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1. Introduction 

As powerful engines, turbines, reactors, and other machines 

have been developed in recent years in aerospace industries, the 

need for materials with high thermal and mechanical resistance 

has been identified. Functionally graded materials (FGMs) are 

among the materials that exhibit different properties in different 

regions due to gradual changes in their chemical compositions or 

due to changes in distribution, orientation, or phase of 

reinforcement in one or more dimensions. This gradual change in 

structure and properties has caused the application of such 

materials to spread, particularly in cases where different 

properties are needed in different regions. Since multilayer 

composites are composed of two dissimilar materials next to one 

another, the layers may tend to get isolated.  

Cracks are most probably formed in the mediate region 

between the two materials, and spread into the weaker part. 

Furthermore, residual stress may occur in the block due to 

different temperature coefficients. These problems can indicate 

that the common multilayer composites need to be replaced by 

functionally graded materials, where the properties gradually 

change in microscopic scale linearly through the thickness. A 

common type of FGM includes a continuous combination of a 

ceramic and a metal. The change from pure metal to pure ceramic 

is incremental and continuous such that one surface is made of 

pure ceramic and the other of pure metal. The mechanical 

properties also change continuously through the thickness based 

on the compound type.  

The free vibrations of functionally graded materials have been 

studied widely in recent years. Aksencer and Aydogdu [1] 

studied buckling and vibration of nanoplates using nonlocal 

elasticity theory. The Navier type solution is used for simply 

supported plates and the Levy type method is used for plates with 

two opposite edges simply supported and remaining edges 

arbitrarily supported.  Ansari et al. [2] developed a nonlocal plate 

model which accounts for the small-scale effects to study the 

vibrational characteristics of multi-layered graphene sheets with 

different boundary conditions embedded in an elastic medium. 

Hosseini, Hashemi and Samaei [3] proposed an analytical 

solution for the buckling analysis of rectangular nanoplates. 

Narendar [4] presented a buckling analysis of isotropic 

nanoplates using the two-variable refined plate theory and 

nonlocal small-scale effects. Daneshmehr et al. [5] investigated 

the free vibration behavior of the  nanoplate made of functionally 

graded materials with small-scale effects. The generalized 

differential quadrature method (GDQM) was used to solve the 

governing equations for various boundary conditions to obtain 
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the nonlinear natural frequencies of FG nanoplates. Bakhsheshy 

and Khorshidi [6] presented the free vibration analysis of 

functionaly graded rectangular nanoplates in thermal 

environments. The modified coupled stress theory, based on the 

first order shear deformation theory, was used to obtain the 

natural frequencies of the nanoplate. Hosseini, Hashemi et al. [7] 

presented analytical solutions for free vibration analysis of 

moderately thick rectangular plates, which are composed of 

functionally graded materials and supported by either Winkler or 

Pasternak elastic foundations. Zare et al.[8] analyzed the natural 

frequencies of a functionally graded nanoplate for different 

combinations of boundary conditions. Natarajan et al. 

investigated the size-dependent linear free flexural vibration 

behavior of functionally graded nanoplates using the iso-

geometric-based finite element method. Bounouara et al.[9] 

presented a zeroth-order shear deformation theory for free 

vibration analysis of functionally graded nanoscale plates resting 

on elastic foundations. Salehipour et al.  [10] developed a model 

for static state and vibration of functionally graded micro/nano 

plates based on modified couple stress and three-dimensional 

elasticity theories. Belkorissat et al.  [11] presented a new 

nonlocal hyperbolic refined plate model for free vibration 

properties of functionally graded plates. Ansari et al. [12] studied 

the buckling and vibration responses of nanoplates made of 

functionally graded materials subjected to thermal loading in a 

perbuckling domain while considering the effect of surface stress.  

Hosseini and Jamalpoor [13] studied the dynamic characteristics 

of a double-FGM viscoelastic nanoplates system subjected to 

temperature change while also considering surface effects based 

on the nonlocal elasticity theory of Eringen. Ansari et al. [14] 

presented a three-dimensional nonlocal bending and vibration 

analysis of functionally graded nanoplates using a novel 

numerical solution method which is called variational differential 

quadrature (VDQ) due to its numerical essence and the 

framework of implementation. Aghababaei and Reddy[15] 

studied the vibration of isotropic rectangular nanoplate using the 

nonlocal elasticity theories and the third-order shear deformation 

theory. Bouiadjra et al. [16] investigated nonlinear behavior of 

functionally graded material plates under thermal loads using an 

efficient sinusoidal shear deformation theory. Nguyen et al. [17] 

proposed an efficient computational approach based on refined 

plate theory (RPT) which included the thickness stretching effect, 

namely quasi-3D theory, in conjunction with iso-geometric 

formulation (IGA) for the size-dependent bending, free vibration 

and buckling analysis of functionally graded nanoplate structures. 

Daneshmehr et al.[18] presented a nonlocal higher order plate 

theory for stability analysis of nanoplates subjected to biaxial in 

plane loadings. The generalized differential quadrature (GDQ) 

method was implemented to resolve size-dependent buckling 

analysis according to higher-order shear deformation plate 

theories, where highly coupled equations exist for various 

boundary conditions of rectangular plates. Ghorbanpour, Arani et 

al. [19] investigated modeling and vibration analysis of carbon 

nanotubes/fiber/polymer composite microplates. Goodarzi et al. 

[20] studied the free vibration behavior of nanoscale FG 

rectangular plates within the framework of the refined plate 

theory (RPT) and small-scale effects were taken into account. 

Raissi et al. [21] used layerwise theory along with first-, second- 

and third-order shear deformation theories to determine the stress 

distribution in a simply supported square sandwich plate 

subjected to a uniformly distributed load. Mergen et al. [22] 

investigated the size-dependent nonlinear oscillation 

characteristics of a functionally graded microplate numerically. 

Baghani et al. [23] studied the effects of magnetic field, surface 

energy and compressive axial load on the dynamic and the 

stability behavior of the nanobeam. Ghayesh et al. [24] 

investigated the size-dependent oscillations of a third-order 

shear-deformable functionally graded microbeam taking into 

account all the longitudinal and transverse displacements and 

inertia as well as the rotation and rotary inertia. Kordani et al. 

[25] presented a numerical procedure for the free and forced 

vibration of a piezoelectric nanowire under thermos-electro-

mechanical loads based on the nonlocal elasticity theory within 

the framework of Timoshenko beam theory. Farajipour and 

Rastgoo [26] developed a modified beam model to investigate 

the effect of carbon nanotubes on the buckling of microtubule 

bundles in living cell. Hosseini et al. [27]  studied stress 

distribution in a single-walled carbon nanotube under internal 

pressure with various chirality. Hosseini et al. [28] presented the 

stress analysis of ratating nano-disk of functionally graded 

materials with nonlinearly varying thickness based on strain 

gradient theory. Zamani Nejad et al. [29] used a semi-analytical 

iterative method as one of the newest analytical methods for the 

elastic analysis of thick-walled spherical pressure vessels made 

of functionally graded materials subjected to internal pressure. In 

other work, Zamani Nejad and Hadi  [30] formulated the problem 

of the static bending of Euler-Bernoulli nano-beams made of bi-

directional functionally graded material with small scale effects. 

Also, Zamani Nejad and Hadi [31] investigated the free vibration 

analysis of Euler-Bernoulli nano-beams made of bi-directional 

functionally graded material with small scale effects. Zamani 

Nejad et al. [32] presented consistent couple-stress theory for free 

vibration analysis of Euler-Bernoulli nano-beams made of 

arbitrary bi-directional functionally graded materials. Also, 

Zamani Nejad et al. [33] presented buckling analysis of the nano-

beams made of two-directional functionally graded materials 

with small scale effects based on nonlocal elasticity theory. In 

other work, Zamani Nejad et al. [34] presented an exact closed-

form analytical solution for elasto-plastic deformations and 

stresses in a rotating disk made of functionally graded materials 

in which the elasto-perfectly-plastic material model is employed. 

Shishesaz et al. [35] studied the thermoelastic behavior of a 

functionally graded nanodisk based on the strain gradient theory. 

Hadi et al. [36] presented buckling analysis of FGM Euler-

Bernoulli nano-beams with 3D-varying properties based on 

consistent couple-stress theory. Zamani Nejad et al. [37] 

discussed some critical issues and problems in the development 

of thick shells made from functionally graded piezoelectric 

material. Hadi et al. [38] presented an investigation on the free 

vibration of three-directional functionally graded material Euler-

Bernoulli nano-beam, with small scale effects. 

  

In this study, free vibration of functionally graded nanoplate is 

presented. Higher-order shear deformation plate theory is 

considered [39]. According to the literature review presented 

above, in this study, the finite element method has been used for 

analyzing the vibration of FG Nanoplates for the first time. In 

this study, for the first time, the formulation of the Finite Element 

Method for the third-order shear deformation plate theory is 

presented. Natural frequencies for all different combinations of 

boundary conditions are presented for simply supported and 

clamped for different modes. For applying small-size effects, 

nonlocal theory is used and for various nonlocal parameters, the 

natural frequencies of nanoplate calculated. The results of the 

calculations are provided in the conclusion. 

2. Mathematical formulation 

2.1 Geometrical configuration 
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In Figure 1, a functionally graded rectangular nanoplate of 

length
1L , width

2L and height h  is shown. Cartesian coordinates 

( , , )x y z  is considered. 

 

Fig 1. Geometry of functionally graded rectangular nanoplate 

 

2.2 Material properties  

Functionally graded plate consists of two metal and ceramic parts 

which are integrated in such a way that material properties are 

continuously and gradually changed along with plate thickness 

from purely metal properties in the bottom surface of plate 

( )
2

h
z    to purely ceramic properties in the top of the 

plate ( )
2

h
z   . Assuming that the distribution of the material 

properties through thickness follows the power law, the 

following equation could be written. 

  

m m c cP P V PV   (1) 

Where 
mP and

cP , respectively, show metal and ceramic 

properties, and 
mV  and 

cV show the volume fraction of the metal 

and ceramic parts in the bottom and top surfaces of the plate. By 

using the power distribution law, the volume fraction of the 

ceramic part is noted for each point of plate thickness in Eq. (2) 

and (3). [40] 

1
( )

2

n

c

z
V

h
   

(2) 

1m cV V   (3) 

Where n indicates the volume fraction index of the ceramic 

and the distribution of the ceramic part is noted along with plate. 

So according to the above equation, the properties of the graded 
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materials is a function of E , Young modulus and unit mass of 

volume  , along with the plate thickness as shown in the 

following equations.  

( ) ( )c m c mE z E E V E    (4) 

( ) ( )c m c mz V       (5) 

2.3 Non-local elasticity theory  

Nonlocal elasticity theory, which was introduced by Eringen 

[41], is one of the unconventional contemporary theories in that 

the effects of small scales are applied in the characteristic 

equations of this theory. In nonlocal theory, the stress tensor at 

the point x  of a physical environment   is connected to the 

strain tensor   in the whole of the environment by an integral 

equation. In other words, the constitutive law of nonlocal theory 

is  

     ,x x x C x dv       (6) 

Element  ,x x    is called the nonlocal modulus and 

acts as a weight function in this equation. x x   is the distance 

between the local point and the nonlocal point. C  is a fourth-

order tensor which exists in classical theory, too.   is related to 

the internal length scale  a  and outer length scale  l  as 

0

2

e a

l l


    

(7) 

where 
0e

 
is a physical parameter that has been identified by 

experimental results, and the parameter  
2

0e a   is called the 

small-size parameter. 

At last, the form of the structural equation of non-localized 

elastic theory is as follows. 

 21 :C      (8) 

It should be mentioned, when the body is not small, the small-

size parameter is small, and the nonlocal constitutive parameter 

converges to classical theory. 

2.4 The equations of motion  

To achieve the equations of motion of thick plate, displacement 

fields of third-order theory in Cartesian coordinates were used. 

[39] 

3
0

0 2

4
( , , , ) ( , , ) ( , , )

3
x x

wz
u x y z t u x y t z x y t

xh
 

 
    

 
 

(9) 

3
0

0 2

4
( , , , ) ( , , ) ( , , )

3
y y

wz
v x y z t v x y t z x y t

yh
 

 
    

 
 

(10) 

0( , , , ) ( , , )w x y z t w x y t  (11) 

Where u , v  and w are the displacements of each point 

and
0u ,

0v  and 
0w  are the displacement amounts in the middle 

sheet in the directions x , y and z , respectively. Also 
x  and y , 

respectively, show normal rotation perpendicular to the middle of 

the plate around y and x axes. By using the displacement fields 

discussed earlier, the strain equation could be written as follows: 

2
30 0

1 2

( , , ) ( , , )x x
xx

u x y t x y t w
z C z

x x x x

 


    
    

    
 

(12) 

2
30 0

1 2

( , , )( , , ) y y

yy

x y tv x y t w
z C z

y y y y

 


   
    

    
 

(13) 

0zz   (14) 

0 0

2
3 0

1

( , , ) ( , , )1

2

( , , )( , , )

2

xy

yx

yx

u x y t v x y t

y x

x y tx y t
z

y x

w
C z

y x y x







  
  

  

 
  

  

 
   

    


 (15) 

2 0
2

( , , )1
(1 )

2
xz x

w x y t
C z

x
 

 
   

 
 

(16) 

2 0
2

( , , )1
(1 )

2
yz y

w x y t
C z

y
 

 
   

 
 

(17) 

Where 
1 2

4

3
C

h
  and 

2 13C C  .  

The stress-strain relations for the plane stress problem are 

defined as: 

11 12

21 22

66

0

0

0 0

xx xx

yy yy

xy xy

Q Q

L Q Q

Q

 

 

 

    
    

    
        

 

(18) 

66

xz xz

yz yz

L Q
 

 

      
   

      
 

(19) 

where 
21L     and ijQ

 
are  the coefficients of stiffness 

matrix and defined as follows:  

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

A. Zargaripoora, A. Daneshmehra, I. Isaac Hosseini ,A. Rajabpoor 

90 

 

11 22 21

E
Q Q

v
 


 

(20) 

12 21 21

Ev
Q Q

v
 


 

(21) 

 66
2 1

E
Q

v



 

(22) 

By using displacement field in the Hamilton principle, motion 

equations based on forces and moments are derived as follows 

[15]: 

0

2 2 2 3

0 0
0 1 1 3 1 32 2 2 2

:
xyxx

x x

NN
u

x y

u w
L m m c m c m

t t t t x



 


 

 

    
   

     

 

(23) 

0

2 22 3

0 0
0 1 1 3 1 32 2 2 2

:
yy xy

y y

N N
v

y x

v w
L m m c m c m

t t t t y



 

 
 

 

   
   

      

 

(24) 

 

2 22

0 1 1 12 2

32 3
20

0 1 4 1 62 2 2

4 4 3 3
2 0 0 0 0

1 6 1 32 2 2 2 2 2

: 2
xy yy yxx x

yx

P P QP Q
w c c c

x y x yx y

w
m c m c m

t t x t y
L

w w u v
c m c m

t x t y t x t y





   
    

    

   
    

       
 

       
       

           

 

(25) 

   

 

2 2
20

1 1 3 2 1 4 1 62 2

2
2

1 4 1 6 2

2

:

x

xyxx
x x

u
m c m m c m c m

MM t t
Q L

x y w
c m c m

t x





  
         

   
  

  

 

(26) 

   

 

22
20

1 1 3 2 1 4 1 62 2

2
2

1 4 1 6 2

2

:

y

xy yy

y y

v
m c m m c m c m

M M t t
Q L

x y w
c m c m

t y





 
   

      
   
     

 

(27) 

Where stress resultants in elastic plate are defined as follows:  

/2

/2

h

h

N dz 


   

Force resultants (28) 

/2

/2

h

h

M zdz 


   

Moment resultants (29) 

/2

3

/2

h

h

P z dz 


   

Higher-order moment 

resultants 

(30) 

/2

/2

h

z

h

Q dz 


   

Transverse force 

resultants 

(31) 

/2

2

/2

h

z

h

R z dz 


   

Transverse higher-

order force resultants 

(32) 

M  and Q  are  

1M M c P     (33) 

2Q Q c R     (34) 

And components of m  are 

0

0
1

1

2

2 /2

3
3

/2 4
4

5
5

66

( )

h

h

zm

zm

zm

m z dzz

m z

m z

m z




  
  
  
  
    

   
   
   
   
   
    



 

(35) 

Boundary conditions for the two kinds of boundaries are: 

Simply supported boundary condition:  

0 0 0

0 0 0

0 0,

0 0,

y xx xx

x yy yy

u v w M P x a

u v w M P y b





       

       
 

(36) 

Clamped boundary condition: 

0
0 0 0

0
0 0 0

0 0,

0 0,

x y

x y

w
u v w x a

x

w
u v w y b

y

 

 


       




       



 

(37) 

3. Solution method 

3.1 Finite element method 

In this section, a system of equations is solved simultaneously 

with the finite element method (FEM).  At first we separate time 

and spatial dependencies as follows:  
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(38) 

For the deflection along the z-axis, w , second polynomial 

interpolation functions (Equation (39)) are chosen, and for other 

variables, first polynomial interpolation functions (Equation 

(40)), are chosen, due to the degree of derivations in the 

equations. These choices are made to prevent shear locking.[42] 
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(40) 

Using the Galerkin method, equations (17) to (21) are multiplied 

in
(1)

, 
(2)

and 
(3)

 and the integral is taken through the 

thickness of the plate. By using integration by parts and 

arranging the results, the matrices of stiffness and mass are as 

follows: 
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(42) 

Each component of the above matrices and the vector is 

presented in Appendix A. 

4. Results and discussion 

Here, free vibration analysis of FG nanoplates based on the third-

order shear deformation plate theory is studied and numerical 

results are achieved for different boundary conditions by using 

the finite element method. For the validation of results, the 

natural frequencies of the nanoplates are compared with the 

results of Aghababaei and Reddy’s study[15]. Also the values of 

the dimensionless frequencies for FG rectangular nanoplates are 

compared with Ref [43]. In addition the influence of different 

parameters, such as nonlocal parameter (  ), aspect ratio 

(
a

b
  ) and aspect of length to thickness (

h

a
  ) of nanoplate 

are assessed. 

The values of material properties for FGM nanoplates are 

listed in table 1.Also, the dimensionless frequency and frequency 

ratio is defined as follow: 

c

c

h
G


   

(43) 

NL

L

Fr



  

(44) 

In which  is dimensionless frequency when 0  . 
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 Table 1. The material properties of FG nanoplate 

Materials Properties 

 E (Gpa) 
3( )

Kg
m

  
  

SUS 304 201.04 8166 0.3 

 
348.46 2370 0.3 

 

Dimensionless natural frequency values are used in the 

present study for simply supported boundary conditions when the 

nanoplates are compared with obtained values by Aghababaei 

and Reddy [15] in table 2. 

Table 2. Comparison of dimensionless frequency h
G

   

for a simply supported nanoplate with Aghababaei and Reddy 

      Present [15] 

1 10 0 0.0930 0.0935 

1 10 1 0.0850 0.0854 

1 10 2 0.0788 0.0791 

1 20 0 0.0239 0.0239 

1 20 1 0.0218 0.0218 

1 20 2 0.0202 0.0202 

2 10 0 0.0589 0.0591 

2 10 1 0.0556 0.0557 

2 10 2 0.0527 0.0529 

2 20 0 0.0150 0.0150 

2 20 1 0.0141 0.0141 

2 20 2 0.0134 0.0134 

 

The results show that deviation between our results and 

Aghababaei and Reddy’s results is less than 1%. 

In table 3, the dimensionless frequencies are compared with 

Ref [43] for simply supported and clamped FG nanoplates. As it 

is observed, the results obtained with the finite element method 

have considerable accuracy, as they are very close to the values 

obtained by reference. 

The dimensionless frequencies of FG nanoplate for different 

nonlocal parameters, the power law index, and the mode number 

are listed in tables 4–8. Also, all combinations of simply 

supported and clamped boundary conditions are considered. 

Table 3. Comparison of dimensionless frequency 

c

c

h
G


  for FG square nanoplate ( 1, 0.1, 5)n     

BC Method Dimensionless Frequency 

  0   1   2   

SSSS Present 0.0444 0.0405 0.0376 

 [43] 0.0441 0.0403 0.0374 

CCCC Present 0.0753 0.0677 0.0620 

 [43] 0.0758 0.0682 0.0624 

Table 4. Dimensionless frequency c

c

h
G


  for FG SSSS 

square nanoplate ( 1, 0.1)    

Nonlocal 

parameter 

Power law 

index 

Dimensionless Frequency  

  Mode1 Mode 2 Mode 3 Mode 4 

 0n       

0    0.0930 0.2225 0.2225 0.3407 

1    0.0850 0.1820 0.1820 0.2547 

2    0.0788 0.1578 0.1578 0.2122 

 1n       

0    0.0552 0.1310 0.1310 0.2008 

1    0.0504 0.1072 0.1072 0.1501 

2    0.0467 0.0930 0.0930 0.1250 

 5n       

0    0.0444 0.1052 0.1052 0.1608 

1    0.0405 0.0861 0.0861 0.1202 

2    0.0376 0.0747 0.0747 0.1002 
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Table 5.Dimensionless frequency c

c

h
G


  for FG SCSS 

square nanoplate ( 1, 0.1)    

Nonlocal 

parameter 

Power 

law index 

Dimensionless 

Frequency 
 

  Mode 1 Mode 2 Mode 3 Mode 4 

 0n      

0 
 

 0.1095 0.2305 0.2561 0.3627 

1 
 

 0.0995 0.1881 0.2077 0.2695 

2 
 

 0.0919 0.1629 0.1792 0.2239 

 1n      

0 
 

 0.0647 0.1357 0.1509 0.2137 

1 
 

 0.0588 0.1108 0.1223 0.1588 

2 
 

 0.0543 0.0959 0.1056 0.1319 

 5n      

0 
 

 0.0520 0.1089 0.1208 0.1708 

1 
 

 0.0473 0.0889 0.0980 0.1270 

2 
 

 0.0436 0.0770 0.0845 0.1055 

Table 6. Dimensionless frequency c

c

h
G


  for FG 

SCSC square nanoplate ( 1, 0.1)    

Nonlocal 

parameter 

Power 

law index 

Dimensionless Frequency  

  Mode 1 Mode 2 Mode 3 Mode 4 

 0n       

0    0.1307 0.2406 0.2921 0.3871 

1    0.1185 0.1960 0.2350 0.2860 

2    0.1092 0.1695 0.2018 0.2371 

 1n       

0    0.0771 0.1416 0.1722 0.2280 

1    0.0699 0.1154 0.1384 0.1684 

2    0.0644 0.0998 0.1189 0.1396 

 5n       

0    0.0618 0.1135 0.1373 0.1819 

1    0.0560 0.0925 0.1105 0.1345 

2    0.0516 0.0800 0.0949 0.1115 

 

Table 7. Dimensionless frequency c

c

h
G


  for FG 

SCCC square nanoplate ( 1, 0.1)    

Nonlocal 

paramet

er 

Power 

law 

index 

Dimensionless Frequency  

  Mode 1 Mode 2 Mode 3 Mode 4 

 0n      

0 
 

 0.1428 0.2719 0.2983 0.4066 

1 
 

 0.1288 0.2195 0.2393 0.2985 

2 
 

 0.1182 0.1889 0.2052 0.2468 

 1n      

0 
 

 0.0842 0.1602 0.1758 0.2395 

1 
 

 0.0759 0.1292 0.1409 0.1758 

2 
 

 0.0697 0.1112 0.1208 0.1453 

 5n      

0 
 

 0.0675 0.1280 0.1401 0.1908 

 

Table 8. Dimensionless frequency c

c

h
G


  for FG 

CCCC square nanoplate ( 1, 0.1)    

Nonlocal 

parameter 

Power 

law 

index 

Dimensionless Frequency  

  Mode 1 Mode 2 Mode 3 Mode 4 

 0n      

0 
 

 0.1597 0.3061 0.3061 0.4286 

1 
 

 0.1436 0.2450 0.2450 0.3129 

2 
 

 0.1315 0.2099 0.2099 0.2580 

 1n      

0 
 

 0.0941 0.1804 0.1804 0.2525 

1 
 

 0.0846 0.1443 0.1443 0.1842 

2 
 

 0.0774 0.1236 0.1236 0.1518 

 5n      

0 
 

 0.0753 0.1437 0.1437 02008 

1 
 

 0.0677 0.1151 0.1151 0.1467 

2 
 

 0.0620 0.0987 0.0987 0.1210 

Figure 2 shows the changes of dimensionless frequency for an 

FG simply supported nanoplate based on the changes of nonlocal 

parameters for different power law index values. In this figure, it 

is observed that by increasing the nonlocal parameters and the 

power law index, non-dimensional frequency decreases. It is 

found that for the lower power law index, the value of 

dimensionless frequency is higher, because by increasing the 

power law index, the property of the plate reaches to metal, and 

so its stiffness decreases. Thus, for a higher power law index, the 

value of the dimensionless frequency is lower. 

In figure 3, the effects of plate thickness on frequency ratio 

for different values of nonlocal parameters areshown. It is 

observed that by increasing plate thickness, there is no change in 

the frequency ratio. 
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Figure 2. Effect of nonlocal parameter on dimensionless frequency for a FG 

simply supported nanoplate for different power law index ( , . )1 0 1    

 

Figure 3. Effect of thickness to length ratio on frequency  ratio for a FG 

simply supported nanoplate for different nonlocal parameters ( , )1 5n   

In figure 4, the effects of the aspect ratio on non-dimensional 

frequency for different values of nonlocal parameters are shown. 

It is observed that by increasing the aspect ratio, the frequency 

increases for all nonlocal parameters. It is clear that for the higher 

aspect ratios, the influence of the nonlocal parameters increases.  

Figure 5 illustrates the effect of the nonlocal parameter on the 

frequency ratio for different modes of vibration for the clamped 

boundary condition. It is found that for higher mode numbers, the 

effect of the nonlocal parameter becomes more noticeable. 

Figure 6 shows the effects of nonlocal parameters on the 

frequency ratio for different boundary conditions. It is found that 

size-dependent behavior is the greatest for the clamped boundary 

condition and the least for the simply supported boundary 

condition. Also, the size dependency increases by increasing the 

nonlocal parameter. 

 

Figure 4. Effect of aspect ratio on dimensionless frequency for a FG simply 

supported nanoplate for different nonlocal parameters ( , . )5 0 1n    

 

Figure 5  Effect of nonlocal parameter on frequency ratio for a FG clamped 

nanoplate for different mode numbers ( , . , )5 0 1 2n      

Figure 7 shows the variation of dimensionless frequencies for 

FG nanoplates based on the changes of the power law index for 

different boundary conditions. It is obvious that by using stiffer 

boundary conditions at the edges, the dimensionless frequency 

will increase. 

The variation of the dimensionless frequency of the FG 

clamped nanoplate with the power law index for different 

nonlocal parameters is shown in figure 8. This figure shows that 

increasing the power law index causes the dimensionless 

frequency to decrease for all nonlocal parameters. Also, by 

increasing the power law index, the dimensionless frequency 

converges to a specific value—the metallic plate frequency. 

The effect of the aspect ratio on the frequency ratio for an FG 

nanoplate for different boundary conditions is shown in figure 9. 

It is clear that by increasing the aspect ratio of the plate, the 

frequency ratio decreases for all boundary conditions. Also, the 

effect of the aspect ratio is considerably more for the clamped 

boundary condition. 

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

Journal of Computational Applied Mechanics, Vol. 49, No. 1, June 2018 

95 

 

 

Figure 6  Effect of nonlocal parameter on frequency ratio for a FG square 

nanoplate for different boundary conditions  ( , . )5 0 1n    

 

Figure 7 Effect of power law index on dimensionless frequency for a FG 

square nanoplate for different boundary conditions  ( . , )0 1 1    

 

Figure 8. Effect of power law index on dimensionless frequency for a FG 

clamped nanoplate for different nonlocal parameters  ( . , )0 1 1    

 

Figure 9 Effect of aspect ratio on frequency ratio for a FG nanoplate for 

different boundary conditions  ( . , , )0 1 1 5n     

5. Conclusion 

This paper presents an analysis of free vibration of FG nanoplate 

based on higher-order shear deformation plate theory using the 

finite element method. For implementing small-size effects, 

nonlocal theory is used. Dimensionless frequencies of the 

nanoplates are compared with the results of Aghababaei and 

Reddy’s study, and the dimensionless frequencies for FG 

rectangular nanoplates are compared with available results by 

Ref [43];excellent agreement is observed. . In future works, these 

results can be an excellent database to verify approximate or 

analytical solutions. Also the influence of different parameters, 

such as nonlocal parameters, aspect ratio and aspect of length to 

thickness of nanoplate, are discussed. It was observed that: 

 By increasing the nonlocal parameter and the power law 

index, non-dimensional frequency will decrease. 

 By increasing the thickness of the nanoplate, there is no 

change in frequency ratio. 

 By increasing the aspect ratio of the FG nanoplate, the 

frequency will increase for all nonlocal parameters. 

 For higher mode numbers the effect of nonlocal 

parameter becomes more noticeable. 

 The size-dependent behavior is the greatest for the 

clamped boundary condition and the least for the simply 

supported boundary condition 

 By increasing the power law index, frequency will 

decrease for all boundary conditions. 

 Dimensionless frequency increases by increasing the 

constraints at the edge. 

 By increasing the aspect ratio of the FG nanoplate, the 

frequency ratio decreases for all boundary conditions. 

 By increasing the power law index, the dimensionless 

frequency decreases for all nonlocal parameters. 
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6. Appendix A. Components of Finite Element Method 

Matrixes 

Each component of stiffness and mass matrixes and force vector 

that have been discussed in solution method part are given below. 

The parameters that have been used in this matrixes are: 
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