
Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

66 J. Fathali and A. Jamalian

it to demand points is minimized. Let d(X,Pi) represent the distance trav-
eled per trip between points X and Pi, the weight wi represents the product
of cost per unit distance traveled and number of trips made per year between
the new facility and existing demand point i and some times shows value of
demand in this point. The total cost is given by:

minF (X) =
n∑

i=1

wid(X,Pi). (1)

The Euclidean problem is obviously referred to as the Steiner-Weber problem
or the general Fermat problem, and has an extraordinary longevity (see [8]).
In fact, a version of the problem for the case n = 3 and wi = 1 for i = 1, 2, 3,
was posed purely as a problem in geometry, by Fermat early in the seven-
teenth century, and was solved by Toricelli prior to 1640 (see [16]). The
problem was studied by Steiner, a Swiss mathematician, in the nineteenth
century, and by Weber, a German economist, early in the twentieth cen-
tury. Single facility location with Euclidean distance is also called Weber
problem and an iterative procedure was proposed for solving this problem by
Weiszfeld [24] in 1937 and rediscovered by Kuhn [17] in 1962. This algorithm
is widely used because of its simplicity and effectiveness. The algorithm can
be generalized to other location problems where the cost is a function of the
Euclidean distance rather than just being proportional to the distance (see
e.g. [10]). Some other cases of Weber location problem can be find in [4,5,23]).

Fathali et al. [12], considered a special case of Weber problem in which
a specified radius for every demand point is considered and the distance be-
tween the new facility and the demand point Pi is equal to the corresponding
radius, ri. However since in the real instances rarely exist the location of a
new facility such that its distance to each point pi is exactly ri. So they tried
to minimize the sum of the weighted square errors. We call this problem as
Goal Square Weber Location Problem (GSWLP). Jamalian and Fathali [14]
presented a linear model for the location problem with minimum absolute
error on the block norms.

In what follows we explain the GSWLP in Section 2. Model properties
and results are stated in Section 3. In this section main results and a proposed
algorithm for solving problem are given. Because the objective function may
have many local optima, we also use particle swarm optimization method for
solving this problem. In Section 4, the particle swarm optimization method
is explained. In Section 5, the computational results of comparing four algo-
rithms WLA, PSO, PSOC and BSSS for this problem are given.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 67

2 Goal Square Weber location problem

In single facility location problem, we want to find location of a new facility
such that the sum of weighted distances from the facility to all demand
points is minimized. In Fathali et al. [12] a radius, ri, and value of demand,
wi correspond to every point Pi is considered. We want to find the location
of a new facility such that the distances between it and the demand points
Pi, i = 1, . . . , n is equal to ri. Since this situation occurs in real applications
rarely we try to minimize sum of weighted squared error.

In fact, in this problem for every point a goal distance is considered and we
want to minimize the error of satisfaction location of facility in these goals. It
is desirable for us that new facility be located on circle of correspond radius
and center of demand point. For an example of this problem, if ri = r,
i = 1, 2, · · · , n and demand points be located on a circle of radius r, the
optimal point is center of circle. In the case ri = r, i = 1, 2, · · · , n the
problem converted to the square Weber problem, so we call this problem as
Goal Square Weber Problem.

The problem studied in this paper is different from the covering location
problem (CLP). Two important covering models are the maximal and min-
imal covering location problems which are suitable for siting desirable and
undesirable facilities, respectively (see e.g., [3,6]). In both of these problems a
facility covers a demand point if the demand point lies within a pre-specified
coverage radius. The objective is to locate a number of facilities so as to min-
imize or maximize the total coverage. There are some differences between
CLP and GSWLP. Firstly, CLP is a multifacility location problem, while in
the GSWLP we want to find the location of a single facility. Secondly, in
CLP a radius is associated with facilities, in contrast to the GSWLP, where
a radius ri is associated with demand point Pi. Thirdly, in the maximal
CLP, it is desirable if the distance between the demand points and facilities
be less than or equal to a pre-determined radius and in the minimal CLP this
distance should be more than or equal to a given radius, while in GSWLP it
is desirable if the new facility exactly be in the given distances of the demand
points.

Determination of the location of a company in the vicinities of some cities
such that the setting up costs and the transportation costs and minimized can
be an application of this problem as mentioned in [12] . Suppose that the cost
of establishing a facility in the regions that are farther than a given distance
ri from city ri is very low. On the other hand a move away from a city causes
the transportation costs to increase. Therefore a tradeoff between the setting
up costs and the transportation costs seems to be reasonable. GSWLP also
has some other applications for locating facilities that are either desirable or
undesirable. In these cases we want the facility not be close than a specified
distance to facility centers, because of its undesirability, on the other hand,
if the facility be so far from the facility centers, cost of providing security,
human forces, transportation installation, and other costs will increase.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

68 J. Fathali and A. Jamalian

3 Model Properties

Let Pi = (ai, bi) for i = 1, · · · , n be given points in the plane. Formulation
of GSWLP is as follows:

minF (X) =

n∑
i=1

wi (d(X,Pi)− ri)
2

(2)

where X = (x, y), d(X,Pi) =
√

(x− ai)2 + (y − bi)2, and ri and wi are
corresponding radius and weight of demand point Pi, respectively. Fathali
et al. [12] show that the objective function of model (2), is non convex and
optimal solution is in extended rectangular hull of demand points. Extended
rectangular hull of demand points is the smallest rectangle which contains
all the demand points with their circles. We present a new proof by Farkas
lemma in the Theorem 1. The advantage for our new proof is that in this
proof we show there is an improvement direction from any point which is out
of rectangular hull.

Farkas lemma is one of the theorems of alternatives a good discussion of
which is given by Mangasarian [19]. It can also be found in Dantzig and
Thapa [9] and Bazaraa et al. [2], among others.

Lemma 1. [Farkas Lemma (1902)] For a given matrix A and a vec-
tor C, either AX ≥ 0 and CX < 0 has a solution, or there exists a vector
like W such that WA = C and W ≥ 0.

Theorem 1. The optimal solution of Equation (2) is in the extended rect-
angular hull of demand points.

Proof. First we define four points as follow:

RH1 = min {ai − ri|i = 1, 2, · · · , n}
RH2 = max {bi + ri|i = 1, 2, · · · , n}
RH3 = max {ai + ri|i = 1, 2, · · · , n}
RH4 = min {bi − ri|i = 1, 2, · · · , n}.

We show that the optimal point is in the rectangular hull of these four points.
By contradiction, we suppose that Xb = (xb, yb)

T is the optimal point of
model (2) and is out of rectangle. Therefor it is out of cone generated either by
(RH1−RH3, 0) and (0, RH4−RH2) or (RH3−RH1, 0) and (0, RH2−RH4).
Case 1: suppose that the optimal point is out of cone generated by (RH1 −
RH3, 0) and (0, RH4 −RH2). So the vector Xb − (RH3, RH2)

T is not in the
cone, i.e. following system has not solution:

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 69{
v1(RH1 −RH3, 0) + v2(0, RH4 −RH2) = (xb −RH3, yb −RH2)

v1, v2 ≥ 0.

By Farkas’ lemma, the following system have solution:



[
RH1 −RH3 0

0 RH4 −RH2

] [
u1

u2

]
≥ 0

[xb −RH3, yb −RH2]

[
u1

u2

]
< 0.

(3)

So by the first inequality of (3) we have:{
(RH1 −RH3)u1 ≥ 0
(RH4 −RH2)u2 ≥ 0

since RH1 ≤ RH3 and RH4 ≤ RH2 therefore u1 ≤ 0 and u2 ≤ 0. And by
the second inequality of (3) we obtain

(xb −RH3)u1 + (yb −RH2)u2 < 0.

Moreover ai ≤ RH3 and bi ≤ RH2 for i = 1, 2, · · · , n so
(xb − ai)u1 + (yb − bi)u2 ≤ (xb −RH3)u1 + (yb −RH2)u2 < 0.

Now, if xb − RH3 < 0 and yb − RH2 > 0 then let U =

(
0
u2

)
and if

xb − RH3 > 0 and yb − RH2 < 0 then let U =

(
u1

0

)
and if xb − RH3 > 0

and yb −RH2 > 0 then let U =

(
u1

u2

)
. So in each case

∇d(Xb, Pi).U =
1

d(Xb, Pi)
(xb − ai, yb − bi).U < 0.

Therefore

∇F (Xb).U = 2
n∑

i=1

wi

(
1− ri

d(Xb, Pi)

)
(xb − ai)u1

+ 2
n∑

i=1

wi

(
1− ri

d(Xb, Pi)

)
(yb − bi)u2

= 2

n∑
i=1

wi

(
1− ri

d(Xb, Pi)

)
[(xb − ai)u1 + (yb − bi)u2] < 0.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

70 J. Fathali and A. Jamalian

This means that U is a descent direction and Xb can not be optimal point.
Note that in the last equality statement 1 − ri

d(Xb,Pi)
is positive for all

i, because Xb is out of extended rectangular hull and d(Xb, Pi) ≥ ri so
ri

d(Xb,Pi)
≤ 1.

Case 2: suppose that optimal point is out of cone generated by (RH3 −
RH1, 0) and (0, RH2 − RH4). Proof of this case is the same as Case 1. So
the optimal point is in rectangular hull generated by RH1, RH2, RH3 and
RH4.

4 Weiszfeld-like algorithm

In this section, we propose an iterative algorithm for solving GSWLP. Our
algorithm is based on the Weiszfeld method. The original Weiszfeld algorithm
is an iterative method for solving the following Weber problem.

MinF (X) =
n∑

i=1

wi

√
(x− ai)2 + (y − bi)2. (4)

From the necessary condition of optimality ∂F (X∗)
∂X = 0 for this problem,

the Weiszfeld method starts with an initial solution and try to find optimal
solution by the following iterative relations;

xk+1 =

∑n
i=1

wiai√
(xk−ai)2+(yk−bi)2∑n

i=1
wi√

(xk−ai)2+(yk−bi)2

yk+1 =

∑n
i=1

wibi√
(xk−ai)2+(yk−bi)2∑n

i=1
wi√

(xk−ai)2+(yk−bi)2

.

Now consider the GSWLP. The same as Weiszfeld method from the nec-
essary optimality condition to obtain a candidate for optimal solution we
set

∂F

∂X
= 2

n∑
i=1

wi

(
1− ri

d(X,Pi)

)
(X − Pi) = 0 (5)

therefore

X =

∑n
i=1 wi

(
1− ri

d(X,Pi)

)
Pi∑n

i=1 wi

(
1− ri

d(X,Pi)

) . (6)

Like in the Weiszfeld algorithm, there is a possibility that during the
iterations, d(X,Pi) is zero for one of the points, and then the ratio is infinite
and the process cannot be continued. For practical purposes, the whole issue

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 71

of singular points may be avoided by replacing each distance in (6) by its
hyperbolic approximation (e.g., see [18]) given by:

X =

∑n
i=1 wi

(
1− ri

d(X,Pi)+ε

)
Pi∑n

i=1 wi

(
1− ri

d(X,Pi)+ε

) (7)

where ε > 0 is a smoothing constant. Therefor we can use the following
iterative method.

Algorithm [WLA].
Initialization:

1. Choose an initial solution, X0 and set k = 0.

Iteration step:
While not stopping criterion do

1.

xk+1 =

∑n
i=1 wi

(
1− ri√

(xk−ai)2+(yk−bi)2+ε

)
ai∑n

i=1 wi

(
1− ri√

(xk−ai)2+(yk−bi)2+ε

)

yk+1 =

∑n
i=1 wi

(
1− ri√

(xk−ai)2+(yk−bi)2+ε

)
bi∑n

i=1 wi

(
1− ri√

(xk−ai)2+(yk−bi)2+ε

)
2. k:=k+1

endwhile

The stopping criterion rule is usually one of the following criteria: maxi-
mum number of iterations or reaching a tolerance.

Now we discuss the convergency of WLA. From Equation (6) if we con-
sider the right hand side of this equation as Xk and the left hand side of it
as Xk+1, so we have

Xk+1 =

∑n
i=1 wi

(
1− ri

d(Xk,Pi)

)
Pi∑n

i=1 wi

(
1− ri

d(Xk,Pi)

) , (8)

then by choosing an initial solution, X0, for k = 1, 2, · · · we have

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

72 J. Fathali and A. Jamalian

Xk+1 = Xk −
1∑n

i=1 wi

(
1− ri

d(Xk,Pi)

) [n∑
i=1

wi

(
1− ri

d(Xk, Pi)

)
(Xk − Pi)

]
.

(9)
Let us assume that

dk = −1

2

n∑
i=1

wi

(
1− ri

d(Xk, Pi)

)
(Xk − Pi) (10)

it is clear that dk is a descent direction, i.e. dTk .∇F (Xk) < 0, so the Equation
(9) is a gradient method and the sequence {F (Xk)} is non increasing. Let

h(X) = X − 1

2
∑n

i=1 wi

(
1− ri

d(X,Pi)

) ∂F (X)

∂X
. (11)

The function F (X) is two times differentiable and h(X) in X ̸= Pi,
i = 1, · · · , n, is continuous.

Lemma 2. The sequence generated by Equation (8) is in affine hull of the
Pi, i = 1, 2, · · · , n.

Proof. In each iteration, we have Xk+1 =
∑n

i=1 αiPi∑n
i=1 αi

, in which

αi =
∑n

i=1 wi

(
1− ri

d(Xk,Pi)

)
. Let γi = αi∑n

i=1 αi
, we have γi ∈ [−1, 1] and∑n

i=1 γi = 1. From Equation (8) the sequence {Xk} is a affine combination of
demand points. So the sequence {Xk} is in affine hull of Pi, i = 1, 2, · · ·n.

Lemma 3. If Xk = Xk+1 then ∂F (Xk)
∂X = 0.

Proof. From the Equation (9), we have Xk+1 = h(Xk) = Xk − 1
2λk

∂F (Xk)
∂X

where λk = 1∑n
i=1 wi

(
1− ri

d(Xk,Pi)

) . If Xk+1 = Xk then −1
2λk

∂F (Xk)
∂X = 0, i.e.

∂F (Xk)
∂X = 0.

Lemma 4. If Xk ̸= Xk+1 then F (Xk+1) < F (Xk), and If F (Xk) = F (Xk+1)
then Xk = Xk+1.

Proof. From the Equation (9), if Xk ̸= Xk+1, we have ∂F (Xk)
∂X ̸= 0 . Let

D = −∂F (Xk)
∂X so DT .∇F (Xk) < 0 i.e. F (Xk+1) < F (Xk).

To show the second part of lemma if F (Xk) = F (Xk+1) then since for every
k, the direction dk is non increasing we have Xk = Xk+1.

Note that the direction dk in iteration k, is a descent direction, so the
sequence {F (Xk)} is non increasing. Since this sequence is bounded from
below by zero, the limit limk→∞ F (Xk) exists.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 73

Theorem 2. The sequence {Xk} converges to a local minimum or a saddle
point of function F (X).

Proof. By Lemma 2, the sequence {Xk} is in affine hull of demand points
and since by explanation of Equation (9), dTk are descent direction so the

sequence {Xk} is converged to a point like X̂. Since limk→∞ F (Xk) exists,
limk→∞ F (Xk+1) − F (Xk) = 0 and F (h(X̂)) = F (X̂). By Lemma 4, we
have h(X̂) = X̂. If Xk+1 ̸= Xk then the inequality F (Xk+1) ≤ F (Xk) holds
strictly. From continuity of function h(X), if Xk tends to X̂ then Xk+1

will tend to h(X̂) = X̂ and {Xk} converges to X̂. According to Lemma 3,
∂F (X̂)
∂X = 0 and since {F (Xk)} is non increasing and bounded from below

by zero, the point X̂ con not be local maxima, in other word, it is a local
minimum or saddle point of function F (X).

We presented an analytic method for solving GSWLP that do not guar-
antee converging to a minimum and may fall in saddle point or local minima
which is no minimum. Since the objective function of GSWLP is non convex,
the local minimum may not be global (see Example 1). So we should use a
global optimization method. In the next section we apply a particle swarm
optimization algorithm to find the best solution of problem.

Example 1. Consider the points, their weights and their radiuses that are
given in Table 1. This problem is solved in [12] by big square small square
method and the value of optimal solution is 182. But if we solve this problem
by WLA we will see this method convergence to a point which its value of
objective function is 209.

Table 1: Data for 18 points problem.

(a, b, w, r) (a, b, w, r) (a, b, w, r)
(1, 2, 3, 2) (4, 4, 1, 2) (7, 1, 2, 1)
(1, 3, 2, 2) (4, 9, 2, 1) (7, 2, 3, 2)
(2, 5, 1, 3) (5, 3, 2, 2) (8, 5, 1, 2)
(3, 6, 3, 2) (5, 5, 1, 2) (8, 8, 3, 1)
(4, 8, 2, 2) (6, 6, 3, 3) (9, 7, 3, 2)
(4, 1, 3, 1) (6, 3, 3, 1) (9, 6, 2, 3)

Note that this is an special example that WLA traps in a local minima.
This case rarely happens. We examined many other test problems but we
could not find any example with this property. Also as we shall see in the
computational experiments section, in non of the examined test problems in
this section this case dose not happen.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

74 J. Fathali and A. Jamalian

5 Particle Swarm Optimization

Nature has always been an inspiration for researchers in designing solutions
for many problems. Particle Swarm Optimization (PSO) is a meta-heuristic
algorithm that is inspired of the behaviors of social models like bird flocking
or fish schooling. It is introduced by Eberhart and Kennedy [11], as an
optimization method for continuous nonlinear functions. Later, it has been
applied to wide range of problems due to its conceptual and implementation
simplicity (see e.g. [1, 15]).

Particle swarm optimization is a stochastic optimization technique based
on individual improvement, social cooperation and competition in a popula-
tion. PSO is famous for its fast convergence to a solution close to the optimal,
by balancing the local search and global search i.e., exploitation and explo-
ration, respectively. PSO is a population based method in which a swarm
includes several individuals called particles. Each particle has a position and
velocity vector. Particles are initially positioned randomly. The position of
a particle is a candidate solution and it is updated at each iteration by using
the particle’s current velocity. The velocity of a particle is updated by using
the particle’s inertia weight as well as the social interaction (its tendency to
follow the best direction experienced by the group) and personal experience
(the best direction experienced by itself) of the particle. In the course of
several iterations, particles make use of this experience and are supposed to
move towards the optimum position.

The stopping criterion rule is usually one of the following criteria: maxi-
mum number of iterations, the maximum CPU time, the number of successive
best objective function values without any improvements or reaching a pre-
determined tolerance. During the update step, for each particle, the velocity
and position vector of the particle at iteration t + 1 are calculated by using
the Equations (12) and (13).

vt+1
i,j = wvti,j + c1r1

(
pbestti,j − xt

i,j

)
+ c2r2

(
gbesttj − xt

i,j

)
(12)

xt+1
i,j = xt

i,j + vt+1
i,j . (13)

In these equations, vti,j and xt
i,j are the velocity and position of the jth

dimension of the ith particle at iteration t, respectively. The parameters c1
and c2 are coefficients of learning factors, which are the weights of contribu-
tions of personal experience and social interaction. The stochastic behavior
of PSO is achieved by r1 and r2 which are random numbers, generally in
(0, 1). The parameter w is the inertia weight which is the balancing factor
between exploration and exploitation. Small inertia weight facilitates more
exploitation while large inertia weight enables more exploration.

After the update step, the fitness function value is calculated for each par-
ticle based on its position. The local best position pbest of each particle and

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 75

the global best position gbest are updated using these fitness values as follow:

pbestt+1
i =

{
pbestti F (xt+1

i) ≥ F (pbestti)
xt+1
i F (xt+1

i) > F (pbestti)
(14)

gbestt+1 = argmini∈{1,2,··· ,n}F (pbestt+1
i). (15)

These ideas lead to the following algorithm.

Algorithm [PSO].

Initialization:

1. Initialize iteration counter.

2. Initialize N random position of particles and store them in S.

3. Initialize N random velocities and store them in V.

4. Initialize N pbest and store them in P.

5. Set gbestt equal the best pbest in P.

Iteration step:
While not stopping criterion do

1. For each ith particle:

(a) Update V: Calculate velocity vt+1
i using (12)

(b) Update S: Calculate position xt+1
i using (13)

(c) Update P: Calculate position pbestt+1
i using (14)

2. Update gbest: gbestt+1 = argmini∈{1,2,··· ,N}
{
f(pbestt+1

i)
}

3. t:=t+1

endwhile

Where V is the set of velocities and P is the set of pbests. To apply this
algorithm for Goal Square Weber Location Problem we set S the region of
optimal solution, i.e. extended rectangular hull of points and each particle
as a solution. In this algorithm first we choose N random positions and
velocities for each particle. From rules of particle swarm optimization we
obtain the pbest and gbest of swarm. The algorithm with updating variables
continues until termination conditions reached.

Many modification for PSO algorithm has been proposed to improve the
performance of this algorithm. In standard PSO algorithm, the information

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

76 J. Fathali and A. Jamalian

of individual best and global best are shared by next generation particles.
Shi and Eberhart [21] use dynamic inertia weight that decreases according
to iterative generation increasing. The weight w in (12) follows the relation
wt+1 = αwt where 0 < α < 1. A large inertia weight facilitates global
exploration and a smaller inertia weight tends to facilitate local exploration
to search the local neighborhoods in the current search area more effectively.

Clerc and Kennedy [7] present another good modification of PSO. They
consider the form of a constriction coefficient K which controls all the three
components in velocity update rule. This has an effect of reducing the velocity
as the search progress. In this modification, the velocity update is given as:

vt+1
i,j = K

(
vti,j + c1r1

(
pbestti,j − xt

i,j

)
+ c2r2

(
gbesttj − xt

i,j

))
(16)

where

K =
2

| 2− ϕ−
√

ϕ2 − 4ϕ |
(17)

where ϕ = c1 + c2 > 4. This version is referred to as PSO with constriction
or PSOC. We apply the original PSO and PSOC for solving GSWLP.

In the next section we compare the WLA with PSO, PSO with constric-
tion (PSOC) and big square small square (BSSS) method. Big Square Small
Square (BSSS) method is a geometrical branch and bound algorithm origi-
nally suggested by Hansen et al. [13] for solving an obnoxious facility location
problem. The idea is to divide the plane into regions (squares), over each
of which a lower (upper) bound for the problem is found. If the objective
over a given square is worse than an existing upper (lower) bound, then that
square is fathomed. The procedure continues until a prescribed tolerance is
achieved. This method also applied by some authors such as Plastria [20],
Skriver and Andersen [22], Zaferanieh et al. [25] and Fathali et al. [12] for
solving location problems.

6 Computational results

The proposed algorithms were tested on forty test problems with 100 to
3000 points that are generated randomly in MATLAB. In these problems
demand point’s coordinates, weights and radiuses, all are positive numbers
and generated randomly in [1, 60], [1, 3] and [1, 10], respectively.

We compare the Weiszfeld like algorithm (WLA), PSOC and PSO with
BSSS method of Fathali et al. [12]. Algorithms are coded in MATLAB soft-
ware and run on a Laptop with Core(TM)2 CPU with 2.00 GHz processor
and 1 GB of RAM. In the PSO and PSOC algorithms we should generate
randomly N initial position of particles and velocities. Therefore in differ-
ent executions of these methods we may find different solutions, so we run 5

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 77

times this two methods for all problems and report the average results. In all
methods the iteration step of the algorithm is repeated until the tolerance is
achieved. The tolerance for all examples was taken to be 0.01.

In our experiments with different values of c1 and c2 (c1, c2 ∈ [1, 3]) we
found the best values to be c1 = c2 = 2.1. The inertia weight is started
with w = 1.5 and decrease in each iteration such that reach 0.2 at the end
of algorithm. The population size is set N = 50 for problems with n =
100, · · · , 500 and N = 100 for remaining problems. We also examined larger
numbers of population size. Our tests showed that larger population size
slow down the algorithm but did not lead to better solutions.

Table 2 shows the computational results. The column with the heading
%Error indicates the relative error; i.e.,

|f − fbest
fbest

| · 1000

where fbest is the best solution obtained by the four methods and f is the
value of objective function obtained by each method.

Note that the BSSS method continues until the side of the sub-square is
less than a given tolerance. So the solutions which obtained by this method is
near optimal with the given tolerance. By this method we can also compute
a lower bound for the objective for each sub-square. The column with the
heading LB in Table 2 indicates the lower bound for the objective for the
best sub-square. This sub-square contains optimal solution. Also the column
with the heading gap shows the relative gap between the lower bound and
the best solution, i.e.,

|fbest − LB

fbest
| · 1000.

We observe the largest relative gap is 5.79×10−4, which happens for the test
problem number 23.

Table 3 contains the average total CPU times for test problems. The
CPU times of WLA are less than other methods in all cases. However the
other methods could find better solution in some test problems.

To compare speed of presented methods one may consider the time com-
plexity of these methods. However since these methods are improvement
methods then with more iterations we may obtain better solutions. There-
fore in the following we give their time complexity per iteration.

The main step of WLA is computing x and y in each iteration. Since we
need 23n operations for each of x and y, obviously, the time complexity per
iteration is O(n). Where n is number of existing points.

In step 1 of each iteration of PSO, we should calculate velocity v, position
of x and pbest according to (12), (13) and (14), respectively. They need
O(nN) operations. Where N is the population size. Step 2 of Iteration step

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

78 J. Fathali and A. Jamalian

Table 2: The objective functions and errors

objectivefunction %Error

NO. n LB WLA BSSS PSO PSOC WLA BSSS PSO PSOC gap

1 100 59599 59617 59618 59617 59617 0.000 0.017 0.000 0.000 0.302
2 100 68958 68995 68995 68995 68995 0.000 0.000 0.000 0.000 0.536
3 100 82265 82287 82287 82288 82287 0.000 0.000 0.012 0.000 0.267
4 100 78156 78232 78180 78182 78180 0.665 0.000 0.026 0.000 0.435
5 100 76104 76145 76145 76145 76145 0.000 0.000 0.000 0.000 0.539
6 200 121305 121340 121341 121341 121340 0.000 0.008 0.008 0.000 0.288
7 200 166160 166254 166254 166255 166254 0.000 0.000 0.006 0.000 0.565
8 200 159632 159720 159720 159720 159721 0.000 0.000 0.000 0.006 0.551
9 200 162253 162312 162312 162312 162312 0.000 0.000 0.000 0.000 0.363
10 200 160276 160324 160324 160325 160324 0.000 0.000 0.006 0.000 0.299
11 300 233660 233765 233766 233765 233766 0.000 0.004 0.000 0.004 0.449
12 300 234183 234314 234314 234314 234315 0.000 0.000 0.000 0.004 0.559
13 300 245908 246045 246045 246046 246045 0.000 0.000 0.004 0.000 0.557
14 300 241698 241761 241761 241761 241761 0.000 0.000 0.000 0.000 0.267
15 300 235575 235674 235621 235642 235621 0.225 0.000 0.089 0.000 0.195
16 400 309670 309777 309777 309777 309776 0.003 0.003 0.003 0.000 0.342
17 400 337358 337543 337544 337543 337543 0.000 0.003 0.000 0.000 0.548
18 400 319847 320030 320030 320031 320032 0.000 0.000 0.003 0.003 0.493
19 400 326612 326734 326735 326734 326735 0.000 0.003 0.000 0.003 0.373
20 400 318651 318783 318783 318783 318783 0.000 0.000 0.000 0.000 0.389
21 500 394201 394364 394364 394364 394364 0.000 0.000 0.000 0.000 0.418
22 500 391482 391654 391598 391597 391598 0.143 0.003 0.000 0.003 0.294
23 500 407515 407751 407752 407751 407751 0.000 0.003 0.000 0.000 0.579
24 500 412614 412763 412763 412763 412763 0.000 0.000 0.000 0.000 0.361
25 500 402198 402348 402277 402277 402277 0.176 0.000 0.000 0.000 0.196
26 1000 786520 786731 786732 786732 786732 0.000 0.001 0.001 0.001 0.268
27 1000 796696 797148 797149 797148 797148 0.000 0.001 0.000 0.000 0.191
28 1000 812939 813407 813406 813407 813406 0.001 0.000 0.001 0.000 0.575
29 1000 805501 805634 805634 805634 805634 0.000 0.000 0.000 0.000 0.165
30 1000 802280 802431 802432 802431 802432 0.000 0.001 0.000 0.001 0.313
31 2000 1465017 1465731 1465705 1465718 1465705 0.018 0.000 0.009 0.000 0.469
32 2000 1582076 1582976 1582977 1582977 1582977 0.000 0.001 0.001 0.001 0.569
33 2000 1633068 1634000 1634000 1634000 1634000 0.000 0.000 0.000 0.000 0.570
34 2000 1563967 1564236 1564185 1564186 1564185 0.001 0.000 0.001 0.000 0.139
35 2000 1607103 1607640 1607640 1607641 1607640 0.000 0.000 0.001 0.000 0.334
36 3000 2297871 2298872 2298873 2298872 2298873 0.000 0.001 0.000 0.001 0.435
37 3000 2362318 2363663 2363663 2363663 2363663 0.000 0.000 0.000 0.000 0.569
38 3000 2403658 2405041 2405040 2405040 2405040 0.001 0.000 0.000 0.000 0.575
39 3000 2387987 2388745 2388746 2388745 2388753 0.000 0.001 0.000 0.003 0.317
40 3000 2324214 2325395 2325396 2325396 2325395 0.000 0.001 0.001 0.000 0.508

Total 1.233 0.051 0.172 0.030

Table 3: The CPU Time of PSOC, PSO, WLA and BSSS algorithms

n WLA BSSS PSO PSOC
100 0.002 4.204 0.630 0.778
200 0.004 7.765 1.145 1.318
300 0.005 11.363 1.686 1.852
400 0.007 15.061 2.192 2.920
500 0.008 18.205 2.709 3.470
1000 0.014 83.607 5.348 5.929
2000 0.027 389.972 10.570 12.346
3000 0.040 576.231 15.750 17.230

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 79

Table 4: The objective functions and errors in a constant time

objectivefunction %Error

test# n time BSSS PSO PSOC BSSS PSO PSOC

1 100 0.5 59630 59617 59617 0.218 0.000 0.000
2 100 0.5 68997 68996 68995 0.028 0.014 0.000
3 100 0.5 82290 82289 82287 0.036 0.024 0.000
4 100 0.5 78241 78205 78202 0.780 0.320 0.281
5 100 0.5 76147 76146 76145 0.026 0.013 0.000
6 200 1.0 121355 121345 121343 0.124 0.041 0.025
7 200 1.0 166799 166263 166260 3.278 0.054 0.036
8 200 1.0 160699 159771 159730 6.129 0.319 0.063
9 200 1.0 162330 162318 162314 0.111 0.037 0.012
10 200 1.0 160345 160325 160324 0.131 0.006 0.000
11 300 1.5 233809 233766 233767 0.188 0.004 0.008
12 300 1.5 234316 234316 234316 0.008 0.008 0.008
13 300 1.5 246072 246047 246045 0.110 0.008 0.000
14 300 1.5 241763 241770 241761 0.008 0.037 0.000
15 300 1.5 235704 235664 235651 0.352 0.182 0.127
16 400 2.0 309790 309779 309780 0.039 0.009 0.012
17 400 2.0 337568 337543 337543 0.075 0.000 0.000
18 400 2.0 320116 320090 320076 0.258 0.180 0.138
19 400 2.0 326814 326784 326784 0.248 0.153 0.153
20 400 2.0 318853 318783 318783 0.220 0.000 0.000
21 500 2.5 394384 394366 394365 0.061 0.005 0.003
22 500 2.5 391755 391598 391599 0.403 0.003 0.005
23 500 2.5 407801 407751 407751 0.151 0.000 0.000
24 500 2.5 412833 412772 412763 0.211 0.027 0.000
25 500 2.5 402451 402279 402280 0.433 0.006 0.009
26 1000 5.0 786851 786742 786733 0.153 0.011 0.002
27 1000 5.0 797153 797149 797149 0.004 0.001 0.001
28 1000 5.0 813407 813410 813407 0.001 0.004 0.001
29 1000 5.0 805710 805642 805639 0.094 0.008 0.005
30 1000 5.0 802671 802431 802433 0.299 0.000 0.002
31 2000 10.0 1465978 1465720 1465711 0.186 0.010 0.004
32 2000 10.0 1583288 1582977 1582977 0.197 0.001 0.001
33 2000 10.0 1634121 1634004 1634000 0.121 0.004 0.000
34 2000 10.0 1564480 1564186 1564186 0.189 0.001 0.001
35 2000 10.0 1607871 1607665 1607660 0.144 0.025 0.020
36 3000 15.0 2299001 2298876 2298874 0.056 0.004 0.002
37 3000 15.0 2363820 2363663 2363663 0.066 0.000 0.000
38 3000 15.0 2405131 2405041 2405041 0.037 0.001 0.000
39 3000 15.0 2388876 2388754 2388759 0.055 0.004 0.006
40 3000 15.0 2325480 2325396 2325395 0.037 0.001 0.000

Total 15.265 1.525 1.04

calculate gbest which needs O(N) operations. Therefor per iteration of PSO
has O(nN) time complexity.

PSOC is the same as PSO just we need calculate velocity v by (16). It also
need O(nN) operations. Therefor the time complexity of PSOC is O(nN)
for per iteration.

Due to [12] in each iteration of BSSS we should calculate the objective
function for a given point in a square. This take O(n2) time, therefor each
iteration of BSSS has O(n2) time complexity.

To compare the algorithms on equal terms, we allow the BSSS, PSO and
PSOC algorithms run during the same time. Table 4 contains computational
results for this case. Since WLA is very fast, its results for the given times
in Table 4 is the same as Table 2.

7 Summary and conclusion

In this paper we studied a new version of the single facility location problem in
which we want to find location of a new facility such that the sum of weighted
squared errors is minimized. In general, this problem is non convex and we

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

80 J. Fathali and A. Jamalian

showed that optimal solution of problem is in extended rectangular hull of
demand points. We proposed two approaches for solving this problem. An
iterative Weiszfeld-like procedure and two modifications of PSO algorithm.
We compared the results with those obtained by BSSS algorithm. It was
shown that for almost all problems the PSOC outperforms the other three
approaches.

References

1. Ali, M.M. and Kaelo, P. Improved particle swarm algorithm for global
optimization, Applied Mathematics and Computation, 2008, 196: 578-
593.

2. Bazaraa, M.S., Sherali, H. and Jarvis, J. Linear Programming and Network
Flows, Third ed., John Wiley & Sons; 2005.

3. Berman, O. and Huang, R. The minimum weighted covering location prob-
lem with distance constraints, Computers and Operations Research, 2008,
35: 356-372.

4. Brimberg, J. The Fermat-Weber location problem revisited, Mathematical
Programming, 1995, 71: 71-76.

5. Chen, R. Noniterative Solution of Some Fermat-Weber Location Problems,
Advances in Operations Research, Volume 2011 (2011), Article ID 379505,
10 pages.

6. Church, R. and ReVelle, C. The maximal covering location problem, Pa-
pers of Regional Science Association, 1974, 32: 101-18.

7. Clerc, M. and Kennedy, J. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space, IEEE Transactions on
Evolutionary Computation, 2002, 1: 58-73.

8. Courant, R. and Robbins, H. What is mathematics? Oxford: Oxford
University Press, 1941.

9. Dantzig, G.B. and Thapa, M.N. Linear Programming 2: Theory and Ex-
tensions. Springer; 2003.

10. Drezner, Z. On convergence of the generalized Weiszfeld algorithm, Ann
Oper Res. 2008; 167: 327-336.

11. Eberhart, R.C. and Kennedy, J. A new optimizer using particle swarm
theory, proc. 6th int. Symp. Micro Machine and Human science, Nagoya,
Japan, 1995; 39-43.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

Efficient methods for goal square Weber location problem 81

12. Fathali, J., Zaferanieh, M. and Nezakati, A. A BSSS algorithm for the
location problem with minimum square error, Advances in Operations
Research, Volume 2009 (2011), Article ID 212040, 10 pages.

13. Hansen, P., Peeters, D. and Thisse, J.F. On the location of an obnoxious
facility, Sistemi Urbani, 1981; 3: 299-317.

14. Jamalian, A. and Fathali, J. Linear programming for the location problem
with minimum absolute error, World Applied Sciences Journal 2009, 7:
1423-1427.

15. Jin, Y.X., Cheng, H.Z., Yan, J. and Zhang, L. New discrete method for
particle swarm optimization and its application in transmission network
expansion planning, Electric Power Systems Research, 2007, 77: 227-233.

16. Kuhn, H.W. On a pair of dual nonlinear programs. In: Nonlinear Pro-
graming, J.Abadie (eds.), North-Holand Publishers Co. Amsterdam, 1967,
37-54.

17. Kuhn, H.W. and Kuenne, R.E. An efficient algorithm for the Numerical
Solution of the Generalized Weber Problem in spatial Economics, Journal
of Regional Science, 1967; 4: 21-33.

18. Love, R.F., Morris, J.G. and Wesolowsky, G.O. Facility Location :models
and methods., North-Holland,(1988).

19. Mangasarian, O.L. Nonlinear Programming. McGraw-Hill; 1969.

20. Plastria, F. GBSSS: the generalized big square small square method for
planar single-facility location, European Journal of Operational Research,
1992; 62: 163-174.

21. Shi, Y. and Eberhart, R.C. Empirical study of particle swarm optimiza-
tion, IEEE International Congress on Evolutionary Computation, 1999,
3: 101-106.

22. Skriver, A.J.V. and Andersen, K.A. The bicriterion semi-obnoxious lo-
cation (BSL) problem solved by an ϵ-approximation, European Journal of
Operational Research, 2003; 146: 517-528.

23. Trinh, M.H., Lee, B.H. and Ahn, H.S. The Fermat-Weber location prob-
lem in single integrator dynamics using only local bearing angles, Auto-
matica, 2015; 59: 90-96.

24. Weiszfeld, E. Sur Le Point Pour Lequel La Somme Des Distances De N
Points Donnes Est Minimum, Tohoku Mathematical Journal, 1937; 60:
355-386.

Archive of SID

www.SID.ir

http://www.sid.ir

..

G
al
le
y
P
ro
of

82 J. Fathali and A. Jamalian

25. Zaferanieh, M., Kakhki, H.T., Brimberg, J. and Wesolowsky, G.O. A
BSSS algorithm for the single facility location problem in two regions with
different norms, European Journal of Operational Research, 2008; 190:
79-89.

Archive of SID

www.SID.ir

http://www.sid.ir

آرمانی مربعی وبر مکانیابی مساله

۲ جمالیان علی و ۱ فتحعلی جعفر

ریاضی علوم دانشکده شاهرود، صنعتی دانشگاه ۱

ریاضی علوم دانشکده گیلان، دانشگاه ۲

١٣٩۵ شهریور ٢۴ مقاله پذیرش ،١٣٩۵ خرداد ٢٩ شده اصلاح مقاله دریافت ،١٣٩۴ دی ٢٣ مقاله دریافت

آرمانی مکانیابی مساله را آن که پردازیم می وبر مکانیابی مساله از خاصی حالت به مقاله دراین : چکیده
وزنی مجموع که است ای گونه به صفحه در ای نقطه کردن پیدا هدف وبر مکانیابی مساله در نامیم. می
Pi مانند موجود نقطه هر آرمانی مکانیابی مساله در شود. کمینه موجود نقطه n و نقطه این بین ها فاصله
به Pi نقطه از ri فاصله در جدید دهنده سرویس که است وقتی آل ایده حالت و دارد ri متناظر شعاع یک
وجود است ممکن ای نقطه چنین مسائل اغلب در که است واضح اما گیرد. قرار i = ۱,۲, · · ·n ازای
مقاله این در کنیم. کمینه را آل ایده نقطه از مربعی خطای وزنی مجموع میکنیم سعی ما لذا باشد. نداشته
بهینه روش به الگوریتم دو و وایزفلد روش شبیه الگوریتمی . شوند می گرفته درنظر اقلیدسی نرم با ها فاصله
مقایسه کوچک مربع بزرگ، مربع روش با را آنها از حاصل نتایج و کرده ارائه مساله برای پرندگان سازی

کنیم. می

. پرندگان سازی بهینه وایزفلد؛ الگوریتم مکانیابی؛ نظریه : کلیدی کلمات

Archive of SID

www.SID.ir

http://www.sid.ir

