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Abstract 
 
In this paper, a structural damage identification method (SDIM) is developed for plate-like structures. This method is derived using 
dynamic equation of undamaged/damaged plate, in which local change in flexural rigidity is characterized utilizing a damage distribution 
function. The SDIM requires to modal data in the intact state and frequency response of damage state where most of vibration based 
damage identification techniques requires to modal data in both states. Change of mode shapes of damaged plate are approximated as a 
linear combination of mode shapes of intact plate and are considered in dynamic equation of damaged plate. Constant Coefficients of linear 
combination have been evaluated using perturbed equation of motion and the damage distribution function. Two strategies for making the 
inverse problem damage identification are introduced in connection with damage the present SDIM: (1) by using sensitivity of natural 
frequencies and (2) by using FRF-data, a sufficient number of equations can be derived to detect magnitude and location of damage. The 
feasibility of presented method is validated through some numerically simulated damage identification test taking into account random 
noise in FRF-data. 
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1.  Introduction 
 

Occurred damage within a structures leads to change 
of structural vibration characterizes and can be used in 
turn to detect, locate and quantify existence structural 
damage. The finite element model (FEM) update 
techniques have been proposed in the literature [1]. The 
existing experimental-data-based SDIMs can be classified 
into several groups depending on the type of experimental 
data used to detect, locate, and/or quantify structural 
damage. They include changes in modal data [2–4], 
frequency response functions (FRFs) [5- 8], strain energy 
[9], transfer function parameters [10], flexibility matrix 
[11], residual forces [12]. As a drawback of FEM-update 
techniques, the requirement of reducing FEM degrees of 
freedom or extending the measured modal parameters 
may result in the loss of physical interpretability and the 
errors due to the stiffness diffusion that smears the 
damage-induced localized changes in stiffness matrix into  
the entire stiffness matrix. 
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Identiftification algorithms to minimize the 
experimental measurement errors, structure model errors, 
and the damage identification analysis errors has been an 
important issue in most structural damage identification 
researches. Some researchers have investigated the 
damage-induced changes in natural frequencies, mode 
shapes, and curvature mode shapes with varying the 
location and severity of a damage. However, very few 
attentions have been given to the effects of the change of 
mode shapes, damage-induced coupling of vibration 
modes and the higher vibration modes omitted in the 
analysis on the accuracy of predicted vibration 
characteristics of the damaged beam, from a damage 
identification viewpoint. 

The modal-data-based structural damage identification 
method (SDIM) has some shortcomings. First, the modal 
data can be contaminated by measurement errors as well 
as modal extraction errors because they are indirectly 
measured test data. Second, the completeness of modal 
data cannot be met in most practical cases because they 
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often require a large number of sensors. On the other 
hand, using measured FRFs may have certain advantages 
over using modal data. First, the FRFs are less noise 
contaminated because they are directly measured from 
structures. Second, the FRFs can provide much more 
information about damage in a desired frequency range 
than modal data are extracted from a very limited number 
of FRF data around resonance [5]. Thus, the use of FRFs 
seems to be very promising for structural damage 
identification. 

The purposes of the present paper are: to develop an 
FRF-based SDIM, to investigate effects of the mode 
shape changes on the accuracy of the predicted vibration 
characteristics of damaged plates, and finally to verify the 
feasibility of the present SDIM through some numerically 
simulated damage identification tests. 

 
2.  Theory 
 
2.1. Dynamic Equation of Motion of Intact Plate 

 
The dynamic equation of motion for a plate is 

expressed as follows: 
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Where w(x, y, and t) is the flexural deflection, f(x, y, and 
t) is the external force applied normal to the surface of 
plate, D is the flexural rigidity for the intact plate, and m 
is the mass density per area. In Eq. (1), the dot {.} 
indicates the derivative with respect to time t. Assume that 
a harmonic point force is applied at a specified point (xRFR, 
yRFR) as[9,15]: 
 

ti
FF eyyxxFtyxf ωδδ )()(),,( −−=                 (2)                                                                                                 

Where F the amplitude of harmonic point is force and 
ω  is the excitation (circular) frequency. The forced 
vibration response of an intact plate can be assumed, by 
superposing M natural modes as follows: 
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Where mq the modal are coordinates and mW  are the 
natural modes satisfying the eigenvalue problem of the 
intact plate: 

mmm WmWD 24 Ω=∇             Mm ,...,1=              (4)                                                                                              

and the orthogonally property: 

∫ =
A

mnnm dxdyWmW δ           Mnm ,...,1, =             (5-1) 

∫ Ω=∇
A

mnmnm dxdyWDW δ24       Mnm ,...,1, =              (5-2)                                                                                 

 

Where  mΩ are the natural frequencies of the intact plate 

and δ is the Kronecker symbol. Substituting Eq. (3) into 
Eq. (1) and applying Eqs. (4) and (5) yields the modal 
coordinate equations as: 
   

)()()( 2 tftqtq mmmm =Ω+    Mnm ,...,1, =                (6)                                                                                          

Where mf are the modal forces defined by : 

ti
FFmm eFyxWtf ω

),()( =    Mnm ,...,1, =          (7)                                                                                               

Solution of Eq.(6) results modal coordinate )(tqm  as: 

ti

mm

Fm
m eFxWtq ω

ω 22
)()(

−Ω
=                             (8)                                                                                                    

 
2.2. Damage Distribution Function 
 

In the damage state stiffness reduction has been 
expressed as a local piece-wise uniform thickness 
reduction as shown in Fig. 1. 

 

Fig. 1. A piece-wise uniform damage distribution 

 

The damage has the constant magnitude 01 <<− Dδ  
over a small finite segment of area yx4 , with its center at 

),( dd yx .The local damage can be represented by:

 

[ ])()(),( xxHxxHdyxD dd +−−= δδ [ ])()( yyHyyH dd +−−             (9)
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Where, )( axH − is the Heaviside’s unit function defined 
as: 

ax
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2.3 Mode Shape Changes 
 

The dynamic equation of motion for the damaged 
plate by considering the introduced piece-wise uniform 
damage distribution function is expressed as follows: 
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Assuming that mode shape changes of the structure to be 
a linear combination of the mode  shapes of the intact 
structures would result in the following[13]: 
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Substituting Eq. (12) in the eigenvalue equation of the 

damaged plate yields: 

+
∂
∂

+
∂∂

∂
+

∂
∂∑

=

)2( 4

4

22

4

4

4

1 y
W

yx
W

x
W

D nnn
M

n
mnα

                                                

0)2)(,(
1

22
4

4

22

4

4

4

=Ω−Ω−
∂
∂

+
∂∂

∂
+

∂
∂ ∑

=
n

M

n
mnmmm

mmm WmWm
y

W
yx

W
x

WyxD αδ

                                                                                     (13)                                                                             

Pre-multiplying Eq. (13) by kW  for km =  , integrating 
over the area of the plate and considering the orthogonally 
property of the mode shapes results: 
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Also derivation of Eq. (5-1) for nm = yields: 

02 =∫ dAmw
A

mmmα                                          (15)                                                                                

And therefore mmα vanished. 
 
2.4. Dynamic Equation of Motion of Damaged Plate 
 

By evaluating the mode shapes change using Eq. (12), 
the eigenvalue equation of the damaged plate is expressed 
as follows: 

 

0)()(

)()(
22 =+Ω+Ω−

∇+∇+∇+∇

mmmm

mmmm

WWm
WDDWWDWD

δδ

δδδδ
          (16) 

Multiplying Eq.(11) by mW , integrating over the area of 
the plate and considering the orthogonally property yields: 
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And similarly Frequency Response function of the 
damaged plate when change of mode shape has been 
taken into account can be expressed as: 
 

ti
M

m

M

n nnnn

FFnmn

nm

FFm
m eFyxWyxWWtyxw ω

ωω
λ

ω ∑ ∑ 







−Ω−Ω

+
−Ω

=
))((

),(),(),,( 222222
                                       

ti
M

m

M

n

M

n nnnn

FFnmn

nm

FFm
lml eFyxWyxWW ω

ωω
λ

ω
α ∑∑ ∑ 








−Ω−Ω

+
−Ω

+
))((

),(),(
222222

 

                                            (18) 

dxdy
y
W

yx
W

x
WyxDW mmm

A
nmn )2)(,( 4

4

22

4

4

4

∂
∂

+
∂∂

∂
+

∂
∂

= ∫ δλ                                             

(19) 

Using the introduced definition for damage distribution 
function integral of equations (17) and (18) can be divided 
to N sub integral, where N is the number of considered 
damage zones. Therefore change of the natural 
frequencies and Frequency Response Function can be 
expressed as nonlinear function of ),( yxDδ . Solving this 
nonlinear function for ),( yxDδ , using an optimization 
criterion will yield the location and severity of damage. 
 
2.5. Numerical Results and Discussions 
 

To investigate ability of the presented method a square 
simply support isotopic uniform plate has been 
considered. As shown in Fig. 2 the plate has been divided 
into 5 zones along x and y axes which generates 25 
unknown parameters. To avoid adverse effect of 
symmetry of the plate on results, the plate has been 
divided into unequal zones. Two cases of damage have 
been considered; in the first case, the flexural rigidity of 
the zone 9 has been reduced by 20 percent and in case two 
the flexural rigidity of the zone 17 reduced by 20 percent. 
In the third damage case, flexural rigidities of zones 7 and 
19 have been reduced by 20 and 15 percent respectively.  
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5 5 10 15 20 25 

4 4 9 14 19 24 

3 3 8 13 18 23 

2 2 7 12 17 22 

1 1 6 11 16 21 

 1 2 3 4 5 

                  Fig. 2. Divided zones of example plate 

To investigate effects of neglecting mode shape 
change on the accuracy of the frequency changes 
evaluation, these changes are evaluated by Eq.(17) in two 
cases: first by considering mode shapes change (second 
part of Eq.(17) ) , then by omitting the term related to 
mode shapes changes.  In Figures 3 to 5, two templates of 
the results are presented to investigate and compare of the 
impact of excluding (including) of the mode shapes 
changes.  
 

 

Fig. 3. Evaluation of frequency change (Case 1) 
By including and excluding mode shapes changes 

 

Fig. 4. Evaluation of frequency change (Case 2) 
by including and excluding mode shapes changes 

 

Fig. 5. Evaluation of frequency change (Case 3) 
By including and excluding mode shapes changes 

Using the presented equation to evaluate change of the 
natural frequencies and Frequency Response Function 
(five first natural frequency and Frequency Response 
Function measured at two point), damages of the 
simulated cases have been predicted by simulated noisy 
data. Results of detected damage are shown in Fig.6 to 
Fig.8. 

 

Fig. 6. Predicted damage of case 1 

 

Fig. 7. Predicted damage of case 2 
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Fig. 8. Predicted damage of case 3 

 

As the results show in this SDIM damage can be 
predicted using noise polluted data. By changing the 
position of excitation force and the measurement location 
higher number of equations can be derived. Therefore 
damage cases can be detected more accurate. This method 
is applicable to other types of structure such as beam or 
composite plate using analytically evaluated mode shape 
of these structures. 
 
3.  Conclusions 

In this paper, an FRF-based SDIM is derived from 
dynamic equation of motion for damaged plate. The 
appealing features of the present SDIM are as follows: 

a)   The modal data of damaged structure are not 
required in the analysis. 

b)    A large number of equations can be readily derived 
by varying the excitation frequency as well as the 
response measurement point. The feasibility of the 
present SDIM is verified through some numerically 
simulated damage identification tests. It is shown 
that presented method is able to predict damage 
using noisy modal data. 
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