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Abstract

The extended trust region subproblem has been the focus of several

research recently. Under various assumptions, strong duality and certain
SOCP/SDP relaxations have been proposed for several classes of it. Due to
its importance, in this paper, without any assumption on the problem, we
apply the widely used alternating direction method of multipliers (ADMM)

to solve it. The convergence of ADMM iterations to the first order stationary
conditions is established. On several classes of test problems, the quality of
the solution obtained by the ADMM for medium scale problems is compared
with the SOCP/SDP relaxation. Moreover, the applicability of the method

for solving large scale problems is shown by solving several large instances.

Keywords: Extended trust region subporblem; Alternating method; Non-
convex optimization; Semidefinite program; Second order cone program.

1 Introduction

Consider the following extended trust region subproblem with m linear in-
equalities (m-eTRS):

min
1

2
xTAx+ aTx

||x||2 ≤ 1, (m-eTRS)

bTi x ≤ βi, i = 1, · · · ,m,

∗Corresponding author
Received 19 December 2015; revised 31 July 2016; accepted 28 September 2016
M. Salahi

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of
Guilan, Rasht, Iran. e-mail: salahim@guilan.ac.ir

A. Taati

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of
Guilan, Rasht, Iran. e-mail: akram.taati@gmail.com

107

Archive of SID

www.SID.ir

http://www.sid.ir


..

G
al
le
y
P
ro
of

108 M. Salahi and A. Taati

where A ∈ Rn×n is a symmetric matrix but not necessarily positive definite,
a, bi ∈ Rn and βi ∈ R. Due to its importance and crucial role in solving
general nonlinear optimization problems, several versions of it have been the
focus of current research [6, 7, 11, 13, 17, 18]. In [13], the authors have shown
that the dimension condition, dim( Ker(A − λ1In)) ≥ s + 1, where λ1 is
the smallest eigenvalue of A and s = dim(span{b1, .., bm}), together with the
Slater condition ensure that a set of combined first and second-order Lagrange
multiplier conditions are necessary and sufficient for the global optimality of
(m-eTRS) and consequently for strong duality. In [11], the authors have pro-
posed an induction technique that reduces (m-eTRS) to several small-sized
trust region subproblems (TRS). When m is not too large, their method
can be very efficient but requires finding local-nonglobal minimum (LNGM),
which no efficient algorithm is known to find it. Moreover, no numerical ev-
idences are reported by the authors to support their theoretical foundation.
Also they have improved the dimension condition by Jeyakumar and Li un-
der which (m-eTRS) admits an exact SDP relaxation. They proposed the
following condition

rank ([A− λ1In b1 b2 · · · bm]) ≤ n− 1. (1)

This rank condition implies that the global optimal solution of the (m-eTRS)
does not happen at the (LNGM) of (TRS) [8,15]. In a most recent study [7],
the authors have proposed the following SOCP/SDP relaxation for (m-eTRS)
based on the following assumption:
Assumption 1: For all i < j, there exists no feasible point x for (m-eTRS)
such that bTi x = βi and bTj x = βj .

minx,X
1

2
trace(AX) + aTx

s.t. trace(X) ≤ 1, X ⪰ xxT ,

||βix−Xbi|| ≤ βi − bTi x, 1 ≤ i ≤ m, (Rm)

βiβj − βjb
T
i x− βib

T
j x+ bTi Xbj ≥ 0, 1 ≤ i < j ≤ m.

They also have proved that this relaxation is tight when we consider the fol-
lowing assumption instead of Assumption 1.
Assumption 2: For all i < j, there exists no x with ||x|| < 1 such that
bTi x = βi and bTj x = βj .

Moreover, in several recent studies, when m = 1, efficient algorithms have
been proposed to solve large instances of (m-eTRS) [17,18]. Therefore, find-
ing an efficient algorithm to solve (m-eTRS) problems when m > 1 is still
an active research area as the proposed methods either are using certain as-
sumptions to simplify the analysis or using the SOCP/SDP relaxation, which
both are not applicable practically, specially for large scale instances.
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Recently, the Alternating Direction Method of Multipliers (ADMM) have
been widely used to solve optimization problems arising in machine learning,
signal processing, matrix factorization, financial optimization and etc. [2,3,5,
12,14,19,22]. Although the method exhibits faster convergence in practice, its
global convergence is still the subject of research. Under various assumptions
on the sequence generated by the method like ”if the limit point exists”
or ”if the Lagrange multipliers are bounded”, its global convergence to a
stationary point is established in the above-mentioned papers. In this paper,
we apply ADMM to (m-eTRS) without any assumption on the geometry
of the feasible region. The convergence of the method to the first order
necessary optimality conditions is proved. Finally, on several medium scale
instances its performance is compared with the SOCP/SDP relaxation of [7]
and then several large instances also are solved by ADMM. To the best of our
knowledge, there is no algorithm in the literature for large scale (m-eTRS)
which we could provide comparison.

2 ADMM for (m-eTRS)

One can write (m-eTRS) in the following equivalent form:

min
1

2
xTAx+ aTx

||x||2 ≤ 1, (2)

bTi z ≤ βi, i = 1, · · · ,m
x = z.

Now consider the following augmented Lagrangian for (2):

L(x, z, λ) =
1

2
xTAx+ aTx+ λT (x− z) +

ρ

2
||x− z||2,

where λi’s are Lagrange multipliers and ρ > 0 is the penalty parameter. The
ADMM iterations for the given xk and λk are as follows [5]:

• Step 1: zk+1 = argminbTi z≤βi, i=1,··· ,mL(xk, z, λk).

• Step 2: xk+1 = argmin||x||2≤1L(x, z
k+1, λk).

• Step 3: λk+1 = λk + γρ(xk+1 − zk+1), where γ ∈ (0, 1) is a constant.

In what follows, we discuss the above steps. In Step 1, we need to solve the
following convex quadratic optimization problem with m linear inequality
constraints which can be efficiently solved using existing convex optimization
software packages like CVX [9]:
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min ρ
2z

T z − (λk + ρxk)T z

bTi z ≤ βi, i = 1, · · · ,m. (3)

In Step 2 we need to solve the following (TRS) problem:

min 1
2x

T (A+ ρI)x+ (a+ λk − ρzk+1)Tx

||x||2 ≤ 1. (4)

The (TRS) problems are widely used and studied in the literature [8] and
they can be solved efficiently using the exiting eigenvalue approaches even
for large instances [1, 16]. Now, the ADMM algorithm for solving (m-eTRS)
can be outlined as follows.
—————————————————————————————————
ADMM Algorithm for solving (m-eTRS)
—————————————————————————————————-

Input parameters tol > 0, maxiter> 0. Choose appropriate penalty pa-
rameter ρ > 0 and γ > 0. Set k = 0 and choose appropriate xk and λk

For k = 1, · · · , maxiter do
Solve quadratic optimization problem (3) and let its solution be zk+1.
Solve the (TRS) problem (4) and let its solution be xk+1.
If ||xk+1 − zk+1|| ≤ tol, then exit with xk+1 as output.
end if
Set λk+1 = λk + γρ(xk+1 − zk+1) and k = k + 1.
end for.
—————————————————————————————————–

As we see, the method is very easy to implement and subproblems of the
Steps 1 and 2 are efficiently solvable even for large instances. In what follows,
we discuss the convergence of the above algorithm to the stationary point of
(m-eTRS). First we present the following lemma.

Lemma 1. Suppose that {λk} is bounded and
∑∞

k=1 ||λk+1 − λk||2 < ∞.
Then

||xk+1 − xk|| → 0, ||zk+1 − zk|| → 0 as k →∞.

Proof. Since xk+1 solves problem (4) at k-th iteration and xk − xk+1 is a
feasible direction with respect to the feasible region of (4), then

∇xL(x
k+1, zk+1, λk)T (xk − xk+1) ≥ 0. (5)

Now

Archive of SID

www.SID.ir

http://www.sid.ir


..

G
al
le
y
P
ro
of

Alternating direction method of multipliers for the extended ... 111

L(xk, zk+1, λk)− L(xk+1, zk+1, λk) =
1

2
(xk − xk+1)T (A+ ρI)(xk − xk+1)

+∇xL(x
k+1, zk+1, λk)T (xk − xk+1) ≥ λ1 + ρ

2
||xk − xk+1||2, (6)

where the inequality follows from the definition of the smallest eigenvalue of
A, λ1, and (5). We also have

L(xk, zk, λk)− L(xk, zk+1, λk) ≥ 0, (7)

as zk+1 is the minimizer of L(xk, z, λk). On the other hand

L(xk+1, zk+1, λk)− L(xk+1, zk+1, λk+1) = (λk − λk+1)T (xk+1 − zk+1)

= − 1

γρ
||λk − λk+1||2. (8)

Now using (5), (7), and (8) we have

L(xk, zk, λk) −L(xk+1, zk+1, λk+1) = L(xk, zk, λk)− L(xk, zk+1, λk) +

L(xk, zk+1, λk)− L(xk+1, zk+1, λk) + L(xk+1, zk+1, λk)− L(xk+1, zk+1, λk+1)

≥ λ1 + ρ

2
||xk+1 − xk||2 − 1

γρ
||λk+1 − λk||2. (9)

Since {λk} and {xk} are bounded, then from Step 3 of ADMM iterations,
{zk} also is bounded. Therefore {L(xk, zk, λk)} is bounded. Moreover, since
by assumption

∑∞
k=1 ||λk+1 − λk||2 <∞, thus from (9),

∑∞
k=1 ||xk+1 − xk||2

is a bounded series (in the sense that the sequence of partial sums is
bounded)with nonnegative terms, thus it is convergent. Then ||xk−xk+1|| →
0, as k →∞. Moreover since by assumption ||λk −λk+1|| → 0, as k →∞,
from the Step 3 we have xk − zk → 0, as k →∞. Finally since

zk − zk+1 = zk − xk + xk − xk+1 + xk+1 − zk+1

and we know zk − xk → 0, xk − xk+1 → 0, xk+1 − zk+1 → 0, as k → ∞,
then zk − zk+1 → 0.

It should be noted the boundedness assumption of multipliers in the
lemma is a standard assumption for convergence analysis of nonconvex op-
timization problems [14]. Similar assumptions are used to prove the con-
vergence to the stationary point in [21, 22]. In what follows we prove the
convergence to the first order stationary conditions

Theorem 1. Let (x∗, z∗, λ∗) be any accumulation point of {(xk, zk, λk)}
generated by the ADMM Algorithm. Then by boundedness of {λk} and∑∞

k=1 ||λk+1 − λk||2 <∞, x∗ satisfies the first order stationary conditions.

Proof. Since (x∗, z∗, λ∗) is an accumulation point of {(xk, zk, λk)}, then there
exists a subsequence {(xk, zk, λk)}k∈I that converges to (x∗, z∗, λ∗). Now
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consider subproblems that should be solved in Steps 1 and 2. As we men-
tioned, subproblem (3) in Step 1 is a convex quadratic optimization problem
which its necessary and sufficient optimality conditions are as follows:

ρzk+1 − (λk + ρxk) +
m∑
i=1

νk+1
i bi = 0,

νk+1
i (bTi z

k+1 − βi) = 0, bTi z
k+1 ≤ βi, i = 1, · · · ,m, (10)

where νk+1
i ’s are the Lagrange multipliers. Moreover, subproblem in Step 2

is a (TRS) as given in (4) that we have the following necessary and sufficient
optimality conditions for it:

(A+ ρIn + 2µk+1In)x
k+1 = −(a+ λk − ρzk+1),

µk+1(||xk+1||2 − 1) = 0, ||xk+1||2 ≤ 1, (11)

A+ ρIn + 2µk+1In ⪰ 0n×n.

Now by taking the limit of both (10) and (11), we get

(A+ ρIn + 2µ∗In)x
∗ = −(a+ λ∗ − ρz∗),

µ∗(||x∗||2 − 1) = 0, ||x∗||2 ≤ 1,

A+ ρIn + 2µ∗In ⪰ 0n×n, (12)

ρz∗ − (λ∗ + ρx∗) +

m∑
i=1

ν∗i bi = 0,

ν∗i (b
T
i z

∗ − βi) = 0, bTi z
∗ ≤ βi, i = 1, · · · ,m.

From the first and forth equations of (12), we get

(A+ 2µ∗In)x
∗ = −a−

m∑
i=1

ν∗i bi,

which with the second and the last equations are the first order stationary
conditions.

3 Numerical experiments

In this section, we present several randomly generated test problems to as-
sess the performance of ADMM for solving (m-eTRS). For small dimension
problems, we compare ADMM with the SOCP/SDP relaxation (Rm). All
computations are performed in MATLAB R2015a on a 2.50 GHz laptop with
4 GB of RAM. To solve the SOCP/SDP reformulation, we have used CVX
1.2.1. For all test problems, we set tol = 10−6 and maxiter= 100. Our exten-
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Table 1: Comparison between ADMM and SOCP/SDP relaxation for the first class of
test problems with density=0.1.

Dimension Algorithm Time (s)

n=100 ADMM 1.4
SOCP/SDP 1.9

n=300 ADMM 3.2
SOCP/SDP 27.4

n=500 ADMM 4.8
SOCP/SDP 163.5

sive testing showed that γ = 0.9 and ρ = −2λ1 + 1 are appropriate choices.
Moreover, we set λ0 = 2e, where e denotes the all one vector and x0 = e√

n
.

Finally, to solve the (TRS) problems within the algorithm we have used the
algorithm in [1] and to solve the quadratic optimization problems we have
used the ’quadprog’ command of MATLAB.

• First class of test problems:
For this class we considerm = 2 in (m-eTRS),A = sprandsym(n, density),
a = randn(n, 1), b1 = e1, b2 = −e1, the unit vector in Rn and β1 = 0.1
and β2 = 0.1. As we see, the two linear inequality constraints are par-
allel, then the relaxation in [7] is exact. Results are summarized in
Tables 1 to 3 for the average of 10 runs. In Tables 1 and 2 we compare
ADMM with the SOCP/SDP relaxation for different densities. As we
see, ADMM is much faster than SOCP/SDP relaxation. Moreover, for
these two tables beside the time, we also have computed the relative
objective function difference which is always below O(10−8) for all test
problems. This numerically verifies that ADMM converges to the same
solution as SOCP/SDP relaxation does. In Table 3 we just report the
results of ADMM as the relaxation is not applicable for these prob-
lems. In this table, KKT1 denotes the first order stationary condition,
namely ||(A+ 2µ∗In)x

∗ + a+
∑m

i=1 ν
∗
i bi||.

• Second class of test problems:
For this class we consider m = 5, the number of linear inequalities. As
before, we consider A = sprandsym(n, density) and a = randn(n, 1)

and consider b = rand(n,m), x = randn(n, 1) and β = bTx
||x|| . Obvi-

ously, the feasible region of (m-eTRS) is nonempty. Results of apply-
ing ADMM and SOCP/SDP relaxation to this class are summarized in
Tables 4 to 6. Similar observations to the previous class hold here as
well.
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Table 2: Comparison between ADMM and SOCP/SDP relaxation for the first class of
test problems with density=0.01.

Dimension Algorithm Time (s)

n=100 ADMM 0.75
SOCP/SDP 1.1

n=300 ADMM 2.6
SOCP/SDP 26.7

n=500 ADMM 4.1
SOCP/SDP 141.5

Table 3: Results of ADMM for the first class of test problems with density=0.001.

Dimension KKT1 Time (s)

n=3000 8.78× 10−14 21.5
n=5000 5.51× 10−14 37.7
n=8000 1.03× 10−13 70.8

Table 4: Comparison between ADMM and SOCP/SDP relaxation for the second class of
test problems with m = 5 and density=0.1.

Dimension Algorithm Time (s)

n=100 ADMM 2.5
SOCP/SDP 12.4

n=300 ADMM 3.9
SOCP/SDP 345.6

n=500 ADMM 5.2
SOCP/SDP 1235.8

Table 5: Comparison between ADMM and SOCP/SDP relaxation for the second class of
test problems with m = 5 and density=0.01.

Dimension Algorithm Time (s)

n=100 ADMM 2.1
SOCP/SDP 7.4

n=300 ADMM 3.3
SOCP/SDP 287.3

n=500 ADMM 4.5
SOCP/SDP 933.4
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Table 6: Results of ADMM for the second class of test problems with m = 5 and
density=0.001.

Dimension KKT1 Time (s)

n=3000 9.83× 10−14 37.6
n=5000 7.90× 10−14 56.9
n=8000 3.56× 10−14 110.7

4 Conclusions

In this paper, we have applied ADMM for solving the extended trust region
subproblem. The convergence of the method to the first order stationary con-
ditions is established and the quality of the solutions for small dimensions are
compared with the known SOCP/SDP relaxation showing that ADMM con-
verges to the global solution in significantly shorter time. Moreover, several
large instances also are solved by ADMM to show its capability. The second
order convergence analysis of the method is an interesting future research
direction which one may follow.
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یافته توسیع اطمینان ناحیه مساله زیر برای ضرایب متناوب جهت روش

طاعتی اکرم و صلاحی مازیار

کاربردی ریاضی گروه ریاضی، علوم دانشکده گیلان، دانشگاه

١٣٩۵ مهر ٧ مقاله پذیرش ،١٣٩۵ مرداد ١٠ شده اصلاح مقاله دریافت ،١٣٩۴ آذر ١٨ مقاله دریافت

است. گرفته قرار توجه مورد متعددی تحقیقات در یافته توسیع اطمینان ناحیه زیرمساله اخیراً : چکیده
مختلف های کلاس برای معین دو-نیمه درجه مخروطی سازی آزاد و قوی دوگانی گوناگون، مفروضات تحت
نظر در بدون مقاله این در یافته، توسیع اطمینان ناحیه مساله زیر اهمیت به توجه با است. شده ارایه آن
است، گرفته قرار استفاده مورد بسیار که را ضرایب متناوب جهت روش مساله، روی فرضی هیچ گرفتن
کلاس روی همچنین می�شود. ثابت اول مرتبه ایستایی شرایط به روش همگرایی می�بریم. بکار آن حل برای
سازی آزاد با متوسط ابعاد در روش این توسط شده محاسبه جواب کیفیت آزمون، مسایل از مختلفی های
با بزرگ ابعاد در مسایل حل در روش کاربرد این، بر علاوه شود. می مقایسه معین دو-نیمه درجه مخروطی

شود. می داده نشان بزرگ مقیاس مثال چندین حل

برنامه نامحدب؛ سازی بهینه متناوب؛ روش یافته؛ توسیع اطمینان ناحیه مساله زیر : کلیدی کلمات
دو. درجه مخروطی ریزی برنامه معین؛ نیمه ریزی

Archive of SID

www.SID.ir

http://www.sid.ir

