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Abstract

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators
using an uncertainty estimator. The proposed control method can be used for performing repetitive motion,
which covers many industrial applications of robotic manipulators. This kind of control law is in the class of
torque-based control in which the joint torques are generated by permanent magnet dc motors in the current
mode. The motor current is regulated using a proportional-integral controller. The novelty of this paper is a
modification in using the discrete-time linear quadratic control for the robot manipulator, which is a
nonlinear uncertain system. For this purpose, a novel discrete linear time-variant model is introduced for the
robotic system. Then, a time-delay uncertainty estimator is added to the discrete-time linear quadratic control
to compensate the nonlinearity and uncertainty associated with the model. The proposed control approach is
verified by stability analysis. Simulation results show: the superiority of the proposed discrete-time repetitive
optimal control over the discrete-time linear quadratic control.

Keywords: Discrete-Time Linear Quadratic Control, Optimal Control, Repetitive Control, Electrically
Driven Robotic Manipulators, Uncertainty Estimator.

1. Introduction

Discrete-time control is a favorite -approach since
the digital processors and computers have been
used as common controllers.  Digital control
systems have more capabilities over the traditional
control systems such as_flexibility to changes,
immunity to noises, and less number of
computations [1]. 'The digital control was
originally developed for linear systems using the
famous z transform. Considering literature
confirms that the discrete-time control has been
developed to cover the nonlinear systems, as well.
The discrete-time control of robotic manipulators
was presented in various types such as sliding
mode control [2], learning control [3], adaptive
control [4] and [5]. In this paper, a discrete-time
repetitive optimal control (DROC) is developed.
A promising control approach to track periodic
signals is repetitive control. This type of control
method can be used for performing repetitive
motion, which covers many industrial applications
of robotic manipulators. Repetitive control has
gained a great deal of research interest in various

forms of control approaches applied on the robot
manipulators. The control performance is related
to how well the uncertainty is compensated. A
discrete-time repetitive control scheme was
presented using the computed-torque control link
to overcome a part of uncertainty model [5]. The
repetitive model reference adaptive control [6]
and the adaptive repetitive learning control [7] can
overcome the parametric uncertainty and the
periodic external disturbance. A Lyapunov-based
repetitive learning control was presented to have a
good tracking performance in the presence of
unknown nonlinear dynamics with a known
period [8]. A robust repetitive control was
developed and can compensate uncertainties
including the structured uncertainty and
unstructured uncertainty [9]. Time delay method
[10] and uncertainty estimation [11] can be used
to control the robot manipulator by estimating the
unknown dynamics and disturbances. Uncertainty
can be well estimated by a time-delay estimator
[12] or an adaptive fuzzy system [13]. The time-
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delay method was effectively applied to
compensate uncertainty in the robust impedance
control of a suspension system [12], robust
repetitive control of rigid robots [9] and robust
control of flexible-joint robots [ 14].

The repetitive adaptive control and repetitive
robust control are appreciated to overcome the
structured  uncertainties and  unstructured
uncertainties, respectively. However, they may not
provide an optimal control performance. The
optimal control performance is a desired control
goal for repetitive control, which can be achieved
by Discrete-time Linear Quadratic Control
(DLQC) in linear systems with no uncertainties.
However, a model of robotic system is nonlinear
and uncertain. Therefore, the nonlinearity and
uncertainty should be compensated.

This paper introduces a novel discrete-time linear
time-variant model for the robotic system to apply
the DLQC. The difference between the model and
actual system 1is considered as a lumped
uncertainty. A two-term control law is proposed in
which the first term is a DLQC. The second term
is a robust time-delay estimator to compensate the
uncertainty and nonlinearity. The obtained control
is called as the discrete-time repetitive optimal
control. The permanent magnet dc motor in the
current mode generates the control command as
the joint torque. The motor current is regulated
using a proportional-integral controller.

The rest of the paper is organized as follows:
Section 2 presents the discrete-time lingar time=
variant model for the robot manipulator. Section 3
develops the discrete-time linear quadratic
control. Section 4 presents stability analysis.
Section 5 illustrates simulation results. Finally,
Section 6 concludes the paper.

2. Discrete-time linear time-variant model

In order to define a model-based control, some
discrete-time models were presented for the robot
manipulators. However, some models such as [15]
are too complex and some models such as [16] are
too simple. In order to apply the DLQC, a novel
discrete-time  linear time-variant model is
introduced as follows.

Dynamics of a robotic manipulator [17] is given

by

D@4+C@q)a+g(@=T (D

where, qeR" is the vector of generalized joint
positions, D(q) is the complete inertia matrix,
C(g,9)gqis the centrifugal and Coriolis torque
vector, g(q) is the gravitational torque vector.
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In the proposed approach, a permanent magnet dc
motor drives each joint of the manipulator in the
control system. The inserted torque on the joint to
drive the manipulator is the load torque of motor,
which is considered as

Th =Jm6m +Bm(§m +rT+ré

()
where, 6., R" is the vector of motor velocities,

TeR" is the load torque, T, eR" is the motors
torque. The nxn positive diagonal coefficient
matrices J,,, B,, and r are the inertia, damping
and reduction gear ratio, respectively. &eR"
presents the external disturbances.

Substituting (1) into (2) and using 6, =r"q
yields

T,=J,r'4+B,r'q

+r(D(q)d +C(q,0)q +9(q))+r& (3)
Equation (3) canbe written as
T =M(a)d+N(9,9)q+W(q) +r8& 4)
Where
M(@) = (Inr ™ +rD(@)) (5)
N(@.6) = (Bnr ™ +rC(a,4)) 6)
W(a) =rg(a) ()
Then, it is easy to show that
§=-M"@N(@ a4 -M(@W(@)-M™(@)rg ®)

+M7H Q) T, (1)

Using nominal terms in (8) obtains that
G =-M"(@)N(q,0)q - M (@) W(q) + )

M@ T+

where, M(q), N(g,g) and W(q) are the nominal
terms for the real terms M(q), N(q,¢) and W(q),
respectively, and ¢ is the uncertainty.

The nominal terms have the same dynamics as the
real terms with parametric errors. The uncertainty
¢ is expressed by substituting (8) into (9) as

@ =(M*(q)N(q,q) -M *(q)N(q,4))d
+M 7 (@)W(a) - M (@)W(a)
~M@)rg+ (M (q) -M (@) T, (t)

Assume that there exists a T,,(t)=T,4(t) that
satisfies

(10)
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by =-M"(aq)N(ag,Gg)dg
~M(q)W(dg) + M (Gg) Trg (1)

where, q4 is the desired trajectory. Subtracting
(9) from (11) yields

(1)

Gy —8 =M (@N(@,§)d—M(ag)N(@q. Gg)dq
—+ M (qq) g (1) M (q) T, (1)
+M ™ (@)W(a) - M (aq)W(dg)
Or, writing it out,
g —6=-M"(qq)N(Aq,84)Eq —G) + (13)
M7 (0g)(Ta (1) = Ty (©) + M () w

where, the uncertainty v is expressed as

(12)

v = (M(qq)M (q)N(q,q) - W(qq)
~N(ag.dq))a - (M(@g)M (@) - )Ty,
~NI(dq)@ +M(qq)M Y (q) W(q)

where, 1 is the identify matrix. The lumped
uncertainty w  includes the parametric

uncertainty, unmodelled dynamics and external
disturbances. The state space form of (13) is given

by
E= A(qq,94)E+B(gq)U +B(aq)w

where, E is the state vector, U the input vector,
A(g4,G4) the state matrix and B(gy) @ gain

matrix. The details are

. 0 | dq -9
A(dg.dq) = - N S
(dg,Ga) {0 _M‘l(qd)N(qd,qd)} {qd—q}

B(Qd)={

(14)

(15)

} U=Tu(®) T () (16)

M (ag)

The proposed model (15) has an advantage that
A(qq.94) and B(gy) are known in advance,
however, this model includes the uncertainty v .
The proposed model is an uncertain linear time-
variant system with periodical coefficients. |
obtain from (15) a linear discrete-time time-
variant system using a sampling period o that is a
small positive constant. Substituting ko into t
for k=12.. and then approximating E as
E=(E(t+0)-E(t))/c provides a discrete-time
model in the form of

B = AE( +B Uy + By (17)
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where, E, =E(ko) , A, =1+0A(ok),
B, =oB(ck), U, =U(ck) and w, denotes the
uncertainty. Since A, and B, are available, they
can be computed in advance.

3. Discrete-time repetitive optimal control

A two-term control law is proposed to track the
desired trajectory. The first term is DLQC and the
second term is a robust time-delay controller.
Thus, system (17) is presented as

Eia =AE +B U +B Uy, + By (18)

where, Uy, and U,, are the first and second

terms of control input. The control performance is
improved if the lumped uncertainty w, is

compensated. The uncertainty is perfectly
compensated if
BU; =—Bwg (19)

Since w, is_not known, control law (19) cannot

be defined. To estimate the uncertainty, | obtain
from (18)

Byy =Ey,, —AE, —-BU,, —BU,, (20)

Since E,,; is not available in the kth step, By,

cannot be calculated. Instead, the previous value
of By, isused as

By =E—AE,_; -BU;, ; -BU,; , (1)

The term By, , can be calculated since all terms

in the RHS of (21) are known and available. Thus,
a robust control law is proposed as

BUZ,k =-Bwy,, (22)

The second term in the control law is expressed
by substituting (21) into (22) to yield the robust
time-delay controller [9]

Substituting (22) into (18) yields
Eq.a = AE, +BU; +B(wy —wy4) (24)

In order to apply the DLQC, a nominal model in

the form of discrete-time linear system is
suggested from (24) as

Ey.1 = AE, +BUy, (25)
Then, the DLQC is given by

Uk =—KyEx (26)


www.sid.ir

Fateh & Baluchzadeh/ Journal of Al and Data Mining, Vol 4, No 1, 2016.

The gain matrix K, is calculated by minimizing a
cost function of [1]
L =05EySEy +
N2 (EEQEk + UI,kRul,k)Jr)‘E-v-l(AkEk + B Upy —Ey.q)
2i=0 +(AkEk +BUp —Eiaa) st

(27)
With respectto E,, Uy, and A&, , where %, isthe

Lagrange multiplier, Q, Rand S are symmetric
positive definite matrices. As a result,

Ky =[R+BpB I Bipy Ay (28)

Where p, is calculated as
Pk =Q + APy 1Ak — APy 1By [R +Bipy 1By ] Bypy 1A
(29)

The algorithm starts from k=0 in (29), where
p_,=0. Then, K, is calculated as (28). Next,

Uy, is computed from (26).

The discrete-time repetitive optimal control
(DROC) is formed using (23) and (26) as
-1

U, =(B"B} BT.

k ( ) (30)
(~(1+BK )+ AB 1+ B(Upy g + Upy 1))
In which from (16) (BTB)_1 =M?(q4)and
Uk :dek _Tr;k (31)

Calculating T4 from (11), T, is obtained from
(31) as

*

Tk = M(qdk Yak + N(qdk ek )k +W(Qdk )— Uy
(32)

where, U, is computed by (30).

The vector of motor torques T, is proportional

to the vector of motor currents I, as
Tk =Kl (33)

where, K, is the torque coefficient matrix. Thus

*

Tk = Kmld,k (34)
Then, it is easy to show
Id,k = K%IT;k (35)

where, 14, is the desired armature current.

A proportional integral controller is proposed to
control the electric motors for generating the
desired torque (34) as

120

Vk = Kp (ek —ek71)+UK|ek +kal (36)

where, e =14, -1, VeR" represents a vector
of motor voltages as the input of robotic system.

4. Stability analysis

To make the dynamics of tracking error well-
defined in such a way that the robot can track the
desired trajectory, the following assumptions are
made:

Assumption 1: The desired trajectory g, must be

smooth in the sense that q4 and its derivatives up

to a necessary order are available and all
uniformly bounded.

Smoothness of the desired trajectory can be
guaranteed by proper trajectory planning.

As a necessary condition to design a robust
controller, the matching condition must be
satisfied:

Matchingcondition: the uncertainty must be
entered into the system the same channel as the
control input. Then, the uncertainty is said to
satisfy the matching condition [18] or equivalently
it is said to be matched. | ensure the matching
condition. since in the system (15), the lumped
uncertainty y enters the system the same channel

as the control input U .
As a necessary condition to design a robust
control, the external disturbance & in (2) must be

bounded.
Assumption 2: The external disturbance & is

bounded as

J&ll < &mex (37

where, &, 1S a positive constant.

The voltage of every motor should be limited to
protect the motor against over voltages. For this
purpose, every motor is equipped with a voltage
limiter. Therefore, the following assumption is
made:

Assumption 3: The voltages of motors are
constrained as

IMI| < Vinex (38)
where, V. is the template value of motor
voltage.

The robust discrete-time linear quadratic is

formed using (23) and (26) as

39
+By (Ul,k—1+U2,k—1) 39
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Applying the control law (39) on the system (17)
and using (21) results in the closed-loop system

Eria = (A —ByKy ) Ex + By (Wi — Wi 1) (40)
The lumped uncertainty y is bounded as
NI (41)

where, ., IS a positive scalar.

Proof: Under assumptions 1-3 and the matching
condition, it is proven in [14] that for electrically
driven robot manipulators, the vector of motor
velocities 6., and the vector of motor currents I,
are bounded. Since g=r6,,, the vector of joint
velocities ¢ is bounded. Since T,=K_I,, The

vector of motor torques T,, is bounded. For Vvt,

0<t<T where T is the operating time of the
desired trajectory qq, it can be written that

q =I;th+Q(0) . Since g is bounded, the vector of

joint positions q is bounded.

According to the properties of robot manipulator
[19], D(@), C(q,9)g and g(qg) in (1) are bounded
as ml <D(@) <m, (@)1, [C(a,4)q|<my(a)]g] and
la@)<m,(q). The matrix D(q) is a positive
definite symmetric matrix which is invertible, m,
is a positive constant, m,(q), my(q), m,(q) are
positive definite functions of q, and 1 _is an
identity matrix. Since r, J,, and B,, are constant
diagonal matrices and D(q), C(g,4)q and g(q)
are bounded, thus M(qg), N(g,g) and W(q)
expressed in (5), (6), and (7) are bounded. The
M(q), N(g,gq) and W(q) -are the nominal terms
with the same structure with M(q), N(q,q) and
W(q). Thus, they are bounded as well. It was
implied that g, q and T, are bounded. The
external disturbance € is bounded in assumption

2. Therefore, the boundedness of all terms in (10)
implies that ¢ is bounded. Thus, the boundedness

of all terms in the right hand side of (14) proves
that y is bounded.

Since the DLQC provides K, such that
A, —B K, is Hurwitz, thus system (40) is stable.
In addition, the term B, (w, —w,_;) is a bounded

input to system (40) because the lumped
uncertainty v is bounded in (41) and B, is a gain

matrix. Therefore, the discrete-time linear system
(40) provides a bounded output E,,, under the

bounded input B, (y —wy, ).

The robust time-delay control law (23) plays a
main role in compensating the uncertainty. If there
exists a much difference between the nominal
model (25) and the actual system (24), the closed-
loop system (40) is subject to a large uncertainty.
The residual uncertainty in the closed-loop system
(40) is reduced from a large value of B,y, to a

small value of B, (w, —w,,) due to using the

robust time-delay control law (23). As a result, the
performance of control system is improved by
reducing the residual uncertainty. The residual
uncertainty B, (y, —w,) Will be very small

when the uncertainty is smooth and sampling time
is very short.

5. Simulation results

The proposed control algorithms, namely DROC
in (30) are applied on an articulated robot
manipulator given by [14]. ' The motor parameters
are given in table 1, while the three motors are the
same.

Table 1. Parameters of dc servomotors.

Km ‘]m Bm 1/r Ra La

0.26 0.002 0.001 100 126  0.001
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The desired repetitive trajectory is given by

Qg =[c0s(0.12t) cos(0.Lt) cos(0.1xt)]" (42)

where, q4 is a vector of desired joint angles with
a period of 20sec .

Simulations are presented to show the
performance of proposed control laws DROC in
(39) and DLQC in (26).

The desired trajectory is sufficiently smooth and
the motors are sufficiently strong such that the
robot can track the desired trajectory. | run the
simulations for two periods to illustrate the
repetitive motion.

The uncertainty may include the external
disturbances, unmodelled  dynamics, and
parametric uncertainty. To consider the parametric
uncertainty, all parameters of the nominal model
used in the control law are given as 95% of the
real one. The external disturbance is given to load
torque of the third joint by 100N.m. The
uncertainty is unknown; however, | have to use an
example of a bounded uncertainty to check the
performance of the control system. The matrices
Q and R in (28) and (29) are given by trial and
error method to have a good performance through
using Q =10%1,,,and R=10l,, where 1, is the

nxn


www.sid.ir

Fateh & Baluchzadeh/ Journal of Al and Data Mining, Vol 4, No 1, 2016.

nxn identity matrix. The matrices K, and K, in
(36) are given by

0.1 0 0 10 0
K,=[ 0 1 0|, K,={0 10 0
0 01 0 0 10

Simulation 1: The DROC in (30) for tracking
control with the zero initial error is simulated.
Using the sampling time of 0.001s, the tracking
performance is very well such that the tracking
error is under 9x10~°rad shown in figure 1. The
sampling time of 0.001s may be too short in real-
time control. Thus, the sampling time is set to
0.01s. As a result, the tracking error is under

7x107%rad shown in figure 2. Compared with
figure 1, the tracking error is increased if used
longer sampling time. The real-time control needs
a sufficient time for computation and
implementation. The control efforts behave well
under the permitted values shown in figure 3.

To see the effect of initial error, it is set to

e(0)=0q(0)-q(0)=[05 15 2] rad.
The tracking error is reduced well from initial

value to be under 2.7x10°rad at the end shown in
figure 4.

-4 Tracking performance of DROC
1 x 10

0.5} .
= K /\j&
g
r Ok — —
5 Vv \ /
)
05 \/\7 el
0. e,
e3
To 1 2 3 4
k x 10*

Figure 1. Tracking performance of DROC in the
sampling time of 0.001s

x10™” Tracking perofrmance of DROC

error (rad)

2000 3000

k

0 1000

4000

Figure 2. Tracking performance of DROC in the
sampling time of 0-01S
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Control efforts of DROC

—Vi
—V2 |

voltages of motors (V)
a1

—V3
-10 r r r
0 1000 2000 3000 4000
k
Figure 3. Control efforts of DROC.
Tracking performance of DROC with initial error
25 : T .
- e1
2 —&,
—e
15 3
=)
g
= 1r
o
o}
0.5
0 -
-0.5 r r r
0 1000 2000 3000 4000

k

Figure 4. Tracking performance of DROC with initial
error.

Control efforts of DROC with initial error

20

Voltages of motors (V)

2000 3000

k
Figure 5. Control efforts of DROC with Initial error.

o) 1000 4000

The control efforts behave well under the
permitted values shown in figure 5.

Simulation 2: | apply the DROC in (30) for the
set point control in the sampling time of 0.01s.
The initial positions of the joint angles are set to

q)=[0 05 2] rad while the position of the

desired trajectory is given by g4 =[1 1 1]T rad .
The initial error is calculated as
e(0)=0q(0)-q(0) =[1 05 1] rad .

The motor voltages are practically limited to the
maximum value of 40V to protect the motors

from over voltages. The set point performance is
very well such that the norm of errors is vanished
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well after 10s and comes under the 2.2x10"rad
in the end shown in figure 6. The motor voltages
are under the permitted value of 40V and behave
well without any problems shown in figure 7.

The control efforts behave well under the
permitted values. As a result, the uncertainties are
compensated well.

Simulation 3: | apply the DLQC in (23) for
tracking control with zero initial error and the
sampling time of 0.01s.

The tracking errors are under the 0.085rad shown
in figure 8 and the control efforts behave well
under the permitted value of 40V shown in figure

9. The maximum value of errors for the DLQC is
about 121 times larger than one for the DROC.

Simulation 4: The set point performance of the
DLQC is simulated with the sampling time of
0.01s. The initial errors and desired trajectories
are given the same as the DROC for comparing
the results. The tracking errors are vanished after
10s and come under 0.033rad in the end shown

in figure 10.

The motor voltages are under the permitted value
of 40V and behave well without any problems
shown in figure 11. The maximum value of errors

for the DLQC is about 1.5x10° times larger than
one for the DROC at the end.

Set point performance of DROC
1 : : :

e1
—e
0.5 2y
- — %
he)
<
= Or
e
@
0.5 g
o 1000 2000 3000 4000
k

Figure 6. Set point performance of DROC.

Control efforts of DROC
8 T T :

—V1
—V2
6 - H
R —vV3
2
§ 4f =
E
£2 1
E
O F
2 L : ;
0 1000 2000 3000 4000

k

Figure 7. Control efforts of Set point DROC.
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Tracking performance of DLQC
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Figure 8. Tracking performance of DLQC.

Control efforts of DLQC
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Figure 9. Control efforts of DLQC.
Set point performance of DLQC
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Figure 10. Set point performance of DLQC.
Control efforts of set point DLQC
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Figure 11. Control efforts of DLQC.
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6. Conclusion

A novel discrete-time repetitive optimal control of
electrically driven robot manipulators has been
developed by a modification on the discrete linear
quadratic control. The proposed control law
includes two terms: The discrete linear quadratic
controller and the robust time-delay controller. In
order to apply the discrete linear quadratic control,
a control-oriented discrete-time linear time-variant
model has been proposed for the robotic system.
The control-oriented model highly differs from
the actual system. To compensate the model
imprecision, | have used the time-delay controller.
The proposed control approach has been verified
by stability analysis. Simulation results have
shown the superiority of the proposed control
method over the discrete linear quadratic control.
The time-delay controller efficiently compensates
the uncertainty and nonlinearity.
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