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Abstract

It is important to note that mixed systems of first and second-kind

Volterra–Fredholm integral equations are ill-posed problems, so that solving
discretized system of such problems has a lot of difficulties. We will apply
the regularization method to convert this mixed system (ill-posed problem) to
system of the second kind Volterra–Fredholm integral equations (well-posed

problem). A numerical method based on Chebyshev wavelets is suggested
for solving the obtained well-posed problem, and convergence analysis of the
method is discussed. For showing efficiency of the method, some test prob-
lems, for which the exact solution is known, are considered.

Keywords: Mixed systems of first and second-kind Volterra–Fredholm in-
tegral equations; Regularization method; Chebyshev wavelets; Convergence
analysis.

1 Introduction

The Volterra–Fredholm integral equations [4, 5, 7, 13] arise from parabolic
boundary value problems, from the mathematical modeling of the spatiotem-
poral development of an epidemic, mathematical population dynamics, and
from various physical and biological models.
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In this paper, we consider mixed system of Volterra–Fredholm integral
equations (VFIEs) consisting of first and second-kind VFIEs as follows:

F (t, x) = AU(t, x) +

∫ t

0

∫
Ω

K(t, η, x, s)U(η, s)dsdη, t ∈ I = [0, T ], x ∈ Ω,

(1)
where F (t, x) = [f(t, x), g(t, x)]T , U(t, x) = [u1(t, x), u2(t, x)]

T and

A =

[
1 0
0 0

]
, K(t, η, x, s) =

[
k11(t, η, x, s) k12(t, η, x, s)
k21(t, η, x, s) k22(t, η, x, s)

]
.

Here, Ω denotes a (closed) bounded region in Rd (d = 1, 2, 3) with the
(piecewise) smooth boundary ∂Ω.

The reformulation of the initial-boundary-value problem for the linear
heat equation in a two-dimensional spatial domain Ω with the boundary ∂Ω
by single-layer techniques leads to a mixed system of Volterra–Fredholm in-
tegral equations. Mixed systems of VFIEs are considered as the ill-posed
problems. However, we will first apply the method of regularization that
received a considerable amount of interest, especially in solving first kind
integral equations. The method transforms mixed system to the system of
second kind integral equations. The method of regularization was established
independently by Phillips [12] and Tikhonov [14]. The method of regular-
ization consists of replacing ill-posed problem by well-posed problem. Some
numerical methods have been proposed for solving Volterra–Fredholm inte-
gral equations of the second kind; see, for example, [2, 6, 8, 10, 11, 15, 16]. In
this paper, the wavelet collocation method is developed for a mixed system
of first and second kind Volterra–Fredholm integral equations.

The paper is organized as follows. In Section 2, we consider some applica-
tions of Volterra–Fredholm integral equation and in Section 3, we introduce
regularization technique to transform mixed system (1) into the system of
second kind integral equations. In Section 4, a numerical method based on
Chebyshev wavelets is applied for solving the obtained well-posed problem.
The convergence analysis is given in Section 5 and the numerical experiments
are carried out in Section 6, which will be used to verify the theoretical re-
sults.

2 Some applications

We can consider Volterra–Fredholm integral equation of the first kind as
a spacial case of system (1)(let u1 = 0, k12 = 0). The reformulation of
the initial-boundary-value problem for the linear heat equation in a two-
dimensional spatial domain Ω with boundary ∂Ω by singlelayer techniques
leads to a Volterra–Fredholm integral equation of the first kind in the follow-
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ing form [3]:

gΓ(t, θ) =

∫ t

0

∫ 1

0

K(t− s,X(θ)−X(s))U(s, ϕ)dϕds,

where X(θ) is a smooth 1-periodic parametric representation of the boundary
curve Γ = ∂Ω, and gΓ represents the function describing the given boundary
condition on I × ∂Ω.

For the another example, you can consider the following integral equation
[1]

f(x, t) = (Λ(t)− f∗(x)) =

∫ t

0

∫
Ω

F (t, τ)k(x, y)Φ(y, t)dydτ,

(x = x̄(x1, x2, x3), y = ȳ(y1, y2, y3), (x, y) ∈ Ω, t ∈ [0, T ], )

under the condition ∫
Ω

Φ(x, t)dx = P (t),

can be investigated from the contact problem of a rigid surface (G, ν) hav-
ing an elastic material occupying the domain Ω where f∗(x) describing the
surface of stamp. This stamp impressed into an elastic layer surface (plane)
by a variable known force with respect to time P (t) whose eccentricity of
application e(t), (t ∈ [0, T ]) that case rigid displacement Λ(t). Here G is the
displacement magnitude and ν is Poisson’s coefficient.

3 Regularization technique

The linear operator defined by second equation in system (1) has not gener-
ally a continuous inverse, so that it is difficult to obtain a precise numerical
solution by classical discretization methods. Thus regularization techniques
could be used instead to transform integral equations such as second equa-
tion in system (1) into second-kind integral equations. More precisely, we
consider the following integral equations:

f(t, x) = u1(t, x) +

∫ t

0

∫
Ω

k11(t, η, x, s)u1(η, s)dsdη

+

∫ t

0

∫
Ω

k12(t, η, x, s)u2,ε(η, s)dsdη,

g(t, x) = εu2,ε(t, x) +

∫ t

0

∫
Ω

k21(t, η, x, s)u1(η, s)dsdη

+

∫ t

0

∫
Ω

k22(t, η, x, s)u2,ε(η, s)dsdη,

(2)

where ε is a fixed positive number.
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Under a hypothesis that will be clarified later, it can be proved that the
solution u2,ε(x, t) of equation (2) converges (when ε → 0) to the solution
u2(x, t) of equation (1). Now, we consider the matrix form of equation (2) as
the following system of integral equations:

F (t, x) = EUε(t, x) +

∫ t

0

∫
Ω

K(t, η, x, s)Uε(η, s)dsdη, (3)

where E =

[
1 0
0 ε

]
and Uε(x, t) = [u1(x, t), u2,ε(x, t)]

T .

We need the following definition and lemma to regularization technique.

Definition 1. A self-adjoint operator κ : H → H, where H is a real Hilbert
space, is called coercive if there exists a constant c > 0 such that

⟨κx, x⟩ ≥ c∥x∥2, for all x ∈ H.

Lemma 1. Suppose that the integral operator of system (3) is continuous
and coercive in a Hilbert space, where F, U, Uε are defined. Then

• ∥Uε∥ is bounded independently of ε;

• ∥Uε − U∥ tends to 0 when ε → 0.

Proof. From (3) we conclude the following:

∥E∥∥Uε∥ = ∥F −
∫ t

0

∫
Ω

KUεdsdη∥ ⩾ −∥F∥+ ∥
∫ t

0

∫
Ω

KUεdsdη∥, (4)

The coercivity property of the integral operator implies

∥
∫ t

0

∫
Ω

KUεdsdη∥ ⩾ α∥Uε∥, (5)

where α is the coercivity constant.

From (4) and (5) we deduce

∥E∥∥Uε∥ ⩾ α∥Uε∥ − ∥F∥; (6)

therefore it is obtained:

(α− ∥E∥)∥Uε∥ ⩽ ∥F∥,

which proves the first part of the lemma.

Now, for proving the second result, by using (1) and (3), we have

E(Uε − U) = −
∫ t

0

∫
Ω

K(t, η, x, s)[Uε(η, s)− U(η, s)]dsdη + Ũ1 − EU, (7)
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where Ũ1(x, t) = [u1(x, t), 0]
T . By rearranging (7), we can write∫ t

0

∫
Ω

K(t, η, x, s)[Uε(η, s)− U(η, s)]dsdη = −E(Uε − U)− εŨ2, (8)

where, by using vectors operations EU − Ũ1 = εŨ2 is obtained, which Ũ2 =
[0, u2]

T . Taking the norm from the both side of (8) and using the coercivity
property imply

α∥Uε − U∥ ⩽ ∥E(Uε − U)− εŨ2∥ ⩽ ∥E∥∥Uε − U∥+ ε∥Ũ2∥. (9)

From ∥Ũ2∥ = ∥u2∥, we deduce that

(α− ∥E∥)∥Uε − U∥ ⩽ ε∥u2∥, (10)

and now from ∥E∥ = 1 + ε → 1 when ε → 0 and α ≫ 1 then it is concluded
that ∥Uε − U∥ → 0 when ε → 0. This completes the proof.

The conditions of existence and uniqueness of solutions related to the
VFIEs (3) can be investigated by considering the theorem about existence
and uniqueness of solution of the second-kind Volterra–Fredholm integral
equation in [3].

Theorem 1. Assume that
1. F ∈ C(I × Ω)
2. K ∈ C(D × Ω2) where D = {(t, η), 0 ≤ η ≤ t ≤ T}.
Then the mixed system (3) possesses a unique solution Uε ∈ C(I × Ω).

4 Numerical treatment

4.1 Chebyshev wavelets

Dilations and translations of the “Mother function,” or “analyzing wavelet”
Φ(x) define an orthogonal basis, our wavelet basis:

Φ(s,l)(t) = 2
−s
2 Φ(2−st− l),

the variables s and l are integers that scale and dilate the mother function Φ
to generate wavelets, such as a Daubechies wavelet family. The scale index s
indicates wavelet’s width, and the location index l gives its position. Notice
that the mother functions are rescaled, or “dilated” by powers of two, and
translated by integers. What makes wavelet bases especially interesting is the
self-similarity caused by the scales and dilations. Once we know about the
mother functions, we know everything about the basis. Chebyshev wavelets
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ϕ(n,m) = ϕ(k, n,m, t) have four arguments, n = 1, 2, . . . , 2k−1, where k can
assume any positive integer and m is the degree of Chebyshev polynomials
of the first kind. They are defined on the interval [0, 1) as

ϕ(n,m)(t) =

{
2

k
2 T̂m(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,
(11)

where

T̂m(t) =

{ 1√
π
, m = 0,√
2
πTm(t), m > 0,

and m = 0, 1, . . . ,M − 1, n = 1, 2, . . . , 2k−1. Also Tm(t) are Chebyshev
polynomials of degree m which are orthogonal with respect to the func-
tion w(t) = 1√

1−t2
on the interval [−1, 1]. We consider the two-dimensional

Chebyshev wavelet ϕ(n1,m1,n2,m2)(x, y) as follows:2
k1+k2

2 T̂m1(2
k1x− 2n1 + 1)T̂m2(2

k2y − 2n2 + 1), n1−1
2k1−1 ≤ x < n1

2k1−1 ,
n2−1
2k2−1 ≤ y < n2

2k2−1 ,
0, otherwise,

(12)
where m1 = 0, 1, . . . ,M1 − 1, m2 = 0, 1, . . . ,M2 − 1, n1 = 1, . . . , 2k1−1, and
n2 = 1, . . . , 2k2−1.

A function u(x, y) ∈ L2([0, 1)× [0, 1)) may be expanded as

u(x, y) =

∞∑
n1=1

∞∑
m1=0

∞∑
n2=1

∞∑
m2=0

un1m1n2m2ϕ(n1,m1,n2,m2)(x, y). (13)

If the infinite series in equation (13) is truncated, then

u(x, y) ≈
2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
m2=0

un1m1n2m2ϕ(n1,m1,n2,m2)(x, y) = Φ(x)TUΦ(y).

(14)
where Φ(x) and Φ(y) are (2k1−1)M1× 1 and (2k2−1)M2× 1 matrices, respec-
tively, such that

Φ(x) = [ϕ(1,0)(x), . . . , ϕ(1,M1−1)(x), . . . , ϕ(2k1−1,0)(x), . . . , ϕ(2k1−1,M1−1)(x)]
T ,

Φ(y) = [ϕ(1,0)(y), . . . , ϕ(1,M2−1)(y), . . . , ϕ(2k2−1,0)(y), . . . , ϕ(2k2−1,M2−1)(y)]
T .

Also U is a (2k1−1)M1× (2k2−1)M2 matrix whose elements can be calculated
as

un1m1n2m2 =

∫ 1

0

∫ 1

0

ϕ(n1,m1)(x)ϕ(n2,m2)(y)u(x, y)wn1(x)wn2(y)dydx,
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where n1 = 1, . . . , 2k1−1, m1 = 0, 1, . . . ,M1 − 1, n2 = 1, . . . , 2k2−1, m2 =
0, 1, . . . ,M2 − 1 and

wn(t) =

{
w(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise

Now, consider system (2) with I = Ω = [0, 1] and approximate the solu-
tion of this system using (13) as

û1(t, x) = Φ(t)TU1Φ(x). (15)

û2,ε(t, x) = Φ(t)TU2,εΦ(x). (16)

Also, we approximate the kernels in system (2) respect to two variables η
and s as follows:

kij(t, η, x, s) ≈ k̂ij(t, η, x, s) = Φ(η)TKijΦ(s) (i, j = 1, 2). (17)

Inserting (15), (16), (17), and the following collocation points

ti =
i

M12k1−1 + 1
, i = 1, 2, . . . ,M12

k1−1,

xj =
j

M12k2−1 + 1
, j = 1, 2, . . . ,M22

k2−1, (18)

into system (2), we have the following linear system of algebraic equations
for the unknown coefficients U1 and U2,ε:

f(ti, xj) = Φ(ti)
TU1Φ(xj) +

∫ ti

0

∫ 1

0

k̂11(ti, η, xj , s)Φ(η)
TU1Φ(s)dsdη

+

∫ ti

0

∫ 1

0

k̂12(ti, η, xj , s)Φ(η)
TU2,εΦ(s)dsdη,

g(ti, xj) = εΦ(ti)
TU2,εΦ(xj) +

∫ ti

0

∫ 1

0

k̂21(ti, η, xj , s)Φ(η)
TU1Φ(s)dsdη

+

∫ ti

0

∫ 1

0

k̂22(ti, η, xj , s)Φ(η)
TU2,εΦ(s)dsdη,

i = 1, 2, . . . ,M12
k1−1, j = 1, 2, . . . ,M22

k2−1.
(19)

4.2 Normalization

In the language of optimization theory, for the linear bounded operator K :
X → Y and Kx = y, determine xε that minimizes the Tikhonov functional
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Jε(x) = ∥Kx− y∥2 + ε∥x∥2, for all x ∈ X.

We can consider the following theorem from [9].

Theorem 2. Let K : X → Y be a linear bounded operator between Hilbert
spaces and let ϵ > 0. Then the Thikhonov functional Jε has a unique mini-
mum xε ∈ X. This minimum xε is the unique solution of the normal equation

εxε +K∗Kxε = K∗y.

Here, K∗ : Y → X denotes the adjoint of K.

By using Theorem 2, system (2) with I = Ω = [0, 1] can be written in the
normal form as follows:

f(p, q) = u1(p, q) +

∫ p

0

∫ 1

0

k11(p, η, q, s)u1(η, s)dsdη

+

∫ p

0

∫ 1

0

k12(p, η, q, s)u2,ε(η, s)dsdη,∫ 1

p

∫ 1

0

k22(p, t, q, x)g(t, x)dxdt

= εu2,ε(p, q)

+

∫ 1

p

∫ 1

0

∫ t

0

∫ 1

0

k22(p, t, q, x)k21(t, η, x, s)u1(η, s)dsdηdxdt

+

∫ 1

p

∫ 1

0

∫ t

0

∫ 1

0

k22(p, t, q, x)k22(t, η, x, s)u2,ε(η, s)dsdηdxdt,

(20)
Now, we can consider the numerical method based on Chebyshev wavelets

from the previous subsection for the approximate solution of system (20).

5 Convergence analysis

In this section, we investigate the convergence analysis of the proposed
Chebyshev wavelet collocation method, using polynomial approximation the-
ory.

Lemma 2. Assume that u(x, y) ∈ L2([0, 1) × [0, 1)) can be expanded in the
form of series (13) and that û(t, x) is the approximation of u(x, y) which is
defined by (14). Then û(t, x) converges to u(t, x).

Proof. We recall the series u(t, x) from (13) and the truncated series û(t, x)
from (14), respectively, as follows:

u(x, y) =
∞∑

n1=1

∞∑
m1=0

∞∑
n2=1

∞∑
m2=0

un1m1n2m2ϕ(n1,m1,n2,m2)(x, y),
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and

û(t, x) =

2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
m2=0

un1m1n2m2ϕ(n1,m1,n2,m2)(t, x),

where m1 = 0, 1, . . . ,M1 − 1, m2 = 0, 1, . . . ,M2 − 1, n1 = 1, . . . , 2k1−1,
and n2 = 1, . . . , 2k2−1. The functions ϕ(n1,m1,n2,m2)(t, x) are the Chebyshev
wavelet. Let L2([0, 1)× [0, 1)) be the Hilbert space and let

ϕ(n1,m1,n2,m2)(t, x) = 2
−(n1+n2)

2 ϕ(2
−n1

2 t−m1)ϕ(2
−n2

2 x−m2),

where ϕ(n1,m1,n2,m2)(t, x) form a basis of L2([0, 1)× [0, 1)) as in (12).
From (13), we consider

u(t, x) =
∞∑

m1=0

∞∑
m2=0

u1m11m2ϕ(1,m1,1,m2)(t, x) =
∞∑
i=0

∞∑
j=0

cijϕ(i,j)(t, x),

where cij =< u(t, x), ϕ(i,j)(t, x) > for k1 = 1, k2 = 1 and < ., . > rep-
resents an inner product. Let us denote ϕ(i,j)(t, x) = ϕ(t, x) and αij =<
u(t, x), ϕ(t, x) >.

Define the sequence of partial sums Sn,m, n > m of {αijϕ(ti, xj)}. Let
Sn1,m1 and Sn2,m2 be arbitrary partial sums with n1 > n2. We show that
Sn,m is a Cauchy sequence in a Hilbert space.

Let Sn,m =
∑n1

i=0

∑n2

j=0 αijϕ(ti, xj). From

< u(t, x),

n1∑
i=0

n2∑
j=0

αijϕ(ti, xj) >=

n1∑
i=0

n2∑
j=0

|αij |2,

we can show that ∥Sn1,n2 − Sm1,m2∥2 =
∑n1

i=m1+1

∑n2

j=m2+1 |αij |2 for n1 >
m1, n2 > m2.

We can write

∥
n1∑

i=m1+1

n2∑
j=m2+1

αijϕ(ti, xj)∥2

=<

n1∑
i=m1+1

n2∑
j=m2+1

αijϕ(ti, xj),

n1∑
i=m1+1

n2∑
j=m2+1

αijϕ(ti, xj) >

=

n1∑
i=m1+1

n2∑
j=m2+1

|αij |2,

for n1 > m1, n2 > m2. Then it is concluded that
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∥
n1∑

i=m1+1

n2∑
j=m2+1

αijϕ(ti, xj)∥2 =

n1∑
i=m1+1

n2∑
j=m2+1

|αij |2,

for n1 > m1, n2 > m2.
Now from Bessel’s inequality, we deduce that

∑n1

i=m1+1

∑n2

j=m2+1 |αij |2 is

convergent and therefore ∥
∑n1

i=m1+1

∑n2

j=m2+1 αijϕ(ti, xj)∥2 → 0,

that is, ∥
∑n1

i=m1+1

∑n2

j=m2+1 αijϕ(ti, xj)∥ → 0 and {Sn,m} is a Cauchy se-
quence thus it converges to a real number like ‘s‘.
In the continuance, we prove that u(t, x) = s.

< s− u(t, x), ϕ(ti, xi) > =< s, ϕ(ti, xi) > − < u(t, x), ϕ(ti, xi) >

=< lim
n→∞

Sn,m, ϕ(ti, xi) > −αij

= lim
n→∞

< Sn,m, ϕ(ti, xi) > −αij = αij − αij = 0;

then it is concluded that u(t, x) = s or
∑n1

i=0

∑n2

j=0 αijϕ(ti, xj) converges to
u(t, x), and by induction it is evident that this result is established for any
integer numbers of k1 and k2, so for k1 → ∞ and k2 → ∞. In the other hand,
we can consider û(t, x) as Sn,m, which means û(t, x) converges to u(t, x) and
this completes the proof.

Theorem 3. Consider a function u(x, y) ∈ L2([0, 1] × [0, 1]), with bounded

forth partial derivations, |∂
4u(x,y)
∂2x∂2y | < B. Then the wavelet coefficient,

un1m1n2m2 in (14) , decay as follows:

|un1m1n2m2 | ≤
πB

24(n1n2)5/2(m2
1 − 1)(m2

2 − 1)
. (21)

Proof. From (14) it follows that

un1m1n2m2 =

∫ 1

0

∫ 1

0

u(x, y)ϕ(n1,m1)(x)ϕ(n2,m2)(y)wn1(x)wn2(y)dydx

=

∫ 1

0

ϕ(n1,m1)(x)wn1(x)
(∫ 1

0

u(x, y)ϕ(n2,m2)(y)wn2(y)dy
)
dx.

=

∫ 1

0

ϕ(n1,m1)(x)wn1(x)
(∫ n2/2

k2−1

(n2−1)/2k2−1

2k2/2u(x, y)

T̂m2
(2k2y − 2n2 + 1)

wn2(2
k2y − 2n2 + 1) dy

)
dx.

(22)
If m1,m2 > 1, by substituting 2k2y − 2n2 + 1 = cos θ in (22), it yields
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un1m1n2m2 =
1

2k2/2

∫ 1

0

ϕ(n1,m1)(x)wn1 (x)
[ ∫ π

0

u(x,
cos θ2n2 − 1

2k2
)

√
2

π
cosm2θ dθ

]
=

√
2

2k2/2
√
π

∫ 1

0

ϕ(n1,m1)(x)wn1 (x)
[
u(x,

cos θ + 2n2 − 1

2k2
)(
sinm2θ

m2
)
∣∣∣π
0

+

√
2

23k2/2m2
√
π

∫ π

0

∂u(x, (cos θ2n2 − 1)/2k2 )

∂y
sinm2θ sin θ dθ

]
dx

=
1

23k2/2m2

√
2π

∫ 1

0

ϕ(n1,m1)(x)wk1
(x)

[ ∫ π

0

∂u(x, (cos θ2n2 − 1)/2k2 )

∂y( sin(m2 − 1)θ

m2 − 1
−

sin(m2 + 1)θ

m2 + 1

)∣∣∣π
0

+
1

25k2/2m2

√
2π

∫ π

0

∂2u(x, (cos θ + 2n2 − 1)/2k2 )

∂2y
hm2 (θ) dθ

]
dx,

(23)
where

hm(θ) = sin θ
( sin(m2 − 1)θ

m2 − 1
− sin(m2 + 1)θ

m2 + 1

)
.

Then, we obtain

un1m1n2m2 =
1

25k2/2m2

√
2π

∫ π

0

[ ∫ 1

0
∂2u(x,(cos θ+2n2−1)/2k2 )

∂2y

ϕ(n1,m1)(x)wk1(x) dx
]
hm2(θ) dθ.

(24)

Now, similar to the discussion in (23), by substituting 2k1y− 2n1+1 = cosα
in (24), it yields

un1m1n2m2

=
1

25(k1+k2)/2m1m2(2π)

×
∫ π

0

∫ π

0

∂4u((cosα+ 2n1 − 1)/2k1 , (cos θ + 2n2 − 1)/2k2 )

∂2x∂2y
hm1 (α)hm2 (θ) dα dθ.

Thus we have

|un1m1n2m2 |

=
1

25(k1+k2)/2m1m2(2π)∣∣∣ ∫ π

0

∫ π

0

∂4u((cosα+ 2n1 − 1)/2k1 , (cos θ + 2n2 − 1)/2k2 )

∂2x∂2y
hm1 (α)hm2 (θ) dα dθ

∣∣∣
≤

B

25(k1+k2)/2m1m2(2π)

∫ π

0

|hm1 (α)| dα
∫ π

0

|hm2 (θ)| dθ.

(25)

However∫ π

0

|hm2(θ)| dθ =

∫ π

0

∣∣∣ sin θ( sin(m2 − 1)θ

m2 − 1
− sin(m2 + 1)θ

m2 + 1

)∣∣∣dθ
≤

∫ π

0

∣∣∣ sin θ sin(m2 − 1)θ

m2 − 1

∣∣∣+ ∣∣∣ sin θ sin(m2 + 1)θ

m2 + 1

∣∣∣
≤ 2m2π

(m2
2 − 1)

,

(26)
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and similarly, it is obtained∫ π

0

|hm1(α)| dα ≤ 2m1π

(m2
1 − 1)

. (27)

Since n1 ≤ 2k1−1 and n2 ≤ 2k2−1, by substituting (26) and (27) in (25), the
desired result is obtained as follows:

|un1m1n2m2 | ≤
2πB

25(k1+k2)/2(m2
1 − 1)(m2

2 − 1)
.

Theorem 4. Let u(x, y) ∈ L2([0, 1]×[0, 1]), with bounded forth partial deriva-

tions, |∂
4u(x,y)
∂2x∂2y | < B; then the error bound would be obtained as follows:

σk1,M1,k2,M2 = O
(
2−

5
2 (k1+k2)

)
, (28)

where

σk1,M1,k2,M2

=
(∫ 1

0

∫ 1

0

[
u(x, y)−

2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
M2=0

un1m1n2m2ϕ(n1,m1)(x)ϕ(n2,m2)(y)
]2

wn1(x)wn2(y) dx dy
) 1

2

.

Proof. From the error statement, we have

σ2
k1,M1,k2,M2

=

∫ 1

0

∫ 1

0

[
u(x, y)−

2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
M2=0

un1m1n2m2ϕ(n1,m1)(x)ϕ(n2,m2)(y)
]2

wn1 (x)wn2 (y) dx dy

=

∫ 1

0

∫ 1

0

[ ∞∑
n1=1

∞∑
m1=0

∞∑
n2=1

∞∑
M2=0

un1m1n2m2ϕ(n1,m1)(x)ϕ(n2,m2)(y)

−
2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
m2=0

un1m1n2m2ϕ(n1,m1)(x)ϕ(n2,m2)(y)
]2

wn1 (x)wn2 (y) dx dy

=

∫ 1

0

∫ 1

0

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

(ϕ(n1,m1)(x))
2(ϕ(n2,m2)(y))

2

wn1 (x)wn2 (y) dx dy

=

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

∫ 1

0

∫ 1

0

(ϕ(n1,m1)(x))
2(ϕ(n2,m2)(y))

2
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wn1 (x)wn2 (y) dx dy

=

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

∫ n1

2k1−1

n1−1

2k1−1

[
2

k1
2 T̂m1 (2

k1x− 2n1 + 1)
]2

√
1− (2k1x− 2n1 + 1)2

dx

×
∫ n2

2k2−1

n2−1

2k2−1

[
2

k2
2 T̂m2 (2

k2y − 2n2 + 1)
]2

√
1− (2k2x− 2n2 + 1)2

dy

=

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

2k1+k2

∫ n1

2k1−1

n1−1

2k1−1

[
T̂m1 (2

k1x− 2n1 + 1)
]2

√
1− (2k1x− 2n1 + 1)2

dx

×
∫ n2

2k2−1

n2−1

2k2−1

[
T̂m2 (2

k2y − 2n2 + 1)
]2

√
1− (2k2x− 2n2 + 1)2

dy.

Now, let 2k1y − 2n1 + 1 = t1 and 2k2y − 2n2 + 1 = t2, then it is obtained

sigma2k1,M1,k2,M2
=

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

∫ 1

−1

T̂m1(t1)√
1− t21

dt1

∫ 1

−1

T̂m2(t2)√
1− t22

dt2.

(29)

For m1 ≥ 1, m2 ≥ 1, we have∫ 1

−1

T̂m1
(t1)√

1− t21
dt1 =

π

2
,

∫ 1

−1

T̂m2
(t2)√

1− t22
dt2 =

π

2
;

then (29) simplifies as follows:

σ2
k1,M1,k2,M2

=
π2

4

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

u2
n1m1n2m2

. (30)

Therefore from (21) and (30), we can conclude the desired result as follows:

σ2
k1,M1,k2,M2

≤ π4B

210

∞∑
n1=2k1

∞∑
m1=M1

∞∑
n2=2k2

∞∑
m2=M2

1

(n1n2)5(m2
1 − 1)2(m2

2 − 1)2
.

(31)
Also

∞∑
n1=2k1

1

(n1)5
=

1

(2k1)5
+

1

(2k1 + 1)5
. . . =

1

(2k1)5

∞∑
n=0

1

(1 + n
2k1

)5
. (32)

From (31) and (32), we conclude that
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σk1,M1,k2,M2 = O
(
2−

5
2 (k1+k2)

)
.

Theorem 5. Let us consider M = max ∥K(t, η, x, s)∥, for η, t ∈ I =
[0, 1], s, x ∈ Ω = [0, 1]. Assume that Uε(t, x) is the exact solution of sys-
tem (3) and that Ûε(t, x) denotes the Chebyshev wavelet approximation for
the exact solution U which is given by (15) and (16) . Then Ûε(t, x) converges
to Uε(t, x) and the following result can be obtained

∥Uε − Ûε∥ = O
(
2−

5
2 (k1+k2)

)
.

Proof. According to the proposed method in previous section, we consider
(15), (16), and (17) and insert Ûε(t, x) and K̂(t, η, x, s) as approximations of
the exact solution U and kernel K into system (3)

F (t, x) = EUε(t, x) +

∫ t

0

∫ 1

0

K̂(t, η, x, s)Uε(η, s)dsdη. (33)

Subtracting (3) from (33) and some manipulations, we get

∥E∥∥Uε − Ûε∥ ⩽ ∥
∫ t

0

∫ 1

0

(K(t, η, x, s)− K̂(t, η, x, s))Uε(η, s)dsdη∥

+ ∥
∫ t

0

∫ 1

0

K̂(t, η, x, s)(Uε(η, s)− Ûε(η, s))dsdη∥.

From ∥E∥ ≥ 1 it is obtained

∥Uε − Ûε∥ ⩽ ∥K− K̂∥∥Uε∥+M∥Uε − Ûε∥. (34)

Relation (34) together with Lemma 2, shows the convergence of the exact
solution to the approximate solution. Considering Theorem 4, we have

∥K− K̂∥ = O
(
2−

5
2 (k1+k2)

)
. (35)

From (34) and (35), we conclude that

∥Uε − Ûε∥ = O
(
2−

5
2 (k1+k2)

)
.
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6 Numerical examples

To demonstrate the efficiency and the practicability of the proposed method,
we consider the following two examples. All results are computed by using a
program written in the Mathematica®.

Example 1. Consider the following TIAEs:∫ t

0

∫ 1

0

100t(t+ x)u(η, s)dsdη =
25

3
t2(3 + 4t)(t+ x), t ∈ [0, 1], (36)

where the exact solution is u(t, x) = t+ x.
Considering regularization techniques and (3) for (36), we have

εuε(t, x) +

∫ t

0

∫ 1

0

100t(t+ x)u(η, s)dsdη =
25

3
t2(3 + 4t)(t+ x). (37)

We assume that ûε(t, x) is the approximation of the exact solution uε(t, x)
which is defined by (15). For analyzing the behavior of the error representa-
tions, we consider absolute error as

Error = |u(ti, xj)− ûε(ti, xj)|.

The Chebyshev wavelet method described in Section 4 has been imple-
mented for problem (37) with M1 = M2 = 3, k1 = k2 = 2 and the error for
different values of ε has been reported in Table 1, which confirms the theoret-
ical results of Lemma 1. Figure 1 presents the plots of exact and approximate
solution with ε = 0.000001, which are found to be in good agreement.

From subsection 4.2, we consider the normal form of equation (36) as
follows:

εuε(p, q) +

∫ 1

p

∫ 1

0

∫ t

0

∫ 1

0

10000pt(p+ q)(t+ x)uε(η, s)dsdηdxdt

=

∫ 1

p

∫ 1

0

2500

3
p(p+ q)t2(3 + 4t)(t+ x)dxdt, p ∈ [0, 1],

(38)

and then solve this equation by the Chebyshev wavelet method with M1 =
M2 = 3 and k1 = k2 = 2. We report the error for different values of ε in Table
2. From numerical results in Tables 1 and 2, we observe that the results in
Table 2 are more accurate than the reported results in Table 1.

Example 2. Consider the following:

Au(t, x) +

∫ t

0

∫ 1

0

K(t, η, x, s)u(η, s)dsdη = f(t, x), t ∈ [0, 1], (39)
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Table 1: Absolute errors of uε for different values of ε in Example 1

Error Error Error
(ti, xj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 3.62× 10−3 3.64× 10−4 3.65× 10−7

(0.2, 0.2) 1.62× 10−4 1.45× 10−5 1.40× 10−8

(0.3, 0.3) 1.37× 10−3 1.39× 10−4 1.39× 10−7

(0.4, 0.4) 1.32× 10−3 1.35× 10−4 1.37× 10−7

(0.5, 0.5) 9.09× 10−3 9.29× 10−4 9.32× 10−7

(0.6, 0.6) 1.71× 10−3 1.74× 10−4 1.72× 10−7

(0.7, 0.7) 1.69× 10−3 1.73× 10−4 1.70× 10−7

(0.8, 0.8) 4.19× 10−5 9.27× 10−7 1.87× 10−9

(0.9, 0.9) 7.42× 10−3 8.20× 10−4 8.20× 10−7

Table 2: Absolute errors of uε for different values of ε for normal equation in Example 1

Error Error Error
(ti, xj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 6.18× 10−6 6.11× 10−6 1.95× 10−7

(0.2, 0.2) 6.84× 10−6 6.26× 10−6 5.22× 10−8

(0.3, 0.3) 3.79× 10−6 3.83× 10−7 8.93× 10−8

(0.4, 0.4) 2.43× 10−5 2.43× 10−6 5.70× 10−8

(0.5, 0.5) 2.06× 10−5 2.06× 10−6 6.66× 10−7

(0.6, 0.6) 2.14× 10−5 2.14× 10−6 2.42× 10−7

(0.7, 0.7) 7.78× 10−6 7.78× 10−7 1.67× 10−7

(0.8, 0.8) 2.25× 10−5 2.25× 10−6 2.41× 10−8

(0.9, 0.9) 7.18× 10−5 7.18× 10−6 3.13× 10−7
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where

A =

[
1 0
0 0

]
, K(t, η, x, s) =

[
η2(s2 + t2 + 1) (s+ t)
ηs2 + η + ηt2 200s+ 200t

]
,

u(t, x) =
(
u1(t, x), u2(t, x)

)T
, f(t, x) =

(
f1(t, x), f2(t, x)

)T
,

and f1 and f2 are such that the exact solution is

u1(t, x) = t2 + x2 + 1, u2(t, x) = t+ x.

We apply the regularization method to convert the mixed system (39) to
the system of the second kind integral equations. Then, the resulting second
kind integral equation will be solved by the proposed numerical scheme in
section 4 with M1 = M2 = 3 and k1 = k2 = 2 . Let (û1, û2,ε) be the
approximation of the exact solution (u1, u2,ε) which are defined by (15) and
(16). Numerical errors with several values of ε are displayed in Tables 3 and
4.

Figure 1: The plots of exact solution u and approximate solution of u with ε = 0.000001
in Example 1.

Similar to Example 2, we transform system (39) into the normal form of
system (20) and then solve the normal system by Chebyshev wavelet method
with M1 = M2 = 3 and k1 = k2 = 2. The error for different values of ε is
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Table 3: Absolute errors of u1 for different values of ε in Example 2

Error Error Error
(xi, yj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 1.00× 10−5 1.00× 10−6 1.00× 10−9

(0.2, 0.2) 2.00× 10−5 2.00× 10−6 2.00× 10−9

(0.3, 0.3) 3.03× 10−5 3.03× 10−6 3.03× 10−9

(0.4, 0.4) 4.11× 10−5 4.11× 10−6 4.11× 10−9

(0.5, 0.5) 5.44× 10−5 5.44× 10−6 5.44× 10−9

(0.6, 0.6) 6.58× 10−5 6.58× 10−6 6.58× 10−9

(0.7, 0.7) 8.25× 10−5 8.25× 10−6 8.25× 10−9

(0.8, 0.8) 1.05× 10−4 1.05× 10−5 1.05× 10−8

(0.9, 0.9) 1.34× 10−4 1.34× 10−5 1.34× 10−8

Table 4: Absolute errors of u2,ε for different values of ε in Example 2

Error Error Error
(xi, yj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 1.07× 10−3 1.83× 10−4 8.51× 10−6

(0.2, 0.2) 1.58× 10−4 2.84× 10−5 1.86× 10−5

(0.3, 0.3) 2.39× 10−4 2.36× 10−5 1.78× 10−5

(0.4, 0.4) 4.63× 10−4 2.48× 10−5 2.37× 10−6

(0.5, 0.5) 3.84× 10−3 8.20× 10−4 4.82× 10−5

(0.6, 0.6) 1.66× 10−3 1.12× 10−4 1.06× 10−4

(0.7, 0.7) 1.22× 10−3 1.80× 10−4 1.77× 10−4

(0.8, 0.8) 2.85× 10−3 2.81× 10−4 1.80× 10−4

(0.9, 0.9) 6.69× 10−3 3.88× 10−4 3.56× 10−4
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Figure 2: The plots of exact solution u1 and approximate solution of u1 with ε = 0.000001
in Example 2.

Table 5: Absolute errors of u1 for different values of ε for normal equation in Example 2

Error Error Error
(xi, yj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 8.54× 10−8 8.54× 10−9 8.54× 10−12

(0.2, 0.2) 2.56× 10−8 2.56× 10−9 2.56× 10−12

(0.3, 0.3) 4.19× 10−8 4.19× 10−9 4.19× 10−12

(0.4, 0.4) 1.10× 10−7 1.10× 10−8 1.10× 10−11

(0.5, 0.5) 5.46× 10−7 5.46× 10−8 5.46× 10−11

(0.6, 0.6) 1.73× 10−6 1.73× 10−7 1.73× 10−10

(0.7, 0.7) 2.54× 10−6 2.54× 10−7 2.54× 10−10

(0.8, 0.8) 2.86× 10−6 2.86× 10−7 2.86× 10−10

(0.9, 0.9) 2.58× 10−6 2.58× 10−7 2.58× 10−10

reported in Tables 5 and 6. Comparing displayed errors in the Tables 3, 4
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Figure 3: The plots of exact solution u2 and approximate solution of u2 with ε = 0.000001
in Example 2.

and 5, 6, we observe that the results in Tables 5 and 6 are more accurate
than the reported results in Tables 3 and 4. This is predicted by the theory,
in particular by Theorem 2. Figures 2 and 3 present the plots of exact and
approximate solution with ε = 0.000001.

6.1 Haar wavelet method

In literature, several wavelets with different properties have been derived
and depending upon the applications, different wavelet families are used.
The Cheybyshev wavelets method is found to be simple, efficient, accurate,
and computationally attractive for solving linear and non-linear problems.
The properties of Chebyshev wavelets make the wavelet coefficient matrices
sparse which eventually leads to the sparsity of the coefficients matrix of the
obtained system. The Haar wavelet is also the simplest possible wavelet. The
technical disadvantage of the Haar wavelet is that it is not continuous, and
therefore not differentiable. This property can, however, be an advantage for
the analysis of signals with sudden transitions, such as monitoring of tool
failure in machines. For comparison, we consider the Haar wavelet method
to solve Example 1. The Haar wavelet family is
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Table 6: Absolute errors of u2,ε for different values of ε for normal equation in Example

2

Error Error Error
(xi, yj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 1.25× 10−7 1.00× 10−8 2.19× 10−7

(0.2, 0.2) 9.92× 10−7 9.83× 10−8 8.59× 10−8

(0.3, 0.3) 9.58× 10−8 1.05× 10−8 9.59× 10−8

(0.4, 0.4) 3.64× 10−6 3.64× 10−7 5.67× 10−9

(0.5, 0.5) 5.75× 10−6 5.67× 10−7 2.19× 10−7

(0.6, 0.6) 4.75× 10−6 4.73× 10−7 4.37× 10−7

(0.7, 0.7) 1.18× 10−6 1.17× 10−7 1.52× 10−7

(0.8, 0.8) 5.24× 10−6 5.24× 10−7 7.34× 10−8

(0.9, 0.9) 1.48× 10−5 1.48× 10−6 1.39× 10−7

hi(t) =

1, t ∈ [τ1, τ2],
−1, t ∈ [τ2, τ3],
0, elsewhere

where

τ1 =
k

m
, τ2 =

k + 1
2

m
, τ3 =

k + 1

m
.

The integer m = 2j , j = 0, 1, . . . , p and k = 0, 1, . . . ,m− 1 are the level of
the wavelet and translation parameter, respectively. The index i is calculated
from the formula i = m+ k + 1 and the maximal value is i = 2M(M = 2p).
The index i = 1 corresponds to the scaling function of the Haar wavelet
h1(t) = 1. We can consider an approximate solution of equation (37) as

ûϵ(t, x) =

2M1∑
i=1

2M2∑
j=1

aijhi(t)hj(x),

where the coefficients aij can be obtained by inserting approximate solution
ûϵ(t, x) and the following collocation points in equation (37)

tl =
l − ( 12 )

2M1
, l = 1, 2, . . . , 2M1, xr =

r − ( 12 )

2M2
, r = 1, 2, . . . , 2M2.
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By assuming M1 = M2 = 4, the absolute error for different values of ε
have been reported in Table 7. From Tables 1 and 7, we observe that the
results obtained by the Chebyshev wavelet method are more accurate than
the Haar wavelet method in this case.

Table 7: Absolute errors of uε for different values of ε by Haar wavelet method in Example

1

Error Error Error
(ti, xj) ε = 0.01 ε = 0.001 ε = 0.000001

(0.1, 0.1) 8.99× 10−2 8.07× 10−2 7.99× 10−2

(0.2, 0.2) 8.83× 10−2 2.11× 10−2 1.41× 10−2

(0.3, 0.3) 4.04× 10−2 1.72× 10−2 1.29× 10−2

(0.4, 0.4) 9.33× 10−2 7.99× 10−2 7.82× 10−2

(0.5, 0.5) 4.99× 10−1 5.00× 10−1 4.99× 10−1

(0.6, 0.6) 9.58× 10−2 8.25× 10−2 8.08× 10−2

(0.7, 0.7) 6.79× 10−2 1.98× 10−2 1.15× 10−2

(0.8, 0.8) 5.09× 10−2 1.78× 10−2 1.77× 10−2

(0.9, 0.9) 9.26× 10−2 8.01× 10−2 7.84× 10−2

7 Conclusion and future work

This work has been concerned with the regularization method to convert the
mixed systems of the first and second-kind Volterra–Fredholm integral equa-
tions to the system of the second-kind Volterra–Fredholm integral equations.
We presented the numerical method based on Chebyshev wavelets for solving
the obtained second-kind problem. Convergence of the method was proved.
These results were confirmed by some numerical examples.

In the present work, we considered the mixed system (1) in special case

with A =

[
1 0
0 0

]
. The mixed system (1) in general form with A(t) will be

investigated as our future work.
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دوم و اول نوع ولترا-فردهلم انتگرالی معادلات مرکب دستگاه عددی تحلیل و سازی منظم

شکری جواد و بین پیش سعید

ریاضی گروه علوم، دانشکده ارومیه، دانشگاه

١٣٩٧ مهر ٢٣ مقاله پذیرش ،١٣٩٧ مهر ٧ شده اصلاح مقاله دریافت ،١٣٩۵ اسفند ١٨ مقاله دریافت

جز دوم و اول نوع ولترا-فردهلم انتگرالی معادلات دستگاه که است ضرروی نکته این به توجه : چکیده
مشکلات دارای معادلات این به مربوط شده گسسسته دستگاه های حل بنابراین باشند می وضع بد معادلات
را وضع بد اول نوع مسئله و گرفته نظر در را سازی منظم روش یک ابتدا مقاله این در ما است. فراوانی
برای را چبیشف موجک براساس عددی روش ادامه در کنیم. می تبدیل وضع خوش دوم نوع مسئله یک به
با عددی مثال چند پایان در می کنیم. تحلیل را مربوطه روش همگرایی و برده بکار وضع خوش دستگاه حل

می گیریم. نظر در شده پیشنهاد عددی روش کارایی دادن نشان برای را معلوم جوابهای

سازی؛ منظم روش دوم؛ و اول نوع ولترا-فردهلم انتگرالی معادلات مرکب دستگاه : کلیدی کلمات
همگرایی. آنالیز چبیشف؛ موجک
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