. In another
paper in 2015, Zhou et al. [23] introduced two more
RBE schemes. In one of the schemes, they focused
on efficient user revocation and in the other, they
proposed an approach to enable users of newly added
roles have access to all authorized resources.

In [24] a new approach, called ACV-BGKM 3 , was
proposed which uses linear algebra based approach on
a structure called Access Control Vector (ACV)[25].
Consuming massive computational and storage re-
sources for frequent updates of the group key are
disadvantages of this approach[26].

In 2015 SathiyaBalan et al. [25] identified the ap-
plicability of the CRT based Group Key Management
(CRTGKM) for cloud environment. It is reported that
the scheme is more computationally efficient than
the other cloud environment group key management
schemes known as ACV-BGKM and AB-GKM which
require high computation time for key update and
key recovery processes.

3 Proposed Approach

Assigning permissions to roles and roles to users are
of key features in RBAC model. In our approach, a se-
cret key is associated to each role and resource, which
is transparent to users and provides efficiency of user
revocation. In “permission assignment”, each resource
secret key is shared among authorized roles and in
“role assignment”, each role secret key is shared among
authorized users, using CRT. An agent located at

3 Access Control Vector Broadcast Group Key Management

the user side acts as the interface between the user
and SP. Updating policies and role hierarchy is done
with minimal overhead and users of newly added roles
have access to all authorized resources without re-
encryption. Our approach also supports the enforce-
ment of SSD and write access control policies.

Before describing the details of the proposed ap-
proach, we briefly introduce Chinese Remainder The-
orem as our key management method.

3.1 Chinese Remainder Theorem and key
management

Chinese remainder theorem states that for the system
of simultaneous congruence in (1), where k ≥ 2, the
positive integers n1, n2, ..., nk are pairwise relatively
prime, and (n1, n2, ..., nk) ∈ Z, there exists a unique

solution x, such that x ∈ [0,
∏k

i=1 ni).

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk

(1)

According to (2), we can share a secret key between
privileged users (u1, u2, ..., uk) in which K is the se-
cret key, E is the encryption algorithm, xK is the
shared key and nui

is module assigned to the user i.

xK ≡ EKu1
(K) mod nu1

xK ≡ EKu2
(K) mod nu2

...

xK ≡ EKuk
(K) mod nuk

(2)

Granting access of key K to a new user uk+1 is
equivalent to adding an equation to the equation
set (2) and calculating the new shared key x′ in the
equation set (3). x′K ≡ x mod nu1

nu2
...nuk

x′K ≡ EKuk+1
(K) mod nuk+1

(3)

Also for revoking access of user uk from the key K,
we should remove an equation from the equation set
(2) and solve x′′ in the relation (4).

x′′K ≡ x mod nu1
nu2

...nuk−1
(4)

3.2 Proposed Approach Components

In our proposed architecture, four components exist:
owner, user, agent, and SP. In addition, roles and

ISeCure



132 Enforcing RBAC Policies over Data Stored on Untrusted Server — Soltani et al.

resources should also be considered. The description
of these components are as follows:

• Resources: Resources contain everything that
the owner wants to outsource to the SP. For
each resource ri, these properties are defined
by the owner:
◦ IDri : A unique identifier,
◦ (Kpubri , Kprivri): A public/private key

pair,
◦ SKri : A secret key.

The Kprivri acts as the write token and the
SKri is used for encrypting the resource. Both
of these keys are shared among authorized roles
using CRT to create separate shared keys for
read and write access control. The write token is
also used by the owner and authorized users for
signing the resource after each write operation.

• Roles: A role is a set of access permissions. In
the RBAC model, roles are defined in a hierar-
chical structure to ease defining new roles and
permission assignment/revocation. Figure 1,
shows an example of a role hierarchy in which
permissions of roles decrease by moving from
up to down in the hierarchical structure. The
arrows are directed from ancestors to descen-
dants. In addition, the focus is on limited role
hierarchies in which a role may have one or
more direct ancestors, but is restricted to a
single direct descendant. In this example, the
role A has the most permissions and the roles
B and E are called its direct ancestors and
the roles C and D are its indirect ancestors.
The role A does not have any descendant and
the roles A, B, and C are all descendants of
the role D. Roles A and B are called indirect
descendants of the role D and the role C is
its direct descendant. For each role like li, the
following properties are defined:
◦ IDli : A unique identifier,
◦ SKli : A secret key,
◦ mli : The CRT module of the role,
◦ Pli : The “public parameter” of the role

which is defined as the set of secret keys
of ancestor roles, encrypted by the role’s
secret key (SKli).

The SKli and mli are used in “permission as-
signment” process in which read or write access
of a resource is granted to a role using CRT.
Existence of Pli allows users of a role to inherit
permissions of ancestor roles.

• Users: A user is anyone who wants to access
the resources. Properties defined for the user ui

are:
◦ IDui

: A unique identifier,
◦ nui

: The CRT module of the user,

Figure 1. Roles hierarchy (a) and inheritance of permissions
(b)

◦ (Kpubui
, Kprivui

): A public/private key
pair.

Kpubui and nui are used in the “role assign-
ment” process in which a role is assigned to the
user. Kprivui

is used to resolve the secret key
of a role (SKli) assigned to the user, from role’s
shared key.

• SP: An honest-but-curious service provider
which stores encrypted information and serves
the user via the agent installed at the user side.
The agent acts as an interface between the user
and the SP and prevents unauthorized users
from direct access to the SP and stored data.

• Owner: The original owner of the resources.
Owner produces required IDs, keys, and mod-
ules, encrypts resources and assigns permissions
to roles and roles to users and also sends en-
crypted data to the SP. We also define the fol-
lowing properties for the owner:
◦ KOA: A shared key between the owner and

agent(s),
◦ nO: The CRT module of the owner,
◦ (KpubO,KprivO): The public/private key

pair of the owner,
◦ SKO: The secret key of the owner.

Although the last three properties are not
mandatory, we can use them to eliminate the
necessity of storing all (roles’ and resources’)
keys at the owner side as described in Sec-
tion 3.4 and Section 3.5.

• Agent: A software agent which would be exe-
cuted in the users’ machines. This component
receives requests from the user, communicates
with SP and returns the response to the user.
In the other words, the agent makes the system
transparent for users.

3.3 Overall view

There are two main phases in this approach:

• Outsourcing data: This phase would be done
by the owner when the system is launched. In
this procedure, the owner generates required
keys, IDs, and modules as well as encrypting

ISeCure



July 2018, Volume 10, Number 2 (pp. 129–139) 133

Figure 2. Outsourcing data

Table 1. Users

ID Roles Module Public Key

EKOA
(IDu1 ) EKOA

(IDA) EKOA
(nu1 ) EKOA

(Kpubu1 )

EKOA
(IDu2 )

EKOA
(IDB)

EKOA
(IDE)

EKOA
(nu2 ) EKOA

(Kpubu2 )

EKOA
(IDu3 ) EKOA

(IDB) EKOA
(nu3 ) EKOA

(Kpubu3 )

... ... ... ...

Table 2. Resources

ID Resource
Shared

Keys
Roles Public Key

EKOA
(IDR) ESKR

(R)
xrR

xwR

EKOA
(IDE)

EKOA
(IDD)

EKOA
(Kpubri )

... ... ... ... ...

Table 3. Roles

ID Public Parameter Shared Key Module

EKOA
(IDA)

ESKA
(SKB |IDB)

ESKA
(SKE |IDE)

xA EKOA
(mA)

EKOA
(IDB) ESKB

(SKC |IDC) xB EKOA
(mB)

EKOA
(IDC) ESKC

(SKD|IDD) xC EKOA
(mC)

EKOA
(IDD) - xD EKOA

(mD)

EKOA
(IDE) - xE EKOA

(mE)

the resources, defining roles hierarchy, perform-
ing initial assignments (roles to users and per-
missions to roles), pushing all required infor-
mation on the SP and shares a key with the
agent (KOA). Figure 2 represents these steps.
Some examples of information stored on the SP
for users, resources and roles are represented in
Table 1, 2 and 3, respectively.

The owner can update role hierarchy and
change permissions after the outsourcing phase
with minimal overhead.

Figure 3. Processing queries

• Processing user requests: This phase con-
tains the routine operation of the system. Users
send their requests to their agents. The agent
then communicates the information about the
user, his role and the requested resource with
the SP and extracts required keys. Finally, if
the user is authorized, the agent returns the
decrypted resource to the user. Figure 3 shows
the steps of processing a user’s request (more
details are discussed in Section 3.6).

The details of operations that should/could be done
in the above phases are described in the rest of this
section.

3.4 Role Assignment

Assigning a role to a user means sharing the role’s
secret key with the user. In order to assign role A
to users u1, u2, ..., uk, the owner goes through the
following steps:

(1) Encrypting SKA with Kpubui
for 1 ≤ i ≤ k.

(2) Forming the equation set (5). Solution of the
equation set, xA, would be the shared key of
the role A.

xA ≡ EKpubu1
(SKA) mod nu1

...

xA ≡ EKpubuk
(SKA) mod nuk

xA ≡ EKpubO (SKA) mod nO

(5)

As pointed earlier, the last equation is used to
to eliminate the owner from storing secret key
of the role.

(3) Storing xA in table ROLES on SP.

ISeCure



134 Enforcing RBAC Policies over Data Stored on Untrusted Server — Soltani et al.

If authorized user ui wants to access a resource as a
users of the role A, the agent requests xA from the
SP and extract KA using relations (6) and (7). This
key would be used later to retrieve the decryption
key of the available resources.

EKpubui
(SKA) ≡ xA mod nui

(6)

SKA = DKprivui
(EKpubui

(SKA)) (7)

Assigning the role A to a new user uk+1 is equiva-
lent to re-organize the CRT equation set with a new
equation corresponding to uk+1 (equation set (8))
and solve it again to achieve a new shared key (x′A).
However, this could be done more efficient by solving
the equation set (9).



x′A ≡ EKpubu1
(SKA) mod nu1

...

x′A ≡ EKpubuk
(SKA) mod nuk

x′A ≡ EKpubuk+1
(SKA) mod nuk+1

x′A ≡ EKpubO (SKA) mod nO

(8)

 x′A ≡ xA mod nu1
...nuk

no

x′A ≡ EKpubui
(SKA) mod nuk+1

(9)

Revocation of the user ui is equivalent to form the
equations set without the ith equation and solve that
to obtain a new shared key.

In most real applications, there are some (static)
constraints on the set of roles which could be assigned
to a specific user. These constraints are handled via
“static separation of duties” (SSD). Before assigning
roles to users, the owner defines a set of rules to
define SSD and uses these rules to specify the set of
available roles for each user. In order to assign a role
to a user, the owner selects the role with the highest
authority from the aforementioned set.

3.5 Permission Assignment

Permission assignment consists of granting read or
write access of a resource to a set of roles. If the
owner wants to grant read permission to a set of
roles, the secret key of the resource is shared among
authorized roles with the lowest authority using CRT.
For example, to assign read permission on resource R
to all roles in Figure 1 (A,B,C,D,E) the following
steps would be done:

(1) The “minimal covering set” of given roles should
be calculated; which includes all roles that either
have no ancestor or none of their ancestors is
in the given set. In our example, the covering
set would be {E,D}.

Table 4. Public parameter of roles in Figure 1

Role Public Parameter

A ESKA
(SKB |IDB), ESKA

(SKE |IDE)

B ESKB
(SKC |IDC)

C ESKC
(SKD|IDD)

D -

E -

(2) The owner forms the CRT equation set (10)
with secret keys of the obtained roles in step
(1). The solution of the equation set, xrR is the
shared key of the resource and would be stored
on the SP (in table RESOURCES).

xrR ≡ ESKD
(SKR) mod mD

xrR ≡ ESKE
(SKR) mod mE

xrR ≡ ESKO
(SKR) mod mO

(10)

(3) Users of the roles E or D can access the resource
R via their agents, directly.

Users of other authorized roles gain the resource
secret key using the public parameter of their roles
which contains encrypted keys of ancestor roles. Ta-
ble 4 indicates the public parameter of roles in Fig-
ure 1 where (SKi|IDi) shows the secret key and ID
of the role i (i ∈ {A,B,C,D,E}) concatenated to-
gether and E is the symmetric encryption algorithm.

Granting write permission is also done in the same
way, by sharing the resource write token among au-
thorized roles with the lowest authority using CRT
(equation set (11)).

xwR ≡ ESKD
(KprivR) mod mD

xwR ≡ ESKE
(KprivR) mod mE

xwR ≡ ESKO
(KprivR) mod mO

(11)

As the final stage of permission assignment, the
resource is signed and encrypted by the owner, using
the resource write token (resource private key) and
the resource secret key, respectively. Signing the re-
source is done due to integrity check and preventing
SP from unauthorized write. Authorized users and
the owner can verify the signature and sign the re-
source after each change, using the resource’s write
token given from the write shared key.

Revoking permissions of the resource R from a
role is equivalent to removing an equation from the
equation set (10) and calculating the new shared key.

3.6 Policy Enforcement

Let’s assume that the required information about
users, resources, and roles are stored as Table 1, 2,

ISeCure



July 2018, Volume 10, Number 2 (pp. 129–139) 135

and 3 at SP. Among this information, some of them
are encrypted by the key KOA which is shared be-
tween the owner and the agent and makes encrypted
information accessible to the agent, too.

Based on this assumption, each time a user asks
for a resource as a role, the agent checks if the user
belongs to the specified role or not using Table 3 and
1. If the user is correct, the agent will ask the shared
key of the user claimed role from the owner and
extract the role’s secret key as illustrated in relations
(6) and (7) using the private key of the user. Then, a
record containing user ID, role ID, role’s secret key,
and timestamp of the role’s shared key will be added
to “current sessions” table stored at the agent, for
future uses.

Timestamp shows the creation time of the role
shared key and is stored to prevent the agent from
downloading and extracting duplicate shared keys.

To make it clear, let’s continue with an example.
If sample user U3 sends a request containing (IDU3

,
IDB, IDR, nU3) to the agent in order to ask for
reading the resource R as a user with role B, the
agent goes through the following steps:

(1) The agent checks if the user U3 belongs to
the users of role B or not. In order to do
that, requests encrypted role ID of the user U3

from SP and according to the Table 1 receives
EKOA

(IDB) as response. As illustrated before,
the key KOA is shared between the owner and
the agent. So the agent decrypts EKOA

(IDB)
and gains IDB which is the same as the role
ID claimed by the user. So, the agent accepts
the user’s request.

(2) In the second step, the agent requests encrypted
role IDs with direct access to the resource R and
according to the Table 2 receives EKOA

(IDE)
and EKOA

(IDD) from the SP. After decrypting
the two encrypted IDs, gains IDE and IDD

which are not the same as the user’s role ID,
IDB; In this situation, the users of the role B
can access the resource R if and only if the role
B inherits permissions of the role D or the role
E. In the other words, if and only if, the role
B is a direct or indirect descendant of roles D
or E. So the agent checks permissions of the
direct and indirect ancestors of the role B using
its public parameter. The role C is the direct
ancestor of the role B. As the role C does not
have direct access to the resource R, the agent
searches for permissions of the ancestor of the
role C. This process continues till the agent
find a path in the role hierarchical structure
of Figure 1 from the role B to one of the roles
with direct access to the resource R (roles D or

E). If the agent could not find any path, the
user’s request is denied.

(3) To gain ancestor of the role B, the agent re-
quests public parameter and shared key of the
role B from the SP. SP sends ESKB

(SKC |IDC)
and xB as response to the agent. Then the agent
retrieves the secret key of the role B, (SKB)
from xB using private key and module of the
user U3. Finally using SKB, the agent gets
SKC and IDC which are the secret key and ID
of the role C.

(4) Because of no equality between IDC and IDs
of roles with direct access to the resource (IDE ,
IDD), the agent requests ancestor of the role
C and receives ESKC

(SKD|IDD) from the SP.
After decrypting ESKC

(SKD|IDD) gains SKD

and IDD which are secret key and ID of the role
D that has direct read access to the resource R.

(5) Finally, using the secret key and public parame-
ter of the role B, the agent finds the secret key
of the role D which has direct access to the re-
source R. Then asks for encrypted resource and
its read shared key along with module of the
role D. After receiving ESKR

(R), xrR, and mD

from the SP, gains SKR according to the rela-
tions (12) and (13). Using the key SKR, now
the agent decrypts the resource.

xrR ≡ ESKD
(SKR) mod mD (12)

SKR = DSKD
(ESKD

(SKR)) (13)

Note that the agent gets the secret key of the resource
R after n + 1 role key decryption where n is the
number of roles between the user’s role and the role
with direct access to the resource.

3.7 Adding a Role to Role Hierarchy

In order to add a new role to the hierarchical structure,
first of all, we should create its public parameter from
role IDs of its direct ancestors. Secondly, the public
parameter of the descendant role should be updated.
For example, by adding the role P between the roles
A and B in Figure 1, the role A becomes the direct
descendant of the role P and the role B becomes its
direct ancestor.

As the ancestor of the role A changes from the role
B to the role P , so the public parameter of the role
A should be updated. As a result ESKA

(SKB) will
be replaced with ESKA

(SKP ). Actually, it is not nec-
essary to remove ESKA

(SKB), because after adding
the role P , the role B changes to indirect ancestor of
the role A and the role A still inherits permissions of
the role B, but ESKA

(SKP ) should be added to per-
sist role inheritance. Also, the secret key of the role
P will be encrypted with the secret key of the role A
and the secret key of the role B will be re-encrypted

ISeCure



136 Enforcing RBAC Policies over Data Stored on Untrusted Server — Soltani et al.

with the secret key of the role P . In the other words,
a record containing (EKOA

(IDP ), ESKP
(SKB), xP ,

EKOA
(mP )) will be added to Table 3 and it is worth

noted that users of newly added role have access to
all authorized resources without need to the resource
re-encryption.

3.8 Removing a Role from Role Hierarchy

In order to remove a role such as C, the related
record in Table 3 is removed and then the secret
key of the removed role’s direct ancestor will be re-
encrypted with the secret key of the removed role’s
descendant. In this example, ESKB

(SKC) is replaced
with ESKB

(SKD) to show that the role D is ancestor
of the role B. At the end, if there is any resource
that the role C has had direct access to it, the shared
key of the resource will be changed by removing the
equation from the CRT equation set of the resource’s
shared key.

4 Evaluation

In this section, we evaluate the proposed solution
in terms of different criteria. In some criteria, we
use experimental results to prove the efficiency of
our approach. The experimental results are gained
from a Java application ran in Windows 8 with an
Intel(R) Core(TM) i7-4700HQ 2.40 GHz CPU and
8G RAM. We used 128-bit keys with AES algorithm
for encryption of roles and resources keys and also
1024 bit keys with RSA algorithm for creating the
shared key of each role. The modules for roles and
users are all 1024 bits.

The evaluation metrics are as follow:

• Policy confidentiality: All information stored at
SP including IDs and keys for roles, users, and
resources are encrypted.

• Scalability: Let us first consider the maximum
number of supported users. As illustrated, in
our approach “role assignment” and “permis-
sion assignment” is based on CRT. Each user
is given a public/private key pair and a CRT
module. Modules are pairwise relatively prime
numbers. Therefore, the maximum number of
users in a “role assignment” equation set with
m bits modulus is equal to the number of prime
numbers between 0 and 2m. Prime Number The-
orem proves that the number of prime numbers
less than an integer n is approximately equal to
n

lnn . As a result the maximum number of equa-
tions in a CRT equation set with m bit modu-
lus is approximately equal to 2m

m×ln 2 and there
will be no bottleneck in increasing the number
of roles, users, and resources; but as discussed,
the value of x in the equation set (1) is in the

Table 5. Relation Between Module Size and Number of Users

and Shared Key Size

User Module

Size

Maximum No. Of

Users

Shared Key

Size

8 bit 46 8 * 46

16 bit 5909 16 * 5909

32 bit 193635335 32 * 193635335

Figure 4. Role shared key creation time in conjunction with

number of users

range [0,
∏k

i=1 ni). Therefore, an increase in the

length of the module causes a growth in the
length of the shared key.

The size of the ciphertext is another impor-
tant factor in scalability. In our solution, en-
crypted resources or ciphertexts and their en-
cryption keys do not contain any information
related to the roles and users. Therefore, the
length of the secret key for each resource is con-
stant and ciphertext size is linearly proportional
to the size of plaintext. However, in Zhou et al.
[22] approach, the resource key is produced ac-
cording to the list of the roles that have access
to the resource and if the resource size exceeds
one megabyte, the time needed to produce en-
cryption key will equal with the time needed
for resource encryption and decryption.

• Computational overhead at the user side: User
side operations contain resolving the secret key
of a role, and secret key and write token of a re-
source from their shared keys. Figure 4 depicts
creation time of a shared key for a specific role
and Figure 5 shows the required time for resolv-
ing the role key from its shared key according
to the number of users. Totally, the access time
to a resource is O(L) where L is the number
of all roles in the system (in the worst case, all
roles should be traversed sequentially to reach
the role with direct access to the resource). It
is clear that the operation time on the user side
is minimal. This factor is not evaluated in [20]
and [22].

• The efficiency of policy updates: In Section 3,
we discussed add/remove a role to/from the
role hierarchical structure and grant/revoke role
membership to/from a user. In all these oper-

ISeCure



July 2018, Volume 10, Number 2 (pp. 129–139) 137

Figure 5. Role secret key extraction time in conjunction with
number of users

ations, there is no need to create new secret
keys for roles and resources or re-encrypting the
resources. As our focus is on limited role hier-
archies in which a role may have one or more
direct ancestors but is restricted to a single di-
rect descendant, in “add role” operation, only
one role key re-encryption is needed in addition
to creating a recode for the new role containing
encrypted role ID, encrypted form of ancestor’s
role key, and role shared key. In the “remove
role” operation, the public parameter of the de-
scendant of the removed role should be updated
to contain the encrypted secret key of the an-
cestor of the removed role. So time complexity
of role hierarchical structure is O(1).

Grant/revoke role membership to/from a user
is simply done by adding/removing an equation
to/from CRT equation set and creating a new
shared key for the role. In addition, due to
updating information of Table 1 after grant or
revoke, if the revoked user asks for accessing the
resources as the specified role, the agent will
refuse his request; Therefore, the owner may
ignore creation of a new shared key for the role
after revoking the user and delays new shared
key creation to a time that number of revoked
users becomes high.

• Availability of resources for users of new roles:
In our approach, resource key is only shared
among authorized roles with the lowest author-
ity and other roles access the keys using their
“public parameter”. Therefore, users of newly
added roles can access to the authorized re-
sources using “public parameter” of their role,
but in Zhou et al. solution [22], re-encryption
is required after adding a new role to the roles
hierarchy.

• Enforcement of static separation of duties: As
illustrated in Section 3 user’s information is
kept in Table 1 which contains IDs of the roles
assigned to each user and the agent use these
role IDs to check correctness of the user claimed
role when he/she wants to access a resource.
These role IDs are also useful for enforcing rules
of static separation of duties. The owner checks

Table 6. Comparison of our approach with some other solu-

tions

Asghar et al.
[20]

Zhou et al.
[22]

Proposed
solution

Ciphertext size is
independent of the

number of roles and

users

√ √ √

Scalability
√ √ √

Using role hierarchical

structure

√ √ √

Using role inheritance

in authorization

√ √ √

Accessibility of

resources for new role
users

√
×

√

Enforcement of static

separation of duties
× ×

√

Enforcement of write

access control policies
× ×

√

Overhead of
adding/removing a role

not

mentioned

not

mentioned
low

Overhead of revoking

role membership from
user

low low low

the list of roles assigned to a user each time he
wants to assign a new role to the user.
• Enforcement of write access control policies:

Enforcing write access control policies is done
using a write token assigned to each resource.
This write token is also used for integrity check.

Table 6 depicts our proposed approach compared to
other solutions in this criteria.

5 Discussion and Conclusion

Nowadays, enforcement of access control policies over
data stored on an untrusted server has raised signif-
icant security issues. In this paper, we proposed an
approach for enforcement of access control policies in
the RBAC model. In the proposed approach, role/per-
mission assignment and key management are based
on CRT that results in eliminating storage overhead
on the owner, scalability, efficient user revocation,
and efficient policy updates. By policy update, we
mean grant/revoke role membership to/from a user
and adding/removing a role to/from role hierarchy.
It is worth noting that by adding a new role to the
role hierarchical structure, users of newly added roles
have access to all authorized resources and there is
no need to resource re-encryption. Also, enforcement
of write access control policies and static separation
of duties are considered in our solution.

In this paper, we discussed enforcement of write

ISeCure



138 Enforcing RBAC Policies over Data Stored on Untrusted Server — Soltani et al.

access control policies in general, using a write token
(resource’s private key) and sharing it between autho-
rized roles, but write operation on a resource can be
interpreted as insert, delete, or update. In order to
differentiate these three permissions, we can use one
separate token and the corresponding shared key for
each of them that results in an increase in the storage
and computational overhead. As future work, we will
investigate a way to enforce these permissions with
higher efficiency and lower storage overhead.

Examining lattice-based role hierarchies in which a
role may have more than one descendants is another
trend for future work. Based on the present approach
using a lattice-based role hierarchy increases the com-
putational overhead of role hierarchy updates.

One more trend for future work is eliminating unau-
thorized users and SP inferring useful information
from encrypted data which is exchanged between the
agent and SP.

References

[1] Ernesto Damiani, S. De Capitani di Vimercati,
Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Key management for
multi-user encrypted databases. In Proceedings
of the 2005 ACM Workshop on Storage Security
and Survivability, StorageSS ’05, pages 74–83,
New York, NY, USA, 2005. ACM.

[2] D. Grolimund, L. Meisser, S. Schmid, and
R. Wattenhofer. Cryptree: A folder tree struc-
ture for cryptographic file systems. In Reliable
Distributed Systems, 2006. SRDS ’06. 25th IEEE
Symposium on, pages 189–198, Oct 2006.

[3] Junbeom Hur and Dong Kun Noh. Attribute-
based access control with efficient revocation
in data outsourcing systems. Parallel and
Distributed Systems, IEEE Transactions on,
22(7):1214–1221, 2011.

[4] T. Eissa and Gi-Hwan Cho. A fine grained access
control and flexible revocation scheme for data
security on public cloud storage services. In
Cloud Computing Technologies, Applications and
Management (ICCCTAM), 2012 International
Conference on, pages 27–33. IEEE, Dec 2012.

[5] Rohollah Mahfoozi. Using functional encryption
to manage encrypted data. Master’s thesis, Com-
puter Engineering Department, Tehran, IRAN:
Sharif University of Technology, November 2013.

[6] P. Tourani, M.A. Hadavi, and R. Jalili. Access
control enforcement on outsourced data ensuring
privacy of access control policies. In High Per-
formance Computing and Simulation (HPCS),
2011 International Conference on, pages 491–497.
IEEE, July 2011.

[7] Leila Karimi, Seyyed Ahmad Javadi, Moham-

mad Ali Hadavi, and Rasool Jalili. Missing a
Trusted Reference Monitor: How to Enforce Con-
fidential and Dynamic Access Policies?, pages 92–
104. Springer International Publishing, Cham,
2014.

[8] Divyashikha Sethia, Huzur Saran, and Daya
Gupta. Cp-abe for selective access with scalable
revocation: A case study for mobile-based health-
folder. IJ Network Security, 20(4):689–701, 2018.

[9] Nurmamat Helil and Kaysar Rahman. Cp-abe
access control scheme for sensitive data set con-
straint with hidden access policy and constraint
policy. Security and Communication Networks,
2017, 2017.

[10] Samta Ukey, Jayant Adhikari, et al. A review on
data storage security in cloud computing environ-
ment for mobile devices. International Journal
of Research, 5(13):312–316, 2018.

[11] Shucheng Yu, Cong Wang, Kui Ren, and Wen-
jing Lou. Achieving secure, scalable, and fine-
grained data access control in cloud computing.
In INFOCOM, 2010 Proceedings IEEE, pages
1–9. Ieee, IEEE, march 2010.

[12] Sabrina De Capitani Di Vimercati, Sara
Foresti, Sushil Jajodia, Stefano Paraboschi, and
Pierangela Samarati. Over-encryption: manage-
ment of access control evolution on outsourced
data. In Proceedings of the 33rd international
conference on Very large data bases, pages 123–
134. VLDB endowment, 2007.

[13] Enrico Bacis, Sabrina De Capitani di Vimercati,
Sara Foresti, Stefano Paraboschi, Marco Rosa,
and Pierangela Samarati. Access control manage-
ment for secure cloud storage. In International
Conference on Security and Privacy in Commu-
nication Systems, pages 353–372. Springer, 2016.

[14] Rohit Jain and Sunil Prabhakar. Access Control
and Query Verification for Untrusted Databases,
pages 211–225. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[15] Sabrina De Capitani Di Vimercati, Sara Foresti,
Sushil Jajodia, Giovanni Livraga, Stefano Para-
boschi, and Pierangela Samarati. Enforcing dy-
namic write privileges in data outsourcing. Com-
puters and Security, 39, Part A(0):47 – 63, 2013.
27th {IFIP} International Information Security
Conference.

[16] Lanju Kong, Qingzhong Li, and Lin Li. Enabling
access control in partially honest outsourced
databases. International Journal of Database
Theory and Application, 7(3):63–72, 2014.

[17] Craig Gentry and Alice Silverberg. Hierarchical
id-based cryptography. In Advances in Cryp-
tology ASIACRYPT 2002, volume 2501 of Lec-
ture Notes in Computer Science, pages 548–566.
Springer Berlin Heidelberg, 2002.

ISeCure



July 2018, Volume 10, Number 2 (pp. 129–139) 139

[18] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hier-
archical identity based encryption with constant
size ciphertext. In Advances in Cryptology EU-
ROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 440–456. Springer
Berlin Heidelberg, 2005.

[19] Yan Zhu, Di Ma, Chang-Jun Hu, and Dijiang
Huang. How to use attribute-based encryption to
implement role-based access control in the cloud.
In Proceedings of the 2013 International Work-
shop on Security in Cloud Computing, Cloud
Computing ’13, pages 33–40. ACM, 2013.

[20] Muhammad Rizwan Asghar, Mihaela Ion, Gio-
vanni Russello, and Bruno Crispo. Espoonerbac:
Enforcing security policies in outsourced envi-
ronments. Computers and Security, 35(0):2 – 24,
2013. Special Issue of the International Con-
ference on Availability, Reliability and Security
(ARES).

[21] Lan Zhou, Vijay Varadharajan, and Michael
Hitchens. Enforcing role-based access control
for secure data storage in the cloud. Computer,
54(10):1675–1687, 2011.

[22] L. Zhou, V. Varadharajan, and M. Hitchens.
Achieving secure role-based access control on
encrypted data in cloud storage. IEEE Trans-
actions on Information Forensics and Security,
8(12):1947–1960, Dec 2013.

[23] Lan Zhou, Vijay Varadharajan , and Michael
Hitchens. Generic constructions for role-based
encryption. International Journal of Information
Security, 14(5):417–430, Oct 2015.

[24] Mohamed Nabeel, Ning Shang, and Elisa Bertino.
Privacy preserving policy-based content sharing
in public clouds. IEEE Transactions on Knowl-
edge and Data Engineering, 25(11):2602–2614,
2013.

[25] V. K. SathiyaBalan, P. Zavarsky, D. Lindskog,
and S. Butakov. Study of applicability of chi-
nese remainder theorem based group key man-
agement for cloud environment. In 2015 10th
International Conference for Internet Technol-
ogy and Secured Transactions (ICITST), pages
114–119, Dec 2015.

[26] Perumal Pandiaraja, Pandi Vijayakumar,
Varadarajan Vijayakumar, and Raman Se-
shadhri. Computation efficient attribute based
broadcast group key management for secure
document access in public cloud. J. Inf. Sci.
Eng., 33(3):695–712, 2017.

Naeimeh Soltani received her B.S.
degree in information technology en-
gineering from Isfahan University of
Technology in 2013 and her M.S. de-
gree in information technology from
Sharif University of Technology in
2015. Her research interests includes

data outsourcing and network security.

Ramin Bohlooli received his B.S.
degree in computer engineering from
Amirkabir University of Technology
(a.k.a Tehran’s Polytechnique) in
2014. He received his M.S. degree
in computer engineering from Sharif
University of Technology in 2018.

His research interests includes data outsourcing and
searchable encryption on which he has worked since
2014.

Rasool Jalili received his B.S. de-
gree in computer science from Fer-
dowsi University of Mashhad in 1985,
and M.S. degree in computer en-
gineering from Sharif University of
Technology in 1989. He received his
Ph.D. in computer science from Uni-

versity of Sydney, Australia, in 1995. He then joined
the department of computer engineering, Sharif Uni-
versity of Technology in 1995. He has published more
than 140 papers in international journals and confer-
ence proceedings. He is now an associate professor,
doing research in the areas of computer dependability
and security, access control, distributed systems, and
database systems in his Data and Network Security
Laboratory (DNSL).

ISeCure


