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Numerical solution of multi-order
fractional differential equations via the

sinc collocation method

E. Hesameddini∗ and E. Asadollahifard

Abstract

In this paper, the sinc collocation method is proposed for solving linear
and nonlinear multi-order fractional differential equations based on the new

definition of fractional derivative which is recently presented by Khalil, R.,
Al Horani, M., Yousef, A. and Sababeh, M. in A new definition of fractional
derivative, J. Comput. Appl. Math. 264 (2014), 65–70. The properties
of sinc functions are used to reduce the fractional differential equation to a

system of algebraic equations. Several numerical examples are provided to
illustrate the accuracy and effectiveness of the presented method.

Keywords: Sinc function; Fractional differential equations; Multi-order
FDEs; Collocation method.

1 Introduction

One of the old fields of mathematics is fractional calculus which dates back
to the time of Leibniz [1] and from then many studies were done in this field
[14]–[12]. Fractional differential equations (FDEs) have attracted the interest
of researchers in many areas such as Physics, Chemistry, Engineering and
Social Sciences [22, 15]. The analytic results on the existence and uniqueness
of solutions to the FDEs have been investigated by many authors [11, 22, 16].
Generally, most of the FDEs do not have analytic solutions, so one has to
resort to approximation and numerical methods.

One class of FDEs is multi-order fractional differential equations. They
have been used to model various types of visco-elastic damping [22] and are
expressed as follows
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D(α)y(x) = F (x, y(x), D(β1)y(x), ..., D(βk)y(x)), x ∈ I = [0, l], (1)

with initial conditions

D(i)(0) = di, i = 0, 1, ...,m− 1, m ∈ N (2)

where m − 1 < α ≤ m, 0 < β1 < β2 < ... < βk < α and the values of
di (i = 0, 1, ...,m − 1) describe the initial state of y(x). D(α)y indicates the
fractional derivative of order α of y. Up to now, whenever this equation
was under study, in most cases the fractional derivative was in the sense of
Caputo definition. In this paper, we imply the new definition of conformable
fractional derivative [18] which will be defined later. Depending on F , this
equation classifies into linear and nonlinear.

In [14], it has been proved that equation (1) subject to the initial condi-
tions (2) and under natural Lipschitz conditions imposed on F has a unique
continuous solution.

Since the last decade, extensive research has been conducted on the devel-
opment of numerical methods for equation (1). Doha et al.[25] proposed an
efficient spectral tau and collocation method based on the Chebyshev poly-
nomials for solving this equation. Extension of the tau method based on the
shifted Legendre Gauss-Lobbato quadrature is used for solving equation (1)
in [9]. In [12], this equation is converted into a system of FDEs and the
shifted Chebyshev operational matrix method is used to solve the resultant
system. Some other works on this problem are: piecewise polynomial col-
location [17], Haar wavelet method [20], Lagrange wavelet method [23] and
second kind Chebyshev wavelet method [30].

In this work, we apply the sinc collocation method for solving equation
(1). The sinc method is an efficient method developed by Stenger [24]. It was
widely used for the numerical solution of initial and boundary value problems
[13, 19, 8], not only because of its exponential convergence rate but also due
to its ability in handling problems with singularities. To the best of our
knowledge, the sinc collocation method has not been used for solving FDEs
directly. In this work, based on the new definition of fractional derivative
[18], we compute the fractional derivative of the sinc function and apply it
for solving equation (1).

The remainder of this paper is organized as follows: in Section 2, some
definitions and theorems are presented that will be used in later sections. The
proposed method is discussed in Section 3. Section 4 is devoted to numerical
experiments. Finally some remarks are concluded.
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2 Preliminaries

In this section, we recall some necessary definitions and mathematical pre-
liminaries of the fractional theory and sinc method which will be used further
in this paper.

2.1. The fractional derivative
The fractional calculus involves different definitions of fractional derivative
operators such as Caputo and Riemmann-Lioville fractional derivative[22, 1].
One of the most recent works on the theory of derivatives of fractional order
is done by Khalil et al. [18] which is the simplest definition. Up to now, some
works were done based on this new definition [1, 2, 22]. In what follows, at
first the conformable fractional derivative is defined and then some fantastic
properties of this definition are presented.

Definition 1. [18] Let α ∈ (n, n+ 1], and f be an n−differentiable function
at t, where t > 0. Then the conformable fractional derivative of f of order α
is defined as

Tα(f)(t) = lim
ε→0

f (⌈α⌉−1)(t+ εt(⌈α⌉−α))− f (⌈α⌉−1)(t)

ε
, (3)

where ⌈α⌉ is the smallest integer greater than or equal to α.
When the conformable fractional derivative of f of order α exists, we say

f is α−differentiable and we write f (α)(t) for Tα(f)(t).

Remark 1. [18] As a consequence of Definition 1, one can easily show
that

Tα(f)(t) = t1+(⌈α⌉−α)f (⌈α⌉)(t), (4)

where α ∈ (n, n+ 1], and f is (n+ 1)−differentiable at t > 0.

Theorem 1. [18] Let α ∈ (0, 1], and f, g be α−differentiable at a point
t > 0. Then
1. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R,
2. Tα(fg) = fTα(g) + gTα(f).

In [1], Abdeljawad was defined the left and right conformable fractional
derivative. Since the left fractional derivative on [0,∞) is the conformable
fractional derivative, we can have the following theorems according to [1].

Theorem 2. (Chain Rule) Assume f, g : (0,∞) −→ R be α−differentiable
functions, where 0 < α ≤ 1. Let h(t) = f(g(t)). Then h(t) is α−differentiable
and for all t with t ̸= 0 and g(t) ̸= 0 we have
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(Tαh)(t) = (Tαf)(g(t))(Tαg)(t)g(t)
α−1.

If t = 0, then

(Tαh)(0) = lim
t→0+

(Tαf)(g(t))(Tαg)(t)g(t)
α−1.

Theorem 3. Let f : (0,∞) −→ R be twice differentiable on (0,∞) and
0 < α, β ≤ 1 such that 1 < α+ β ≤ 2. Then

(TαTβf)(t) = Tα+βf(t) + (1− β)tTαf(t).

2.2. Sinc function
The sinc function is defined on the whole real line, −∞ < x <∞, by

sinc(x) =

{
sinπx
πx x ̸= 0,
1 x = 0.

For each integer k and the mesh size h, the translated sinc basis function is
defined as

s(k, h)(x) = sinc(
x− kh
h

).

If a function f(x) is defined on the real axis, then for any h > 0, the Whittaker
cardinal expansion of f(x) is as follows

c(f, h)(x) =
∞∑

k=−∞

f(kh)sinc(
x− kh
h

),

whenever this series converges. The properties of Whittaker cardinal expan-
sion are derived in the infinite strip Ds of the complex w-planes where for
d > 0

Ds = {w = t+ is : |s| < d ≤ π

2
}.

These properties have been studied thoroughly in [24]. In order to approxi-
mate on the finite interval (a, b), which is used in this paper, we consider the
one-to-one conformal map w = ϕ(z) = ln( z−ab−z ), which maps the eye-shaped
domain

DE = {z = x+ iy : |arg z − a
b− z

| < d ≤ π

2
},

onto the infinite strip Ds. The basis functions on (a, b) are taken to be the
composite translated sinc functions
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sk(x) = s(k, h)oϕ(x) = sinc(
ϕ(x)− kh

h
), k ∈ Z (5)

where s(k, h)oϕ(x)is defined by s(k, h)(ϕ(x)).
Let ψ = ϕ−1. We define the range of ψ on the real line as

Γ = {ψ(w) ∈ DE : −∞ < w <∞}.

For the uniform grid {kh}∞k=−∞ on the real line, the image which corresponds
to these nodes is denoted by

xk = ψ(kh) =
a+ bekh

1 + ekh
, k = 0,±1,±2, .... (6)

For discretizing the problem we need the following definition and theorems.

Definition 2. [24] Let Lβ(DE) be the set of all analytic functions, for
which there exist a constant, C, such that

|y(z)| ≤ C |ρ(z)|β

[1 + |ρ(z)|]2β
, z ∈ DE , 0 < β ≤ 1,

where ρ(z) = eϕ(z) .
Theorem 4. [21] Let y ∈ Lβ(DE), N be a positive integer and h be selected
by the formula

h = (
πd

βN
)

1
2 , (7)

then there exists a positive constant c1, independent of N, such that

supz∈Γ|y(z)−
N∑

j=−N

y(zj)s(j, h)oϕ(z)| ≤ c1e−(πdβN)
1
2 .

Theorem 5. [21] Let ϕ be a conformal one-to-one map of the simply con-
nected domain DE onto DS .Then

δ
(0)
kj = sk(x)|x=xj =

{
1 k = j,
0 k ̸= j.

δ
(1)
kj =

d

dϕ
[sk(x)]|x=xj =

1

h

{
0 k = j,

(−1)(j−k)

j−k k ̸= j.
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δ
(2)
kj =

d2

dϕ2
[sk(x)]|x=xj =

1

h2

{
−π2

3 k = j,
−2(−1)(j−k)

(j−k)2 k ̸= j.

3 Method of Solution

Consider equation (1) in I = [0, 1] where Dαy denotes the fractional deriva-
tive which is defined in (3) i.e. D(α)y = y(α).
The approximate solution of equation (1) based on the sinc basis functions
(5), should satisfy the initial conditions (2). But this basis functions do not
have a derivative when x tends to 0 or 1 so we modify them as

w(x)sk(x), (8)

where w(x) = (x(1− x))(m−1) [6].
In order to approximate the solution, we construct a polynomial p(x) that
satisfies initial conditions [6]. So the approximate solution is represented by

yN (x) = uN (x) + p(x), (9)

where

uN (x) =
N∑

k=−N

ckw(x)sk(x), (10)

and

p(x) = a0 + a1x+ ...+ amx
m, m− 1 < v ≤ m. (11)

The unknown coefficients a0, a1, ..., am and {ck}Nk=−N are determined by sub-
stituting yN (x) into equation (1) and evaluating the result at the sinc points

xj =
ejh

1 + ejh
, j = −N − 1, ..., N. (12)

Notice that according to Theorem 1 and Remark 1, we have

(w(x)sk(x))
(α) = x1+[α]−α(w(x)sk(x))

(1+[α]), n < α ≤ n+ 1, (13)

so

u
(α)
N (x) = ΣNk=−Nck(w(x)sk(x))

(α). (14)

Also it should be noted that when x tends to 1 or 0, we have
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uN (x) = u′N (x) = ... = u
(m−1)
N (x) = 0.

Using equations (13) and (14), one can obtain

y
(α)
N (xj) = u

(α)
N (xj) + p(α)(xj), j = −N − 1, ..., N. (15)

Now by substituting this equation into equation (1), we obtain the following
system of algebraic equations which can be solved for unknowns

y
(v)
N (xj) = F (xj , yN (xj), y

(β1)
N (xj), ..., y

(βk)
N (xj)), −N − 1 ≤ j ≤ N,

y
(i)
N (0) = di, i = 0, 1, ...,m− 1.

4 Applications and results

In this section, we solve some examples by the presented method and com-
pare the numerical results with the exact solutions and some earlier works.

Example 1. As the first example, we consider the following nonlinear frac-
tional initial value problem [5] on [0, 1]

y′′′(x) + y(2.5)(x) + y2(x) = x4, y(0) = y′(0) = 0, y′′(0) = 2, (16)

whose exact solution is y(x) = x2. Following the procedure of the presented
method, we consider the following approximate solution

yN (x) =
N∑

k=−N

ckw(x)sk(x) + a0 + a1x+ a2x
2 + a3x

3,

where w(x) = x2(1 − x)2. By substituting this approximate solution into
equation (16) and evaluating at sinc points (12), we arrive at the following
nonlinear system of algebraic equations which can be solved for unknown
coefficients

6a3 +ΣNk=−Nck{w′′
j δ

(0)
kj + δ

(1)
kj (3w

′′
j ϕ

′
j + 3w′

jϕ
′′
j + wjϕ

′′′
j ) + δ

(2)
kj (3w

′
j(ϕ

′
j)

2+

3wjϕ
′′
j ϕ

′
j) + δ

(3)
kj wj(ϕ

′
j)

3}+ 6x0.5j a3 +ΣNk=−Nck{x0.5j w′′′jδ
(0)
kj + wjx

0.5
j (ϕ′′′j δ

(1)
kj +

3ϕ′′j ϕ
′
jδ

(2)
kj + (ϕ′j)

3δ
(3)
kj )}+ (a0 + a1xj + a2x

2
j + a3x

3
j +ΣNk=−Nckwjδ

(0)
kj )

2 = x4j

j = −N − 1, ..., N,

y(0) = 0⇒ a0 = 0, y′(0) = 0⇒ a1 = 0, y′′(0) = 2⇒ a2 = 1.
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According to relation (7), by taking d = π
2 and β = 2, we have h = π

2
√
N
.

Then by applying the well known Newton method with starting points ck =
0, k = −N, ..., N, a0 = a1 = a3 = 0, a2 = 1 , we obtain ck = 0, k = −N, ..., N
and a0 = a1 = a3 = 0, a2 = 1. So the approximate solution is yN (x) = x2,
which is the exact solution.

Example 2. Consider the fractional Ricatti equation on [0, 1]

y(α)(x) = 2y(x)− y2(x) + 1, 0 < α ≤ 1, y(0) = 0.

For α = 1, the exact solution of this equation is y(t) = 1 +
√
2tanh(

√
2t +

1
2 ln(

√
2−1√
2+1

)). Consider the following approximate solution based on the sinc

collocation method

yN (x) = ΣNk=−Ncksk(x) + a0 + a1x.

Odibat and Momani [20], solve this equation by using the modified homotopy
perturbation method. Also in [4], this equation is solved by the Chebyshev
wavelet operational matrices of fractional integration. For comparison, the
results of this method are presented in Tables 1 and 2 with 192–set of Block
Pulse Functions ( Chebyshev wavelets was expanded into an 192-term block
pulse functions).
In Table 1, the results of the presented method with N = 1 for α = 0.5 and

Table 1: Numerical results with comparison to [4, 20] for α = 0.5 and α = 0.75 in

Example 2

α = 0.5 α = 0.75
x Ours[N=1] [4] [20] Ours[N=1] [4] [20]
0.1 0.3956920 0.592756 0.321730 0.2321153 0.310732 0.216866
0.2 0.9184524 0.9331796 0.629666 0.4961556 0.584307 0.428892
0.3 1.2973611 1.1739836 0.940941 0.7523005 0.822173 0.654614
0.4 1.5802323 1.3466546 1.250737 0.9998683 1.024974 0.891404
0.5 1.7987123 1.4738876 1.549439 1.2372036 1.198621 1.132764
0.6 1.9690794 1.5705716 1.825456 1.4604023 1.349150 1.370240
0.7 2.0982657 1.646199 2.066523 1.6619744 1.481449 1.594278
0.8 2.1867519 1.706880 2.260633 1.8278045 1.599235 1.794879
0.9 2.2352250 1.756644 2.396839 1.9347648 1.705303 1.962239
1.0 2.3926026 1.798220 2.466004 2.0825668 1.801763 2.087384

α = 0.75 are compared with earlier works [4, 20]. We see that our results are
in a good agreement with them. For α = 1, the results are presented in Table
2. It is clear that by increasing N , the approximate solution becomes more
and more accurate and for N = 85 the exact solution is obtained whereas
Refs [4, 20] can not reach the exact solution. In Figure 1. the approximate
solution for different values of α is shown. Numerical results show that as
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Table 2: Numerical results with comparison to [4, 20] for α = 1 in Example 2

x Ours[N=10] Ours[N=50] Ours[N=80] [4] [20] Exact
0.1 0.1134865 0.1103047 0.110295 0.1103111 0.110294 0.110295
0.2 0.2458331 0.2419881 0.241977 0.241995 0.241965 0.241977
0.3 0.3993884 0.3951178 0.395105 0.395123 0.395106 0.395105
0.4 0.5726929 0.5678265 0.567812 0.567829 0.568115 0.567812
0.5 0.7610790 0.7560297 0.756014 0.756029 0.757564 0.756014
0.6 0.9589295 0.9535820 0.953566 0.953576 0.958259 0.953566
0.7 1.1581332 1.1529646 1.152949 1.152955 1.163459 1.152949
0.8 1.3514117 1.3463785 1.366364 1.346365 1.365240 1.366364
0.9 1.5314497 1.5269249 1.526911 1.526909 1.554960 1.526911
1 1.6949935 1.6895135 1.689498 1.689494 1.723810 1.689498

α approaches to its integer value, the solution of fractional order differential
equation approaches to the solution of integer order differential equation.

Figure 1: Approximate solution of Example 2 for different values of α

Example 3. [3] As the last example, consider the following inhomogeneous
Bagley-Torvik equation

y′′(x) + y(1.5)(x) + y(x) = 1 + x,

subject to initial conditions

y(0) = y′(0) = 1.

The exact solution of this equation is y(x) = 1 + x.
In a same manner of last examples, by considering the approximate solution
as

yN (x) = ΣNk=−Nckw(x)sk(x) + a0 + a1x+ a2x
2,
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where w(x) = x(1 − x), one can obtain yN (x) = 1 + x which is the exact
solution.

5 Conclusion

In this work the sinc-collocation method is used to approximate the solution
of multi-order fractional differential equations with initial conditions. This
method converts the FDEs into a system of algebraic equations which can be
solved more easier. In this work, the fractional derivatives are described in
the sense of new definition which makes us able to solve fractional differential
equation directly by the sinc method for the first time. Also this method can
be applied to other types of FDEs easily. Several examples are included to
demonstrate the reliability and efficiency of our method.
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چندگانه مرتبه با کسری دیفرانسیل معادلات عددی حل سینکبرای محلی هم روش

فرد اسدالهی الهام و الدینی حسام اسماعیل

ریاضی گروه شیراز، صنعتی دانشگاه

چندگانه مرتبه با کسری دیفرانسیل معادلات عددی حل برای را سینک محلی هم روش مقاله این در : چکیده
بریم. می کار به است، شده ارائه همکارانش و خلیل توسط اخیرأ که کسری مشتق جدید تعریف ی پایه بر
تبدیل جبری معادلات از سیستم یک به را کسری دیفرانسیل معادله و کرده استفاده سینک تابع خواص از

است. گردیده ارائه نیز باشد می روش این کارایی و دقت مؤید که عددی مثال چند کنیم. می

چندگانه؛ مرتبه با کسری دیفرانسیل معادلات کسری؛ دیفرانسیل معادلات سینک؛ تابع : کلیدی کلمات
محلی. هم روش
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