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based on a general scalarization
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M. Ghaznavi∗, M. Ilati and E. Khorram

Abstract

The wide variety of available interactive methods brings the need for cre-
ating general interactive algorithms enabling the decision maker (DM) to
apply freely several convenient methods which best fit his/her preferences.
To this end, in this paper, we propose a general scalarizing problem for multi-

objective programming problems. The relation between optimal solutions of
the introduced scalarizing problem and (weakly) efficient as well as properly
efficient solutions of the main multiobjective optimization problem (MOP) is
discussed. It is shown that some of the scalarizing problems used in different

interactive methods can be obtained from proposed formulation by selecting
suitable transformations. Based on the suggested scalarizing problem, we
propose a general interactive algorithm (GIA) that enables the DM to spec-
ify his/her preferences in six different ways with capability to change his/her

preferences any time during the iterations of the algorithm. Finally, a numer-
ical example demonstrating the applicability of the algorithm is provided.
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1 Introduction

The general goal of solving a multiobjective optimization problem (MOP) is
to support the decision maker (DM) seeking the most preferred solution of
many Pareto optimal solutions as the final one. Inasmuch as finding a most
preferred solution needs some extra information from the DM, interactive
approaches, based on the participation of the DM, have become popular.

In interactive methods, an iterative algorithm is proposed. Then, the
steps of the algorithm are repeated where at each iteration, some informa-
tion is given to the DM and he/she specifies his/her preferences. The process
is repeated until the DM is satisfied with regard to the obtained solution.
The benefits of using interactive approaches are that, the DM (i) does not
need to have any global preference structure, (ii) has the possibility of learn-
ing about the interrelationship between the objectives, (iii) can learn about
the feasibility of solutions during the solving process.

Heretofore, many interactive methods have been suggested in the litera-
ture [1, 13, 19, 23, 26, 30, 31]. As pointed out already, interactive methods are
very useful and realistic to solve an MOP. However, since there have been
many interactive methods available, it is not easy to choose an appropriate
method conveniently. Therefore, creating global algorithms with an ability
to accommodate different methods will be useful. By creating a global algo-
rithm, it is possible for the DM to select freely an appropriate method (and
the way of specifying preference information) as well as to switch between
methods. To this end, it is necessary to design a general scalarizing problem
yielding scalarizing problems used in different interactive methods.

Until now, some global algorithms have been proposed. For example,
Gardiner and Steuer [7, 8] proposed a unified algorithm including nine to
thirteen different methods. Romero [27] presented another general optimiza-
tion structure, called extended lexicographic goal programming. Moreover,
Vassileva [32] suggested a general scalarizing problem which incorporates
different scalarizing problems. More recently, based on a global formulation
(GLIDE), Luque et al. [21] proposed a global procedure which accommodates
eight interactive methods of different types. Nevertheless, their formulation
is unlikely to consider the computational efficiency, therefore Ruiz et al. [28]
improved the computational efficiency of GLIDE by reformulating it.

In some of the mentioned publications, the authors have provided theo-
rems concerning (weak) efficiency of the optimal solutions of their proposed
general scalarizing problems [21, 28, 32] and as far as we know few results
related to proper efficiency have been provided. Now, in this paper we sug-
gest a general scalarizing problem which not only considers computational
efficiency by reducing the number of added constraints, but also provides
theorems concerning (weak) efficiency as well as proper efficiency of its op-
timal solutions. The provided results are established without any convexity
assumption. Also, by setting suitable values for parameters and index sets of
the proposed general scalarizing problem, we obtain many known scalarizing
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problems. Based on the mentioned problem, we propose a general interactive
algorithm (GIA) to solve a given MOP, subsequently. In this algorithm, the
DM has the ability to specify his/her preference information in six different
ways.

The rest of this paper is organized as follows: Section 2 contains some
preliminaries and basic definitions. In Section 3, we propose our general for-
mulation and obtain some theorems. Section 4 gives some scalarizing prob-
lems used in different interactive methods which can be obtained from our
general formulation. Section 5 contains our proposed interactive algorithm.
In Section 6, some computational and theoretical advantages are mentioned.
An example is presented in Section 7 and finally, in Section 8 conclusions are
given.

2 Preliminaries and basic definitions

A general multiobjective optimization problem can be written as:

(MOP ) min f(x)

s.t. x ∈ X ,
(1)

where X ⊆ Rn is a nonempty compact set, and f(x) = (f1(x), f2(x), ..., fp(x))
T :

X → Rp is a vector-valued function.
The set of all attainable outcomes or objective vectors is defined as the

image of the feasible solutions x ∈ X under f. In fact Y := f(X ) ⊂ Rp.
For y1 and y2 ∈ Rp, y1 ≦ y2 means that y1i ≤ y2i , for each i = 1, · · · , p,
also y1 ≤ y2 stands for y1 ≦ y2 and y1 ̸= y2. Furthermore, y1 < y2

means that y1i < y2i , for each i = 1, ..., p. The Pareto cone is defined as
Rp

≧ = {y ∈ Rp : y ≧ 0}. Rp
≥ and Rp

> are defined, similarly. In this paper, we

shall assume that Y := f(X ) is bounded.

Definition 1. A feasible solution x̂ ∈ X is called:

(i) weakly efficient (weakly Pareto optimal) solution to MOP (1) if there
is no other x ∈ X such that f(x) < f(x̂),

(ii) efficient (Pareto optimal) solution to MOP (1) if there is no other x ∈
X such that f(x) ≤ f(x̂),

(iii) properly efficient (properly Pareto optimal) solution to MOP (1) if it is
efficient and there exists a real positive number M such that for each
i ∈ {1, 2, . . . , p} and each x ∈ X satisfying fi(x) < fi(x̂), there exists
an index j ∈ {1, 2, . . . , p} with fj(x̂) < fj(x) and

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤M.
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The set of all weakly efficient, efficient, and properly efficient solutions
of MOP (1) will be denoted by XWE , XE and XPE respectively. The image
f(x) ∈ Y of an (weakly, properly) efficient solution x ∈ X , is called (weakly,
properly) nondominated point.

Remark 1. Obviously, XPE ⊆ XE ⊆ XWE .

Remark 2. In this paper, we use definition of proper efficiency in the sense
of Geoffrion [9]. There are other definitions of proper efficiency which are
almost the same when using the Pareto cone as the order cone. For consid-
ering relationships between different definitions of proper efficiency one can
refer to [4].

Definition 2. The ideal point yI = (yI1 , . . . , y
I
p) of MOP (1) is defined by

yIi := minx∈X fi(x), i = 1, · · · , p.

Definition 3. The point yU := yI −α, where α ∈ Rp
> is a vector with small

positive components, is called the utopia point of MOP (1).

Definition 4. The nadir point yN = (yN1 , . . . , y
N
p ) of MOP (1) is defined by

yNi := maxx∈XE
fi(x), i = 1, · · · , p.

Definition 5. The vector ȳ = (ȳ1, . . . , ȳp) ∈ Rp, consisting of the desired or
aspiration values to the DM, is called a reference point. It should be noted
that reference point may be achievable or not.

One of the most popular approaches to solve a given MOP is scalariza-
tion, which involves formulating a single objective problem associated with
the given MOP. Let us consider a single objective programming problem as
follows:

min g(x)

s.t. x ∈ S,
(2)

where g : S → R.

Definition 6. A feasible solution x̂ ∈ S is said to be
(i) an optimal solution of problem (2) if g(x̂) ≤ g(x) for all x ∈ S,
(ii) a strictly optimal solution of problem (2) if g(x̂) < g(x) for all x ∈ S\{x̂}.

3 A general scalarizing problem

In this section, we propose a general scalarizing problem associated with MOP
(1), which is defined such that many scalarizing problems, used in different
interactive methods, can be deduced from it by selecting suitable values of
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parameters and index sets. The general scalarizing problem is proposed as
follows:

min max
i∈Ik

1

λki

(
fi(x)− rki + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
s.t.

{
fi(x) ≤ δki ∀i ∈ Ik2 ,

x ∈ X ,

(3)

where λki ≥ 0, ρ ≥ 0, δki , r
k
i , and w

k
t ≥ 0 are parameters specified depending

on the information given by DM. Also, Ik1 ̸= ∅ and Ik2 are index sets, which
are subsets of {1, · · · , p}. Notice that hereafter, we make the assumption that
on the proposed scalarizing problem, the parameters δki , i ∈ Ik2 are selected
such that problem (3) remains feasible. Let k be the current iteration. Then,
the optimal solution obtained from scalarizing problem (3) is defined by x̂k+1

and the corresponding objective vector by f(x̂k+1).

According to [14, p. 305], or [23, p. 97], if we replace the max term by a
new variable z ∈ R, then problem (3) is equivalent to the following scalarizing
optimization problem:

min z

s.t.


λki

(
fi(x)− rki + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
≤ z ∀i ∈ Ik1 ,

fi(x) ≤ δki ∀i ∈ Ik2 ,

x ∈ X .

(4)

Notice that the scalarizing problem (3) is nondifferentiable, even if the main
MOP (1) is differentiable (i.e., the objective functions and constraint func-
tions are differentiable). Therefore, if the original MOP is the differentiable
we propose to use formulation (4) since it preserves differentiability. In this
case, the scalar optimization problem (4) can be solved with standard meth-
ods of (non)linear constraint optimization or using available single objective
solvers. However, if the original MOP (1) is nondifferentiable, both scalarized
problems (3) and (4) are nondifferentiable, too. In this case, the scalarized
problem (3) is recommended since it has a reduced number of constraints.

It should be noted that, unlike the formulations proposed in [21, 28], the
bounds on trade-offs generated by the suggested formulation are independent
of parameters λi. For more details about bounds on trade-offs see [17, 18].
So far, many authors have provided theorems concerning weak efficiency and
efficiency of the optimal solutions of the scalarized problems used in the
interactive methods. Now, we prove some general theorems concerning weak
efficiency, efficiency, as well as proper efficiency of (strictly) optimal solutions
of problems (3) and (4). It is important to point out that the following
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theorems are general and many theorems concerning (weak, proper) efficiency
[4,23] can be resulted from them. Moreover, the theorems are provided with
no convexity assumption. Since problems (3) and (4) are equivalent, we only
provide theorems for the first one.

Theorem 3. Let λki > 0 ∀i ∈ Ik1 . If x̂k+1 ∈ X is an optimal solution of
problem (3), then x̂k+1 is a weakly efficient solution of MOP (1).

Proof. Let x̂k+1 ∈ X be an optimal solution of problem (3) and suppose that
x̂k+1 /∈ XWE . Then, there exists x ∈ X such that f(x) < f(x̂k+1). Therefore,
fi(x) < fi(x̂

k+1) ≤ δki ∀i ∈ Ik2 , which means x ∈ X is a feasible solution for
problem (3). Also, we have

fi(x)− rki < fi(x̂
k+1)− rki ∀i ∈ Ik1 ,

and

ρ

p∑
t=1

wk
t (ft(x)− rkt ) ≤ ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt ).

Therefore,

max
i∈Ik

1

λki

(
fi(x̂

k+1)− rki + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt )
)
>

max
i∈Ik

1

λki

(
fi(x)− rki + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
,

which is a contradiction with optimality of x̂k+1. Thus, x̂k+1 ∈ XWE .

In the following theorem, utilizing the general formulation (3), a sufficient
condition for efficiency is provided.

Theorem 4. If x̂k+1 ∈ X is a strictly optimal solution of problem (3), then
x̂k+1 ∈ XE .

Proof. The proof is similar to that of Theorem 3.

It is found out from part (ii) of Definition 1, that in an efficient solu-
tion it is not possible to improve any criterion without deterioration of at
least one other criterion. Sometimes, these trade-offs may be unbounded and
it is obvious that efficient solutions with bounded trade-offs (called prop-
erly efficient) are desirable. Until now, many scholars have considered rela-
tionships between optimal solutions of the scalarizing problem used in their
proposed interactive methods and (weakly) efficient solutions of the related
MOP [21,28,32], but there are fewer results concerning proper efficiency. In
the following theorem, we provide a sufficient condition concerning properly
efficient solutions of MOP (1).
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Theorem 5. If x̂k+1 ∈ X is an optimal solution for problem (3) with λki >
0 ∀i ∈ Ik1 , ρ > 0 and wk ∈ Rp

>, then x̂k+1 ∈ XPE .

Proof. We show that x̂k+1 ∈ XE . Let x̂
k+1 /∈ XE . Then, there exists x ∈ X

with fi(x) ≤ fi(x̂
k+1), ∀i ∈ {1, · · · , p} and fj(x) < fj(x̂

k+1) for some j ∈
{1, · · · , p}. Hence, fi(x) ≤ fi(x̂

k+1) ≤ δki ∀i ∈ Ik2 . Thus, x ∈ X is a feasible
solution of (3). Using the assumptions and the definition of efficiency, it
follows that:

max
i∈Ik

1

λki

(
fi(x̂

k+1)− rki + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt )
)
>

max
i∈Ik

1

λki

(
fi(x)− rki + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
.

This is a contradiction with optimality of x̂k+1 and therefore x̂k+1 ∈ XE .
Now, we show that x̂k+1 is a properly efficient solution to MOP (1). To this
end, we define:

M = max
i∈{1,··· ,p}

{
1 + ρ

∑p
t=1 w

k
t

ρwk
i

},

and consider an index i ∈ {1, · · · , p} and x ∈ X such that fi(x) < fi(x̂
k+1).

To prove the proper efficiency of x̂k+1, we must show that there exists an
index j ∈ {1, 2, . . . , p} with fj(x̂

k+1) < fj(x) such that

fi(x̂
k+1)− fi(x)

fj(x)− fj(x̂k+1)
≤M.

From efficiency of x̂k+1, we conclude that there exists an index t ∈ {1, · · · , p}
such that ft(x̂

k+1) < ft(x). We define

fj(x̂
k+1)− fj(x) = min

m∈{1,··· ,p}
(fm(x̂k+1)− fm(x)). (5)

It is obvious that fj(x̂
k+1)− fj(x) < 0.

Moreover, optimality of x̂k+1 for problem (3), concludes

max
m∈Ik

1

λm

(
fm(x)− rkm + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
≥

max
m∈Ik

1

λm

(
fm(x̂k+1)− rkm + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt )
)
.

Now, let

λl

(
fl(x)− rkl + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
=
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max
m∈Ik

1

λm

(
fm(x)− rkm + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
.

Hence,

λl

(
fl(x)− rkl + ρ

p∑
t=1

wk
t (ft(x)− rkt )

)
≥

max
m∈Ik

1

λm

(
fm(x̂k+1)− rkm + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt )
)
≥

λl

(
fl(x̂

k+1)− rkl + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− rkt )
)
.

Then,

0 ≥ (fl(x̂
k+1)− fl(x)) + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− ft(x)). (6)

Now, from (5) and (6), we have:

0 ≥ (fj(x̂
k+1)− fj(x)) + ρ

p∑
t=1

wk
t (ft(x̂

k+1)− ft(x)).

That is,

ρwk
i (fi(x̂

k+1)− fi(x)) ≤ fj(x)− fj(x̂
k+1) + ρ

p∑
t=1
t ̸=i

wk
t (ft(x)− ft(x̂

k+1)) ≤

(1 + ρ

p∑
t=1
t ̸=i

wk
t )(fj(x)− fj(x̂

k+1)).

Hence

fi(x̂
k+1)− fi(x)

fj(x)− fj(x̂k+1)
≤

1 + ρ
∑p

t=1
t ̸=i

wk
t

ρwk
i

≤M,

which completes the proof.

It should be noted that, using suitable values for parameters in (3), we can
provide necessary conditions related to (weakly, properly) efficient solutions
of MOP (1). For example, if we choose Ik1 = {1, · · · , p}, Ik2 = ∅, rki = yUi
and wk

i = 1 ∀i ∈ {1, . . . , p}, then we have the modified weighted Tchebycheff
method [15] and, by Theorem 4.2 in [16], for every properly efficient solution
of MOP (1) we can find suitable parameters λki > 0, ∀i ∈ {1, · · · , p} and
ρ > 0 such that this properly efficient solution be an optimal solution of (3).
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4 Achieving different scalarizing problems from the
general formulation

The general formulations (3) and (4) are generalizations of already known
scalarizing problems. In this section, we are going to show that how many
famous scalarizing problems (used in different interactive methods) can be
attained from (3) and (4) by choosing appropriate values of parameters and
index sets. We obtain the scalarizing problems from (3). By a similar method
it is possible to obtain them from (4).

4.1 GUESS method and STOM

The GUESS method is one of the simplest interactive methods, proposed by
Buchanan [2]. In this method, the DM has to determine the components of
the reference point (ȳki ) as preference information. At the kth iteration, the
scalarizing problem used in this method is formulated as follows:

min max
i=1,...,p

fi(x)− ȳki
yNi − ȳki

s.t. x ∈ X .
(7)

Notice that the reference vector specified by the DM, must be strictly lower
than the nadir objective vector, that is, ȳ < yN. This scalarizing problem
can be achieved from (3) by considering the following replacements:

(1) Ik1 = {1, . . . , p} and Ik2 = ∅;

(2) wk
i = 0 , λki = 1

yN
i −ȳk

i

, and ρ = 0;

(3) rki = ȳki and i = 1, . . . , p.

The satisficing trade-off method (STOM) [24] can be obtained from (3), simi-
lar to the GUESS method, by setting λki = 1

ȳk
i −yU

i

and rki = yUi (i = 1, . . . , p).

Other parameter values and index sets are the same as those of GUESS
method. In this method, ȳ must be chosen such that ȳ > yU .

4.2 Reference direction approach

In this method, a vector from the current iteration point to the reference
point (a reference direction) is projected onto the efficient set [20]. To obtain
the points along the reference direction at the kth iteration, the following
scalarizing problem needs to be solved:
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min max
i=1,...,p

fi(x)− (fki + tdki )

µi

s.t. x ∈ X ,
(8)

where, fk is the current nondominated objective vector, dk = ȳk − fk, t has
different discrete nonnegative values, and µ is a weighting vector that can be
either a reference point presented by the DM or defined as yN − yU. This
problem can be obtained from (3) by considering the following replacements:

(1) Ik1 = {1, . . . , p} and Ik2 = ∅;

(2) wk
i = 0 , λki = 1

µi
and ρ = 0;

(3) rki = fki + tdki and i = 1, . . . , p.

4.3 Step method

The step method is one of the first known interactive methods [1]. Eschenauer
et al. [6] extended this method to nonlinear problems. In this method, based
on the current objective vector (fk), the DM can improve some unacceptable
objective functions fi (i ∈ Jk

1 ) by relaxing some other objective function(s)
fi (i ∈ Jk

2 ) such that Jk
1 ∪ Jk

2 = {1, . . . , p}. In this regard, the DM must
specify upper bounds εki > fki for functions fi (i ∈ Jk

2 ). In this case, the
scalarizing problem is formulated as follows:

min max
i=1,...,p

( ei∑p
j=1 ej

(fi(x)− yIi )
)

s.t.


fi(x) ≤ fki ∀i ∈ Jk

1 ,

fi(x) ≤ εki ∀i ∈ Jk
2 ,

x ∈ X ,

(9)

where ei =
1
yI
i
(
yN
i −yI

i

yN
i

), i = 1, . . . , p (the denominators are not allowed to be

zero). We can obtain (9) from (3) using the following replacements:

(1) Ik1 = {1, . . . , p} and Ik2 = Jk
1 ∪ Jk

2 ;

(2) wk
i = 0, ∀i ∈ {1, . . . , p} , λki = ei∑p

j=1 ej
∀i ∈ {1, . . . , p} and ρ = 0;

(3) rki = yIi , ∀i ∈ {1, . . . , p};

(4) δki = fki for i ∈ Jk
1 and δki = εki for i ∈ Jk

2 .
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4.4 SPOT method

In the SPOT method, given the current objective vector fk, the DM is asked
to select a reference objective function fl and then compare each objective
function fi (i = 1, . . . , p, i ̸= l) with fl by providing the marginal rates
of substitutions (MRSs) mk

li (i = 1, . . . , p, i ̸= l) [29]. The MRSs can be

approximated as mk
li ≃ ∆fk

l

∆fk
i

, i = 1, . . . , p, where ∆fki is the amount of

improvement, provided by the DM, on the value of the objective function fi
that can exactly compensate for the given amount ∆fkl to be deteriorated
of the reference objective fl. The intermediate single objective optimization
problem, used in this method, can be formulated as follows:

min fl(x)

s.t.

{
fi(x) ≤ fki + α(µk

li −mk
li) ∀i ∈ {1, . . . , p}, i ̸= l,

x ∈ X ,
(10)

where µk
li, i ̸= l are K.K.T multipliers, corresponding to the current non-

dominated objective vector [21] and several values for α are set and in this
way different solutions are obtained. This problem is achieved from (3), by
considering the following transformations:

(1) Ik1 = {l} and Ik2 = {1, . . . , p}\{l};

(2) λkl = 1, ρ = 0 and rkl = 0;

(3) δki = fki + α(µk
li −mk

li), i = 1, . . . , p and i ̸= l.

4.5 Modified reference point method

This method is an interactive reference direction method for solving convex
nonlinear integer problems [31]. Here, the DM is asked to set his/her pref-
erences as aspiration levels of the objective functions at each iteration. Let
Jk
1 be the set of indices of the objective functions which the DM wants to

improve and Jk
2 denotes the set of indices which can worsen and Jk

3 contains
the indices that are satisfactory to the DM. The scalarizing problem used in
this method is formulated as follows:

min max
i∈Jk

1 , j∈Jk
2

{fi(x)− ȳki
fki − ȳki

,
fj(x)− fkj
ȳkj − fkj

}
s.t.

{
fi(x) ≤ fki ∀i ∈ Jk

3 ,

x ∈ X ,

(11)
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where the denominators must be positive. By the following replacements,
problem (11) can be resulted from (3):

(1) Ik1 = Jk
1 ∪ Jk

2 and Ik2 = Jk
3 ;

(2) wk
i = 0, λki = 1

fk
i −ȳk

i

∀i ∈ Jk
1 , λ

k
i = 1

ȳk
i −fk

i

∀i ∈ Jk
2 , ρ = 0 and

i = 1, . . . , p;

(3) rki = ȳki ∀i ∈ Jk
1 , rki = fki ∀i ∈ Jk

2 and δki = fki ∀i ∈ Jk
3 .

4.6 RD method

The reference direction (RD) method was proposed in [25]. At the kth itera-
tion, the DM is asked to specify a reference point ȳk. Specifying a reference
point is equivalent to classifying the objective functions in three classes Jk

1 ,
Jk
2 and Jk

3 , where these index sets are the same as those defined before. The
scalarizing problem related to the RD method is as follows:

minmax
i∈Jk

1

fi(x)− fki
fki − ȳki

s.t.


fi(x) ≤ fki ∀i ∈ Jk

3 ,

fi(x) ≤ ȳki + α(fki − ȳki ) ∀i ∈ Jk
2 ,

x ∈ X ,

(12)

where 0 ≤ α < 1 and the denominators must be positive. The general
formulation (3) can be transformed to RD problem (12) by the following
replacements:

(1) Ik1 = Jk
1 and Ik2 = Jk

2 ∪ Jk
3 ;

(2) wk
i = 0 ∀i ∈ {1, . . . , p} , λki = 1

fk
i −ȳk

i

∀i ∈ Jk
1 and ρ = 0;

(3) rki = fki ∀i ∈ Jk
1 , δ

k
i = fki ∀i ∈ Jk

3 and δki = ȳki + α(fki − ȳki ) ∀i ∈ Jk
2 .

4.7 ϵ−Constraint method

In this method, one of the objective functions is minimized, while the other
objectives are transformed into constraints by setting an upper bound [4,23].
The problem to be solved has the following form:

min fl(x)

s.t.

{
fj(x) ≤ εkj ∀j ∈ {1, . . . , p}, j ̸= l,

x ∈ X .
(13)
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By the following transformations, problem (13) can be attained from (3):

(1) Ik1 = {l} and Ik2 = {1, . . . , p}\{l};

(2) λkl = 1, ρ = 0, rkl = 0, δkj = εkj , j = 1, . . . , p and j ̸= l.

4.8 The weighted sum method

In this method, a weighting coefficient is associated with each objective func-
tion and then the weighted sum of the objectives is minimized [4, 23]. Ac-
cordingly, solutions are obtained by solving the following problem:

min

p∑
i=1

µk
i fi(x)

s.t. x ∈ X ,
(14)

with µk
i ≥ 0 ∀i ∈ {1, . . . , p} and

∑p
i=1 µ

k
i = 1. By the following replacements,

we can obtain this problem from (3):

(1) Ik1 = {l}, where l is an index with µk
l ̸= 0 and Ik2 = ∅;

(2) λkl =
µk
l

2 , ρ = 2
µk
l

, wk
i = µk

i ∀i ̸= l, wk
l =

µk
l

2 and rki = 0 ∀i ∈ {1, . . . , p}.

4.9 Hybrid method

The hybrid method is a combination of the weighted sum method and the
ϵ−constraint method [4, 23]. This problem has the following form:

min

p∑
i=1

µk
i fi(x)

s.t.

{
fj(x) ≤ εkj , ∀j ∈ {1, . . . , p},
x ∈ X ,

(15)

where µk
i ≥ 0 ∀i,

∑p
i=1 µ

k
i = 1 and εk = (εk1 , . . . , ε

k
p) is an upper bound

vector. One can find this problem from (3) by the following transformations:

(1) Ik1 = {l}, where l is an index with µk
l ̸= 0 and Ik2 = {1, . . . , p};

(2) λkl =
µk
l

2 , ρ = 2
µk
l

, wk
i = µk

i ∀i ̸= l and wk
l =

µk
l

2 ;

(3) rki = 0 and δki = εki , ∀i ∈ {1, . . . , p}.
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Remark 3. Using similar procedure, we can obtain some other single ob-
jective problems used in different interactive approaches. For example, the
intermediate problems of the interactive surrogate worth trade-off (ISWT)
method [3] and the PROJECT method [22] can be obtained easily from our
formulations. In addition, the weighted Tchebycheff scalarizing problem [4]
and the modified weighted Tchebycheff problem [15] are resulted from the
proposed general scalarizing problem.

5 General interactive algorithm

Based on the general formulations given in Section 3, we present a general
interactive algorithm (GIA). The proposed algorithm allows the DM to spec-
ify his/her preference information in six different ways. Moreover, he/she
will be able to change his/her preference information in each iteration. In
addition to widely used ways (reference point specification, classification of
the objective functions, and specification of marginal rate of substitution) for
specifying preference information ( [21, 28]), GIA allows the DM to specify
his/her preferences as criteria weights, ε−constraint (choosing a reference ob-
jective function and setting upper bounds for the other objective functions),
or criteria weights and upper bounds for objective functions, simultaneously.
The main steps of the GIA are given in Algorithm 1.

As pointed out in Step 4, the values of parameters and index sets depend
on the type of preference information given by DM in Step 3. For example, if
DM specifies his/her preferences as reference point, we should set parameters
and index sets in (3) or (4) so that one of the reference based on scalarizing
points problems (see, for example, (7) and (8)) be attained.

6 Computational and theoretical advantages

The GIA and the proposed scalarizing formulation has a number of potential
advantages both in theoretical and computational points of view. Here, we
indicate only some key potential advantages, with special attention to those
not shared by other competing algorithms.

(a) Taking the special characteristics of the problem into account, GIA
allows using more efficient optimization methods. In the first step of
the GIA, the type of problem (differentiable or nondifferentiable) is
specified. This step provides some advantages. For example, if the
proposed problem is differentiable, corresponding scalarizing formula-
tion preserves differentiability and can be solved using available single
objective solvers. On the other hand, for a nondifferentiable problem,
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Algorithm 1. General interactive algorithm (GIA)

Step 1- Determine type of the MOP being solved (differentiable or nondifferentiable).

Step 2- Compute ideal and nadir points. Set k = 1. Determine an initial solution (can be
specified by the DM or by solving an arbitrary scalarizing problem). Denote this
initial solution by x̂k and corresponding objective vector by f(x̂k). If the DM is

satisfied with this solution, go to Step 6.
Step 3- Ask the DM to provide his/her preference information based on f(x̂k). The DM

can specify his/her preference information in one of the following ways:

3.1. Specifying the desired objective function values as components of the reference
point (ȳki , i = 1, . . . , p);

3.2. Classifying the objective functions into two classes Jk
1 and Jk

2 or three classes
Jk
1 , Jk

2 and Jk
3 , described in the text;

3.3. Specifying the marginal rates of substitutions (MRSs);

3.4. Determining the criteria weights;

3.5. Providing preferences with the help of ϵ−constraint;

3.6. Defining preferences with the help of criteria weights and selecting the upper
bounds for all objective functions, simultaneously.

Step 4- Based on the preference information, given by the DM in Step 3, set appropriate
values for parameters and index sets in formulation (3) (for nondifferentiable MOP)

or formulation (4) (for differentiable MOP), and solve it.
Step 5- Present the obtained (weakly, properly) efficient solution(s) and the corresponding

objective function vector(s) to the DM. Let DM chooses one of them. In this case,

different states can occur:

5.1. If the DM approves this solution as the most preferred one, denote this solution

by x̂k+1 and go to Step 6.

5.2. If the DM wants to obtain other solutions with the same preference informa-

tion, go to Step 4. Note that, in this case, Step 4 should be executed with
other values for parameters and index sets.

5.3. If the DM wants to provide new preference information, denote this solution
by x̂k+1, set k := k + 1 and go to Step 3.

Step 6- Stop.
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corresponding scalarizing formulation (3) has a reduced number of con-
straints which causes a decrease in solving time.

(b) Unlike the algorithms proposed in [21,28,32], the GIA allows the DM to
specify his/her preference information in six different ways. Since the
satisfaction of DM is an important factor in the interactive algorithms,
this aspect of the GIA will increase the satisfaction of DM.

(c) To propose a general algorithm for solving an MOP, it is necessary to
convert the MOP problem to a general scalarized problem with per-
haps some additional constraints. It is obvious that the number of
constraints added to the general scalarized problem has a major effect
on the computational time. In Table 1 (for nondifferentiable MOPs)
we compare the number of constraints added to the suggested gen-
eral formulation (3) with those added to some general formulations as
GLIDE [21], GLIDE-II [28] and GENWS [32].

Table 1: Number of additional constraints in each formulation (in nondiffer-
entiable case)

Methods GENWS GLIDE GLIDE-II nondiff Our formulation

GUESS card(Jk
2 ) 2p 0 0

Reference direction approach − − 0 0
STOM p − 0 0
SPOT − 2p p − 1 p − 1

Modified reference point card(Jk
2 ) + card(Jk

3 ) − card(Jk
3 ) card(Jk

3 )

RD − − − card(Jk
2 ) + card(Jk

3 )
ϵ− constraint − − − p − 1
Weighted sum − − 0 0

Hybrid − − − p
ISWT − − p − 1 p − 1

PROJECT − 2p 0 0
Weighted Tchebycheff − − 0 0

(d) One of the most important theoretical advantages of the proposed gen-
eral formulations is that, Theorem 5 enables us to provide results con-
cerning proper efficiency. Unboundedness of the trade-offs means, prac-
tically, ignoring at least one of the objective functions when the DM
wants to improve another objective function, which is not satisfactory
to the DM. Since properly efficient solutions have bounded trade-offs,
the DM can improve some unacceptable objective functions with no
concern.

(e) All the provided theorems where established without convexity assump-
tions. In fact, the main MOP can be convex or nonconvex.

7 A numerical example

In this section, we illustrate the procedure mentioned in the GIA on an
engineering example of designing a four-bar plane truss, studied in [5]. This
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problem, has two conflicting objective functions. We should minimize the
volume of the truss (f1), and its joint displacement (f2), subject to given
physical restrictions on the feasible cross-sectional areas x1, x2, x3, and x4 of
the four bars. The stress on the truss structure is caused by several forces of
magnitude F, and 2F. The length L of each bar and the elasticity constants E
and σ of the materials involved are modelled as constants. The mathematical
model of this example is as follows:

Minimize
{
f1(x) = L(2x1 +

√
2x2 +

√
2x3 + x4),

f2(x) =
FL

E
(
2

x1
+

2
√
2

x2
− 2

√
2

x3
+

1

x4
)
}

s.t.


F
σ ≤ x1 ≤ 3F

σ ,√
2(Fσ ) ≤ x2 ≤ 3F

σ ,√
2(Fσ ) ≤ x3 ≤ 3F

σ ,
F
σ ≤ x4 ≤ 3F

σ ,

where, the constant parameters are chosen as F = 10 kN, E = 2 ×
105 kN/cm2, L = 200 cm and σ = 10 kN/cm2.

The ideal and nadir values for objective functions of this problem are
obtained as yI = (yI1 , y

I
2) = (1400,−5.7191 × 10−4) and yN = (yN1 , y

N
2 ) =

(3.4971 × 103, 0.0406). Now, based on the GIA, at first, we should find an
initial solution. To this end, the ϵ−constraint scalarizing problem (13) is
used, which can be obtained from the proposed formulations by parameters
and index sets given in Subsection 4.7, with l = 2 and ϵ1 = 1800. By solving
the obtained problem, we find (1.3906, 1.9963, 1.4142, 1.3957) for variables,
and (1800, 0.0157) for objective functions. As it can be seen, the values
of the objective functions are between ideal and nadir values. Let x̂1 =
(1.3906, 1.9963, 1.4142, 1.3957) and f(x̂1) = (1800, 0.0157) are shown to DM.

Suppose, the DM wishes to express his/her preference information as the
reference point ȳ1 = (ȳ11 , ȳ

1
2) = (1600, 0.01). Based on this preference given

by DM, one of the reference point based scalarizing problems can be selected.
Here, we set parameters in our formulation, such that the GUESS scalariz-
ing problem is obtained, and by solving it, (1.4613, 2.0666, 1.4142, 1.4613) is
obtained for variables and (1861.3, 0.0142) is attained for the objective func-
tion values. At this iteration, the volume of the truss has increased and its
joint displacement has slightly decreased. Now, assume that the DM wants
to change the type of his/her preference information. According to Step 5 of
the GIA, set x̂2 = (1.4613, 2.0666, 1.4142, 1.4613), f(x̂2) = (1861.3, 0.0142)
and k = 2. Now, Step 3 is executed.

Assume that the DM wants to classify the objective functions in two
classes J2

1 = {1}, and J2
2 = {2}. This means, the DM wants to improve f1 by

somewhat relaxing f2. Assume that the DM gives us ȳ2 = (1500, 0.03). Now,
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the RD scalarizing problem is used with α = 0.5. By solving the problem,
(1.1876, 1.6796, 1.4142, 1.1876) is obtained for variables and (1587.6, 0.0221)
is attained for the objective functions. Assume that the DM wants to provide
new preferences by selecting weights for the objective functions. To this
end, let x̂3 = (1.1876, 1.6796, 1.4142, 1.1876), f(x̂3) = (1587.6, 0.0221), and
k = 3. Then, Step 4 is executed by (w3

1, w
3
2) = ( 34 ,

1
4 ) as weights given by

the DM. By solving the weighted sum problem (14), (1, 1.4142, 1.4142, 1) is
obtained for variables and (1400, 0.03) is obtained for the objective values. As
it can be seen, the volume of the truss is in its ideal value, and this satisfies the
DM. It is important to point out that by Theorem 5, the obtained objective
vector is a properly nondominated point.

8 Conclusions

In this article, we suggested a general scalarizing formulation to obtain a
global interactive algorithm for multiobjective optimization problems. We
proposed the formulation in two versions; one of them for differentiable and
the other for nondifferentiable MOPs. By selecting suitable values for pa-
rameters, we proved that optimal solutions of the suggested general scalar-
izing problem are (weakly, properly) efficient solutions for the main mul-
tiobjective problem. Moreover, it was shown that many scalarizing prob-
lems used in different interactive methods as GUESS, reference direction
approach, Step, STOM, SPOT, modified reference point, and RD methods
can be obtained from the proposed general formulation, by selecting suitable
transformations. Some of the popular scalarizing problems such as, weighted
sum, ϵ−constraint, and hybrid problems derived from our general scalarizing
problem. In addition, we proposed a general interactive algorithm. In the
proposed algorithm, the DM could express his/her preference information in
six different ways, and based on the kind of information given by the DM,
a suitable scalarizing problem, by selecting appropriate values for parame-
ters and index sets in the general formulation, was selected. Finally, by a
numerical example we illustrated that how the proposed general interactive
algorithm can be used.

However, for the future investigation, developing a software based on the
suggested general interactive algorithm can be worthwhile. Also, proposing a
general interactive procedure for approximate efficient solutions of an MOP
can be worth studying. To this end, studying three recently published papers
by Ghaznavi-ghosoni1 and Khorram [10], Ghaznavi-ghosoni et al. [11] and
Ghaznavi [12] is recommended.

1 Previous name of the first author

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

..
An interactive algorithm for solving multiobjective optimization problems ... 97

Acknowledgments:

The authors would like to express their heartfelt thanks to the editors and
anonymous referees for their useful suggestions which improved the quality
of the paper.

References

1. Benayoun, R., Montgolfier, J., Tergny, J. and Laritchev, O. Linear pro-
gramming with multiple objective functions: Step method (STEM), Math-
ematical Programming 1(3) (1971) 366-375.

2. Buchanan, J.T. A naive approach for solving MCDM problems: the
GUESS method, Journal of the Operational Research Society 48 (1997)
202-206.

3. Chankong, V. and Haimes, Y.Y. The interactive surrogate worth trade-off
(ISWT) method for multiobjective decision-making, in: S. Zionts (Eds.),
Multiple Criteria Problem Solving, Berlin: Springer, 1978, pp. 42-67.

4. Ehrgott, M. Multicriteria Optimization, Springer, Berlin, 2005.

5. Engau, A. and Wiecek, M.M. Generating ε−efficient solutions in mul-
tiobjective programming, European Journal of Operational Research 177
(2007) 1566-1579.

6. Eschenauer, H.A., Osyczka, A. and Schafer, E. Interactive multicriteria
optimization in design process, in: Eschenauer, H., Koski, J., Osyczka A.,
(Eds.), Multicriteria Design Optimization Procedures and Applications,
Berlin: Springer, 1990, pp. 71-114.

7. Gardiner, L. and Steuer, R.E. Unified interactive multiple objective pro-
gramming, European Journal of Operational Research 74(3) (1994) 391-
406.

8. Gardiner, L. and Steuer, R.E. Unified interactive multiple objective pro-
gramming: an open architecture for accommodating new procedures, Jour-
nal of the Operational Research Society 45(12) (1994) 1456-1466.

9. Geoffrion, A. Proper efficiency and the theory of vector maximization,
Journal of Mathematical Analysis and Applications 22 (1968) 618-630.

10. Ghaznavi-ghosoni, B.A. and Khorram, E. On approximating
weakly/properly efficient solutions in multiobjective programming,
Mathematical and Computer Modelling 54 (2011) 3172-3181.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

..
98 M. Ghaznavi, M. Ilati and E. Khorram

11. Ghaznavi-ghosoni, B.A., Khorram, E. and Soleimani-damaneh, M.
Scalarization for characterization of approximate strong/weak/proper effi-
ciency in multiobjective optimization, Optimization, 62 (6) (2013) 703-720.

12. Ghaznavi, M. Optimality conditions via scalarization for approximate
quasi efficiency in multiobjective optimization, Filomat, accepted.

13. Hosseinzadeh Lotfi, F., Jahanshahloo, G.R., Ebrahimnejad, A., Soltani-
far, M. and Mansourzadeh, S.M. Target setting in the general combined-
oriented CCR model using an interactive MOLP method, Journal of Com-
putational and Applied Mathematics 234(1) (2010) 1-9.

14. Jahn, J. Vector Optimization: Theory, Applications, and Extensions,
Springer-Verlag, Berlin, Germany, 2004.

15. Kaliszewski, I. A modified weighted Tchebycheff metric for multiple ob-
jective programming, Computers and Operations Research 14 (1987) 315-
323.

16. Kaliszewski, I. A theorem on nonconvex functions and its application to
vector optimization, European Journal of Operational Research 80 (1995)
439–449.

17. Kaliszewski, I. Using trade-off information in decision making algo-
rithms, Computers and Operations Research 27 (2000) 161–182.

18. Kaliszewski, I. and Michalowski, W. Efficient solutions and bounds on
tradeoffs, Journal of Optimization Theory and Applications 94 (1997) 381-
394.

19. Kaliszewski, I., Miroforidis, J. and Podkopaev, D. Interactive multiple
criteria decision making based on preference driven evolutionary multiob-
jective optimization with controllable accuracy, European Journal of Op-
erational Research 216 (2012) 188-199.

20. Korhonen, P. Reference direction approach to multiple objective linear
programming: Historical overview, in: Karwan, M. H., Spronk,J., Wal-
lenius, J., (Eds.), Essays in Decision Making: A Volume in Honour of
Stanley Zionts, Springer-Verlag, Berlin, Heidelberg, 1997, pp. 74-92.

21. Luque, M., Ruiz, F. and Miettinen, K. Global formulation for interactive
multiobjective optimization, OR Spectrum 33(1) (2011) 27–48.

22. Luque, M., Yang, J.B. and Wong, B.Y.H. PROJECT method for multiob-
jective optimization based on the gradient projection and reference point,
IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems
and Humans 39(4) (2009) 864-879.

23. Miettinen, K. Nonlinear Multiobjective Optimization, Kluwer Academic
Publishers, Dordrecht, 1999.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

..
An interactive algorithm for solving multiobjective optimization problems ... 99

24. Nakayama, H. and Sawaragi, Y. Satisficing trade-off method for multi-
objective programming, in: M. Grauer, A.P. Wierzbick (Eds.), Interactive
Decision Analysis, Berlin: Springer, 1984, pp. 113-122.

25. Narula, S.C., Kirilov, L. and Vassilev, V. Reference direction approach for
solving multiple objective nonlinear programming problems, IEEE Trans-
actions on Systems, Man, and Cybernetics 24 (1994) 804-806.

26. Park, K.S. and Shin, D.E. Interactive multiobjective optimization ap-
proach to the inputoutput design of opening new branches, European Jour-
nal of Operational Research 220 (2012) 530-538.

27. Romero, C. Extended lexicographic goal programming: a unified approach,
Omega 29 (2001) 63-71.

28. Ruiz, F., Luque, M. and Miettinen, K. Improving the computational ef-
ficiency in a global formulation (GLIDE) for interactive multiobjective
optimization, Annals of Operations Research 197(1) (2012) 47-70.

29. Sakawa, M. Interactive multiobjective decision making by the sequential
proxy optimization technique: SPOT, European Journal of Operational
Research 9 (4) (1982) 386-396.

30. Taras, S. and Woinaroschy, A. An interactive multiobjective optimization
framework for sustainable design of bioprocesses, Computers & Chemical
Engineering 43 (2012) 10-22.

31. Vassilev, V., Narula, S.C. and Gouljashki, V.G. An interactive reference
direction algorithm for solving multiobjective convex nonlinear integer pro-
gramming problems, International Transactions in Operational Research 8
(4) (2001) 367-380.

32. Vassileva, M., Miettinen, K. and Vassilev, V. Generalized scalarizing
problem for multicriteria optimization, IIT Working Papers IIT/WP-205,
Institute of Information Technologies, Bulgaria, 2005.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

اسکالرسازی تکنیک یک اساس بر چندهدفه بهینه�سازی مسائل حل برای تعاملی الگوریتم یک
عمومی

۲ خرم اسماعیل و ایلاتی۲ محمد غزنوی۱، مهرداد

کاربردی ریاضی گروه ریاضی، علوم دانشکده شاهرود، دانشگاه ۱

کامپیوتر علوم و ریاضی دانشکده امیرکبیر، صنعتی دانشگاه ۲

١٣٩۴ مهر ٢٩ مقاله پذیرش ،١٣٩۴ تیر ١٣ شده اصلاح مقاله دریافت ،١٣٩٣ اسفند ٣ مقاله دریافت

را گیرنده تصمیم که عمومی تعاملی الگوریتم�های ارایه به نیاز موجود، تعاملی رو�ش�های تنوع : چکیده
می�دهد. نشان را کند انتخاب را است او ترجیح مورد که را مناسب روش چندین آزادانه که می�سازند قادر
پیشنهاد هدفه چند ریزی برنامه� مسائل برای عمومی اسکالر�سازی مسئله یک مقاله، این در منظور، این برای
کارای و (ضعیف) کارا های جواب� و شده معرفی اسکالرسازی مسئله بهینه های جواب� بین رابطه می�دهیم.
مناسب، تبدیل�های انتخاب با که می�دهیم نشان می�شود. بررسی اصلی هدفه چند بهینه�سازی مسئله سره
شده پیشنهاد فرمول از می�توانند مختلف تعاملی روش�های در رفته کار به اسکالر�سازی مسائل از برخی
که می�دهیم پیشنهاد عمومی تعاملی الگوریتم یک شده، پیشنهاد اسکالر�سازی مسئله اساس بر آیند. بدست
هر در ترجیحات در تغییر قابلیت با و مختلف روش شش با را ترجیحاتش کند می قادر را گیرنده تصمیم
الگوریتم بودن کاربردی بیانگر که عددی مثال یک سرانجام، کند. مشخص الگوریتم تکرارهای طول در زمان

می�گردد. ارایه است

ترجیحی. اطلاعات سره؛ کارایی اسکالرسازی؛ مسئله تعاملی؛ روش چندهدفه؛ بهینه�سازی : کلیدی کلمات
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