
Archive of SID

G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization
Vol. 9, No. 1, (2019), pp 93–104
DOI:10.22067/ijnao.v9i1.65852

On the finding 2-(k,l)-core of a tree
with arbitrary real weight

S.M. Ashkezari and J. Fathali∗

Abstract

Let T = (V,E) be a tree with | V |= n. A 2-(k, l)-core of T is two subtrees

with at most k leaves and with a diameter of at most l, which the sum of
the distances from all vertices to these subtrees is minimized. In this paper,
we first investigate the problem of finding 2-(k, l)-core on an unweighted tree
and show that there exists a solution that none of (k, l)-cores is a vertex.

Also in the case that the sum of the weights of vertices is negative, we show
that one of (k, l)-cores is a single vertex. Then an algorithm for finding the
2-(k, l)-core of a tree with the pos/neg weight is presented.

Keywords: Core; Facility location; Median subtree; Semi-obnoxious.

1 Introduction

Location theory is one of the important fields in operations research. In the
classical location theory, we want to find the optimal location of a set of single
points, as the facilities, on a network. However, in many real applications, the
facility to be located is too large to be modeled as a point, so the extensive
facilities, which have the form of a path or tree, are considered in many
researches.

A tree T is given. A core of a tree is a path of T , so that the sum of the
weighted distances from all vertices to this path is minimized. Morgan and
Slater [5] and Becker [1] presented linear time algorithms for finding a core

∗Corresponding author

Received 6 July 2017; revised 25 July 2018; accepted 1 September 2018
S.M. Ashkezari
Faculty of Mathematical Sciences, Shahrood University of Technology, University Blvd.,
Shahrood, Iran. email: samane.motevalli@gmail.com

J. Fathali
Faculty of Mathematical Sciences, Shahrood University of Technology, University Blvd.,

Shahrood, Iran. email: fathali@shahroodut.ac.ir

93

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

94 S.M. Ashkezari and J. Fathali

of a tree, where the weights of all vertices are nonnegative. Zaferanieh and
Fathali [16] considered the problem of finding the core of a general network
and presented an ant colony and simulated annealing algorithms for solving
this problem. Rahbari et al. [10] presented a hybrid genetic and an ant colony
algorithm for the path center problem on general networks. Motevalli and
Fathali [6] presented a linear time algorithm for finding the core of a tree
with interval weights.

A 2-core of a tree is a set of two paths minimizing the sum of the distances
of all vertices of the tree from these two paths. Becker and perl [3] considered
both cases of disjoint paths and intersecting paths for a tree. Wang [13]
presented a linear time algorithm for disjoint paths case.

Some authors deal with the case that there is a constraint on the length
of path, so that the length can be at most l (see, e.g., [2,4,8]). Peng et al. [9]
considered the problem of finding a subtree containing exactly k leaves, called
k-tree core, such that it minimizes the sum of the distances of all vertices to
this tree. A linear time algorithm is given for this problem by Shioura and
Uno [11]. Wang [12] and Wang et al. [14] considered the parallel algorithms
for finding the k-tree core of a tree.

An special case of k-tree core is (k, l)-core, which the diameter of k-tree is
at most l. Becker et al. [2] presented an efficient algorithm for finding a (k, l)-
core of a tree with time complexity of O(n2logn). Their algorithm is started
by the tree T and constructs new rooted trees where the maximum length of
a path is at most l. Then, for each new tree, apply a greedy-type procedure to
find a subtree containing the root with at most k leaves and which minimizes
the sum of the distances. The problem of finding the (k, l)-core of a tree also
has been considered in [15].

Recently the semi-obnoxious location problems have found an increasing
interest. Zaferanieh and Fathali [17] considered the problem of finding a core
of a tree with pos/neg weights. The problem of finding a (k, l)-core of a tree
with pos/neg weights is considered by Motevalli et al. [7]. They proved that,
when the sum of the weights of vertices is negative, the (k, l)-core must be
a single vertex. They also presented an algorithm with time complexity of
O(n2logn) for finding the (k, l)-core of a tree with the pos/neg weight, which
is in fact a modification of the one proposed by Becker et al. [2]. Recently
Zhou et al. [19] presented polynomial time algorithms for finding 2-core of a
tree with pos/neg weights.

In this paper, we consider the problem of finding 2-(k, l)-core of T , where
the weights of vertices in T can be any positive or negative numbers. A
2-(k, l)-core of tree is two disjoint subtrees T1 and T2 of T that each of
them has at most k leaves and diameter of at most l, so that the sum of
the distances from all vertices to these subtrees is minimized. Note that if
these two subtrees are intersecting, then the problem converts to a (k, l)-core
problem that has been solved in [7].

In what follows, we define the problem in Section 2. Then we consider
the unweighted tree in Section 3 and show that there exists a solution that

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

On the finding 2-(k,l)-core of a tree with arbitrary real weight 95

any of 2-(k, l)-core trees is not a vertex. In Section 3, also we show that when
the sum of the weights of vertices is negative, one of 2-(k, l)-cores is a single
vertex. At last, we propose an algorithm for finding the 2-(k, l)-core of a tree
with the pos/neg weight in Section 4.

2 Problem Formulation

Let T = (V,E) be a tree with |V | = n. Let w(vi), for simplicity wi, be the
weight of vertex vi ∈ V and let a(i, j) be the length of edge (i, j). Also let
d(vi, vj) be the length of path from vi to vj ; then the length of shortest path
between subtree T1 and vertex v is given by

d(v, T1) = minu∈T1 d(u, v).

For every path P , we show the length of P by L(P), and for every subtree T ′

of T , we show the weight of tree T ′ by w(T ′), that is, w(T ′) =
∑

vi∈T ′ wi. The
diameter dT ′ of any tree T ′ is the maximum distance between two vertices of
T ′. Any path whose length equals dT ′ , is called a diameter path of T ′.

A (k, l)-core of T is a subtree T1 = (V1, E1) of T with at most k leaves
and with a diameter of at most l, so that the sum of weighted distances from
all vertices to T1 is minimized, that is,

minF (T1) =
∑

vi∈V \V1

wid(vi, T1).

Also a 2-(k, l)-core of T is a set of two subtrees T1 = (V1, E1) and T2 =
(V2, E2) with at most k leaves and with a diameter of at most l, so that the
following function is minimized:

F (T1, T2) =
∑

vi∈V \(V1∪V2)

wid(vi, T1, T2),

where d(vi, T1, T2) is the minimum distances from the vertex vi to T1 and T2,
that is,

d(vi, T1, T2) = min{d(vi, T1), d(vi, T2)}.

The applications of 2-(k, l)-core is the same as (k, l)-core. It can be ap-
plied to design of communication networks such as railroad lines, high ways,
pipelines, and transit routes. For more details on semi-obnoxious (k, l)-core
and its application to real world, we refer the reader to [7] and [17].

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

96 S.M. Ashkezari and J. Fathali

3 The properties for special cases

In this section, we investigate some properties of 2-(k, l)-core in special cases.
The basic idea of solving 2-(k, l)-core is the edge deletion method, which is
tried to find an optimal solution by removing any edges and find a (k, l)-core
in each obtained subtree. In the following theorems, we use this idea to show
the properties of problem.

First, we consider the unweighted tree where all edges and vertices have
the same positive weight. The following theorem shows that none of two
subtrees of 2-(k, l)-core on an unweighted tree with dT > 2 is a single vertex.

Theorem 1. Let T = (V,E) be an unweighted tree. Then, for the case l > 0
and dT > l+1, there is a set of two subtrees T ′

1 and T ′
2, which are 2-(k, l)-core

of T , that non of them is a single vertex.

Proof. First, we show that a leaf cannot be one of 2-(k, l)-core of T . Let q
be an edge between an inner vertex and a leaf vi of T . By removing q, two
subtrees T1 and T2 = vi are obtained. Let T ′

1 and T ′
2 = vi be the (k, l)-core

of T1 and T2, respectively, and let vj ∈ T1 be the adjacent vertex to vi. If
vj /∈ T ′

1, then by adding vj to T ′
2, the objective function will not be increased.

In the case when vj ∈ T ′
1, let vr ∈ T ′

1 be a non leaf adjacent vertex to vj
and let T ′

1(vj) be a subtree of T ′
1 containing vj obtained by deleting the edge

(vj , vr). Then by adding all vertices in T ′
1(vj) to T ′

2 and deleting them from
T ′
1, the objective function does not increase. Note that since dT > l+1, then

there exists a non leaf vertex vr ∈ T ′
1 adjacent to vj .

In the case that one of (k, l)-cores is an inner vertex, obviously, we can
reduce the objective function by extending the core toward a leaf.

Note that Theorem 1 is not true for the case dT ≤ 2. A counter example,
for this case is the star graph, which is a tree that have just one vertex with
degree more than one.

Now consider the case w(T) < 0. In this case, according to Theorems 2
and 3, the solution of (k, l)-core is a single vertex that may be a leaf. The
proof of these theorems can be found in [7].

Theorem 2. Let T be a tree with w(T) < 0. Then the (k, l)-core is the
1-median of T and vice versa.

For any edge (u, v) ∈ E, suppose that Tuv is the subtree of T obtained by
deleting edge (u, v), in which v ∈ Tuv.

Theorem 3. Let T be a tree with w(T) < 0. Then one of the following two
cases holds:

1. The (k, l)-core is a leaf.

2. The (k, l)-core is an inner vertex u, so that w(u) ≥ 0 and w(Tuv) ≤ 0
for each vertex v adjacent to u.

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

On the finding 2-(k,l)-core of a tree with arbitrary real weight 97

Corollary 1. Let T = (V,E) be a tree with w(T) < 0. There is a solution
for a 2− (k, l)-core problem that one of (k, l)-cores is a single vertex.

Proof. Let T ′
1 and T ′

2 be the 2 − (k, l)-core of T . Also let T1 and T2 be two
subtrees of T containing all vertices which assigned to T ′

1 and T ′
2, respectively.

So T ′
1 and T ′

2 is (k, l)-core of T1 and T2, respectively. Since w(T) < 0, then
w(T1) < 0 or w(T2) < 0. Therefore by Theorem 2, T ′

1 or T ′
2 is a vertex.

Theorem 4. Let T = (V,E) be a tree with w(T) ≥ 0, let T1 be a subtree
of T with dT1 < l, and let the number of leaves of T1 be less than k. If
w(T \ T1) > 0, then T1 is not a (k, l)-core of T .

Proof. Let T c
1 = T \ T1. Since w(T c

1) > 0, there exists a component T2 of
T , which is obtained by removing T1, so that w(T2) > 0. Let u ∈ T2 be the
adjacent vertex to T1 and T3 = T1 ∪ {u}. Then

F (T1) =
∑

vi∈T c
1 \T2

wid(vi, T1) +
∑
vi∈T2

wid(vi, T1)

=
∑

vi∈T c
1 \T2

wid(vi, T1) +
∑
vi∈T2

wi(d(vi, u) + d(u, T1))

= F (T3) + d(u, T1)w(T2) > F (T3).

Therefore T1 is not the (k, l)-core of T .

Zhou et al. [19] proved that the midpoint of two disjoint facility paths
is a vertex of the tree. This property holds for 2-(k, l)-core case and can be
written as the following theorem.

Theorem 5. If two disjoint subtrees T1 and T2 are a 2-(k, l)-core of T , then
the midpoint of the path between T1 and T2 is a vertex of the tree.

4 Algorithm

As mentioned before to find a 2-(k, l)-core of a tree, we delete an edge of T
and divide T to two subtrees T1 and T2. Then find the (k, l)-core of each
of T1 and T2. This procedure is repeated for each edge of T and the best
pair of (k, l)-cores is found. To find any (k, l)-core of T1 and T2, we can use
the algorithm of Motevalli et al. [7]. The complexity of their algorithm is
O(n2logn), therefor the complexity of finding 2-(k, l)-core is O(n3logn).

However for the case w(T) < 0, according to Lemma 3, the (k, l)-core is
a vertex, which is either a leaf or an inner vertex u, so that w(u) ≥ 0 and
w(Tuv) ≤ 0 for each vertex v adjacent to u. Also in the case w(T) > 0, we
can use Theorem 4.

Therefore we can present the following algorithm.
www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

98 S.M. Ashkezari and J. Fathali

Algorithm
Input: a tree T with the pos/neg weight
Output: a 2-(k, l)-core S∗ of T and its objective function d∗

begin
d∗ := +∞
for each subtree T1 and T2 obtained from T by removing
each edge e ∈ E do
SUBTREE(Ti) for i = 1, 2

end

Where procedure SUBTREE(T) find (k, l)-core of tree T as follows:

Proedure SUBTREE(T ′)
Input: a subtree T ′ = (V ′, E′) of T with | V ′ |= n′ and the best current
objective function d∗

Output: if the best subtree in T ′ has an objective function less than the
previous value of d∗, the best subtree S∗ in T ′ , having at most k leaves and
with a diameter of at most l and its objective function as the new value of d∗

begin
if T ′ consists of one vertex then

S′ = T ′ and let d(S′) be its objective function
else

find a central vertex v of T ′

if w(T ′) < 0, v is an inner vertex, w(v) ≥ 0 and for each vertex u
adjacent to v, w(Tvu) ≤ 0
then v is the (k, l)-core, let S′ = v and set d(S′) as its objective func-

tion
else let S′ := BEST-TREE(T ′, v)

if d(S′) < d∗ and W (T \ S′) < 0
d∗ := d(S′)
S∗ := S′

for each subtree T i obtained from T ′ by removing v
do
SUBTREE(T i)

end

In this procedure, a central vertex v of the tree T is the centroid of the
corresponding unweighted tree of T , that is, a vertex minimizes the maximum
number of vertices of the subtrees obtained by removing it. The procedure
BEST-TREE(T ′, v), which is presented by Beker et al. [2], finds the best
subtree S′ containing v in T ′v having at most k leaves and a diameter of at
most l.

Procedure BEST − TREE(T ′, v)
Input: a subtree T ′ = (V ′, E′) of T with n′ vertices rooted at the central

vertex v
www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

On the finding 2-(k,l)-core of a tree with arbitrary real weight 99

Output: the best subtree S′ containing v in T ′v having at most k leaves
and a diameter of at most l and its objective function d(S′)

begin
find the paths starting from v with the length at most l
for each path P starting from v with the length at most l

do
prune the tree T ′v and let T̂ ′v be the new tree (see Prune)
find the distance savings of the paths from v to each vertex u ̸= v in
T̂ ′v

if deg(v) ≥ 2 then
find the path P ′

find P ′′ = P ∪ P ′

else
P ′′ = P
find the set LS with all paths having the length no more than l

and
containing P ′′ that their objective function are better than P ′′

if T̂ ′v has more than k leaves, then
in LS select the k − 2 paths to be added to P ′′

let S′ be the best subtree containing v and
let d(S′) be its objective function

else
select all the paths in LS
let S′ = T̂ ′v and let d(S′) be its objective function

end for
end

The following notations are used in procedure BEST-TREE.

Let Puv be the path between vertices u and v in the tree T and let Tu

be the tree T rooted at u. We also denote by Tu
v the rooted subtree of Tu

containing v and all the descendants of v. For each vertex u, let f(u) be its
father. The distance saving sav(v, Pvu) obtained by adding Pvu to the root
v in Tu

v , is given by

sav(v, Pvu) = sav(v, Pvf(u)) + a(f(u), u)sumc(u)

where if v = f(u), then sav(v, Pvf(u)) = sav(v, v) = 0 and sumc(u) is calcu-
lated by

sumc(v) =

w(v) if v is a leaf ofTc,

w(v) +
∑

u is a child of v

sumc(u) otherwise,
(1)

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

100 S.M. Ashkezari and J. Fathali

where Tc is the selected subtree of T as the (k, l)-core in the current iteration.
Let the path P = Pvu be given and let B be the set of children of v. We
denote by T v

b̄
, b̄ ∈ B, the subtree in which P lies. In the algorithm, the tree

T v is pruned as follows:

1. Prune the paths that belong to subtrees T v
b , with b ∈ B \ {b̄}, in order

to obtain paths with the length at most min{l − L(P), L(P)}.

2. For the paths that lie in the same subtree as P = Pvu (i.e., in T v
b̄
),

prune those paths Pxw, with x ∈ P , x ̸= v and w ∈ T v
b̄
\ P , such that

L(Pxw) > min{L(P)− L(Pvx), l − L(Pxu)}.

The pruned tree is called T̂ v, and the weight of tree T̂ v is calculated by
the following function:

w′(u) =

w(u) for each vertex u of T̂ vthat is not a leaf,

sumv(u)a(u, f(u)) for each vertex u that is a leaf of T̂ v.

(2)

In the rest of this section, we use the algorithm for a different case of the
total weight of a tree.

Example 1. Consider the tree shown in Figure 1. The length of each
edge is written on it. Also the weights of vertices are shown in Table 1. The
total weight of tree is w(T) = 3 > 0. We want to find the 2-(3,3)-core on this
tree. Since w(T) > 0, according to the algorithm, we should delete an edge
of T and obtain two subtrees T1 and T2. Let us delete v9 − v10 and consider
T1 = v10 and T2 = T \ T1. Now we should find (3,3)-core of each subtree.
Because T1 has only one vertex (v10), so its (3,3)-core is v10. To find the
(3,3)-core of T2, we should find a central vertex of T2. We start with v5 as
a central vertex. Then we should find all of the paths starting from v5 with
the length at most 3. This paths are shown in Figure 2.

Table 1: The weights of vertices of tree in Figure 1 for Example 1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

3 -2 1 -1 1 2 -3 2 2 -1 -2 1

Now for each pat, prune the tree T and continue steps of the algorithm.
For example, consider the path number 8 in Figure 2, the new tree after
prune is presented in Figure 3.

The distance savings of p : v5 v4 and p : v5 v6 are sav(v5, pv5v4) = −2 and
sav(v5, pv5v6) = +2. Since deg(v5) = 4, we consider p′ = v5−v6, so p

′′ = p∪p′
that is shown in Figure 3. Also since T̂ ′v has 2 leaves, so we select all the
paths in LS; then S′ = T̂ ′v and d(S′) = 0. After performing the above steps
for each path, we consider subtrees obtained by removing v5 one by one and

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

On the finding 2-(k,l)-core of a tree with arbitrary real weight 101

Figure 1: A tree with 12 vertices.

Figure 2: The paths starting from v5 with the length at most 3.

find a central vertex for each subtree and continue above steps for each sub-
tree. After that we delete other edges of tree such as v9− v10 one by one and
run all of the above steps after removing each edge. Finally 2-(3,3)-core of T
is T ′

1 = v1 and T ′
2 = v8 that is obtained by removing of edge v1 − v3, and its

objective function is equal to F (T ′
1, T

′
2) = F (v1)+F (v8) = 0+ (−19) = −19.

Example 2. Consider the tree depicted in Figure 4. The edge lengths are
written on the edges. The weights of vertices are given in Table 2. The total
weight of tree is w(T) = −1 < 0. We want to find the 2-(3, 4)− core on this
tree. Since w(T) < 0, according to Theorem 2, the (k, l)-core is a vertex of T .
The (k, l)-core of T is v3, that is 1-median of T , too. The best solution is ob-
tained by removing edge v6−v8.Therefore 2-(k, l)-core is T

′
1 = v3 and T ′

2 = v8,www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

102 S.M. Ashkezari and J. Fathali

Figure 3: The path number 8 after prune.

and the objective function is F (T ′
1, T

′
2) = F (T ′

1) + F ′(T2) = −25 + 0 = −25.

Table 2: The weights of vertices of tree in Figure 1 for Example 1

w1 w2 w3 w4 w5 w6 w7 w8

-1 3 2 -2 1 -3 -2 1

Figure 4: A tree with 8 vertices.

5 Summary and conclusion

In this paper, we considered the 2-(k, l)-core problem on a tree with positive
and negative weights. We showed that, in the case when the sum of weights
of tree is negative, the solution of 2-(k, l)-core is also 1-median. Some prop-
erties also stated for the case that the tree has the positive weight. Then a
polynomial algorithm was presented to find the solution of this problem.

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

On the finding 2-(k,l)-core of a tree with arbitrary real weight 103

For a future research, it would be interesting to develop the algorithm on
other special graphs such as extended stars, cactus graphs, interval graphs,
and block graphs.

Acknowledgements

Authors are grateful to there anonymous referees and editor for their con-
structive comments.

References

1. Becker R.I. Inductive algorithms on finite trees, Quaest Math., 13,
(1990), 165–181.

2. Becker R.I., Lari I., Storchi G. and Scozzari A. Efficient algorithms for
finding the (k, l)-core of tree networks, Networks, 40, (2002), 208–215.

3. Becker R.I. and Perl Y. Finding the two-core of a tree, Discrete Applied
Mathematics, 11, (1985), 103–113.

4. Minieka E. and Patel N.H. On finding the core of a tree with a specified
length, J. Alg., 4, (1983), 345–352.

5. Morgan C.A. and Slater P.J. A linear algorithm for a core of a tree,
Journal of Algorithms, 1, (1980), 247–258.

6. Motevalli S. and Fathali J. A linear algorithm for finding core of weighted
interval trees, Journal of Operational Research and Its Applications, 13,
(2016), 101–111.

7. Motevalli S., Fathali J. and Zaferanieh M. An efficient algorithm for
finding the semi-obnoxious (k,l)-core of a tree, Journal of Mathematical
Modeling, 3, (2015), 129–144.

8. Peng S. and Lo W. Efficient algorithms for finding a core of a tree with
a specified length, Journal of Algorithms 20, (1996), 445–458.

9. Peng S., Stephens A.B. and Yesha Y. Algorithms for a core and a k-tree
core of a tree, J. Alg., 15, (1993), 143–159.

10. Rahbari M., Fthali J. and Mortazavi R. A hybrid algorithm for the path
center problem, Global Analysis and Discrete Mathematics, 1, (2016),
83–92.

www.SID.ir

http://www.SId.ir

Archive of SID

G
al
le
y
P
ro
of

104 S.M. Ashkezari and J. Fathali

11. Shioura A. and Uno T. A linear time algorithm for finding a k-tree core,
J. Alg., 23, (1997), 281–290.

12. Wang B.F. Finding a k-tree core and a k-tree center of a tree network
in parallel, IEEE Transactions on Parallel and Distributed Systems, 9,
(1998), 186–191.

13. Wang B.F. Finding a 2-core of a tree in linear time, SIAM Journal on
Discrete Mathematics, 15, (2002), 193–210.

14. Wang Y., Wang D.Q., Liu W. and Tian B.Y. Efficient parallel algorithms
for constructing a k-tree center and a k-tree core of a tree network, Lec-
ture Notes in Computer Science 3827, Springer-Verlag Berlin Heidelberg,
(2005), 553–562.

15. Wang Y. and Wang Y. Efficient algorithms for constructing a (k,l)-center
and a (k,l)-core in a tree network, Fourth International Conference on
Innovative Computing, Information and Control, (ICICIC), 2009.

16. Zaferanieh M. and Fathali J. Ant colony and simulated annealing algo-
rithms for finding the core of a graph, World Applied Science Journal,
7, (2009), 1335–1341.

17. Zaferanieh M. and Fathali J. Finding a core of a tree with pos/neg weight,
Math. Meth. Oper. Res., 76, (2012), 147–160.

18. Zelinka B. Medians and peripherians of trees, Archvum Mathematicum,
4, (1968), 87–95.

19. Zhou J., Kang L. and Shan E. Two paths location of a tree with positive or
negative weights, Theoretical Computer Science, 607, (2015), 296–305.

www.SID.ir

http://www.SId.ir

Archive of SID

حقیقی وزن با درختهای روی ,k)–هسته l)− ٢ کردن پیدا مساله

فتحعلی جعفر و اشکذری متولی سمانه

ریاضی علوم دانشکده شاهرود، صنعتی دانشگاه

١٣٩٧ شهریور ١٠ مقاله پذیرش ،١٣٩٧ مرداد ٣ شده اصلاح مقاله دریافت ،١٣٩۶ تیر ١۵ مقاله دریافت

: چکیده
دو شامل T درخت از ,k)–هسته l)−٢ یک باشد. راس n شامل درختی T = (V,E) کنید فرض
همچنین هستند، l قطر حداکثر و برگ T دارای حداکثر آنها از یک هر که باشد می T از مجزا درخت زیر
مساله بررسی به ابتدا در مقاله این در است. کمینه زیردرخت دو این تا درخت رئوس تمام فاصله مجموع
می نشان و پردازیم می است یکسان رئوس تمام وزن آن در که درختی روی ,k)–هسته l)− ٢ کردن پیدا
الگوریتمی سپس نیست. تنها راس یک ها هسته از یک هیچ که دارد وجود مساله این برای جوابی دهیم
ارائه باشد، منفی یا مثبت تواند می آنها رئوس وزن که درختهایی روی ,k)–هسته l)− ٢ کردن پیدا برای

دهیم. می
میانه. زیردرخت نیمه-ناخوشایند؛ مکانیابی درخت؛ هسته : کلیدی کلمات

www.SID.ir

http://www.SId.ir

