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Subpullbacks and coproducts of S-posets

Xingliang Liang and Yanfeng Luo

Abstract. In 2001, S. Bulman-Fleming et al. initiated the study of three
flatness properties (weakly kernel flat, principally weakly kernel flat, transla-
tion kernel flat) of right acts Ag over a monoid S that can be described by
means of when the functor As ® — preserves pullbacks. In this paper, we
extend these results to S-posets and present equivalent descriptions of weakly
kernel po-flat, principally weakly kernel po-flat and translation kernel po-flat
S-posets. Moreover, we show that most of flatness properties of S-posets can
be transferred to their coproducts and vice versa.

1 Introduction and preliminaries

Let S be a pomonoid. A poset A is called a right S-poset (denoted by Ag)
if there exists a right action A x S — A, (a,s) — as, which satisfies (i)
the action is monotone in each variable, (ii) a(st) = (as)t and al = a for
all a €A and s,t € S. Left S-posets are defined analogously. The nota-
tion Ag (respectively, gA) will often be used to denote a right (respectively,
left) S-poset, and Og = {0} is the one-element right S-poset. All right
(respectively, left) S-posets form a category, denoted Pos-S (respectively,
S-Pos) (see [4]), whose morphisms are the functions that preserve both

Keywords: S-poset, subpullback, flatness, coproduct.
Mathematics Subject Classification [2010]: 06F05, 20M30.
Received: 1 March 2015, Accepted: 9 April 2015

ISSN  Print: 2345-5853 Online: 2345-5861

(© Shahid Beheshti University


www.sid.ir

2 Xingliang Liang, Yanfeng Luo

the action and the order. In these categories, as in the category Pos of
posets, the monomorphisms and epimorphisms are the injective and surjec-
tive morphisms, respectively. In Pos-S and S-Pos, a morphism g: A — B
is called an order embedding if g(a) < g(a’) implies a < a’ for all a,a’ € A.
A surjective order embedding is called an order isomorphism.

A nonempty subset I of a pomonoid S is called an ordered right ideal
of S'if (i) IS C I and (ii) @ < b € I implies a € I for all a,b € S. An S-
subposet Bg of a right S-poset Ag is called strongly convez if a < bimplies
a € Bg for any a € Ag and b € Bg. Clearly, if I is an ordered right ideal of
a pomonoid S, then [ is a strongly convex S-subposet of the S-poset S. A
pomonoid S is called weakly right reversible if for any s, s’ € S, there exist
u,v € S such that us < vs'.

Preliminary work on flatness properties of S-posets, was done by Fakhrud-
din in [6, 7], and continued in recent papers [1, 3, 9, 12]-etc.

To define the tensor product A ®g B of a right S-poset Ag and a left
S-poset ¢B (see [12]), we first equip the Cartesian product A x B with
component-wise order. Let A ®g B = (A x B)/p, where p is the order-
congruence on the right S-poset A x.B (on which S acts trivially) generated
by the relation H = {((as,b), (a,5b))| a € Ag,b €sB,s € S}. The equiva-
lence class of (a,b) in A®g B is denoted a®b. The order relation on A®g B
will be described in Lemma 2.1. Similar to S-acts, it is easy to see that
A ®g S can be equipped with a natural right S-action, and A ®g .S = A for
all S-posets Ag. It can be seen that a ® s < d’ ®t in A ®g S if and only if
as < a'tin Ag.

Subpullbacks and subequalizers in the category S-Pos are defined in [1].
The categories S-Pos and Pos are poset-enriched concrete categories, where
the order relation on morphism sets is defined pointwise (i.e. f < g for
fyg¢A— Bifand only if f(a) < g(a) for every a € A). In such categories,
a diagram
P2

P sN
S
(P1)

is called the subpullback diagram for f and g if
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(1) the diagram (Pq) is subcommutative (i.e. fp; < gp2), and
(2) if

j2

sP’ sN

I
f

sM 5@

is a diagram in S-Pos such that fp} < gph, then there exists a unique
morphism ¢ : gP" —gP such that p1¢p = p} and pap =p).

In S-Pos or Pos, ¢P may in fact be realized as

P={(m,n) e M x N | f(m) <g(n)}

with restrictions p; and po of the projections of M x N onto ¢M and gN
(note that P is possibly empty). The subpullback diagram (P7) is denoted
by P(M, N, f,g,Q) and tensoring it by any right S-poset Ag one gets the
subcommutative diagram

id
A®g P 1d AQp2 A®gN
id A®p1 \L J{idA®g
o
AogM —% 490

in Pos. For the subpullback of mappings id4 ® f and ids ® g, we may take
P ={(a®@m,d ®n) € (A®sM) x (A®sN) | a® f(m) <d ®g(n)}

with p}, p, being the restrictions of the projections.

From the definition of subpullbacks it follows that there exists a unique
monotonic mapping ¢ : A ®g P — P’ such that, in the diagram
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A ®SP
¢ id A ®p2

P! p A ®SN

id A®p1 P

Py idA®g

idA®

A ®SM da®f A ®SQ
(P2)

we have pi¢ = idy ® p; for i = 1,2. This mapping is called the ¢ corre-
sponding to the subpullback diagram P(M, Ny f,g,Q) for Ag. It can be seen
that the mapping ¢ in diagram (P2) is given by

pla® (m,n)) =(a®@m,a®@n)
for all @ € Ag and (m,n) €gP. Note that for ¢ to be surjective requires
(Va,a’ € Ag)(Ym esM)(Vn €sN)[a ® f(m) < d' @ g(n) =
(Fa" € Ag)(3m' €sM)(3n' €gN)
(f(m) <g@Yrha@m=d"@m'And @n=d" on)),
and for ¢ to be order embeddable requires
(Va,da' € Ag)(Ym,m' esM)(Vn,n' €gN)
[f(m) <gn)A f(m') <g(n) ha@m<deom Nawn<den =
a®(m,n) <d @ ((m, n)in A®g P.

Moreover, if the mapping ¢ is both a surjection and an order embedding,
then ¢ is an order isomorphism.

Similar to S-acts, coproducts of S-posets are disjoint unions, with S-
action and order defined componentwise.
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If A= |JA;, where A; are strongly convex right S-subposets of Ag, then

el
by the mapping corresponding to the subpullback diagram P(M, N, f, g, Q)
for A;, 1 € I, we mean the unique monotonic mapping ¢; which makes, in

the diagram

A; ®s P

A ®s M

(Pa2i)

we have pl;¢; = ida, ® pj for j = 1,2, where
P ={(a®@m,d@n) € (A4 ®s M) x (A; @3 N) | a® f(m) < d @g(n)}

and p);, ph; are the restrictions of projections to P/.

It is shown in [2, 10] that, if we require either bijectivity or surjectivity
of ¢ for pullback diagram of certain types, we not only recover most of
the well-known forms of flatness, but obtain some new properties of acts
as well. Furthermore, some of these results are extended to S-posets, and
the classes of right S-posets corresponding to all of the cells in the first and
second columns of Figure 1 are considered in [9]. This paper continues the
investigation of the classes of right S-posets Ag over S for which the functor
Ag ® — has certain subpullback preservation properties. The variations of
the types of subpullbacks considered in [9] and this paper are of the following

types:
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¢ order isomorphic
P(M,N, f.9.Q)
¢ surjective ¢ order isomorphic
P(M7M7f5f5Q> P(Ialfafas)
¢ surjective ¢ surjective ¢ order isomorphic
P(M7M7 L7 L7 Q) P(I7I’ f? f7 S) P(SS)SS’ f’ f’ S)
¢ surjective ¢ surjective ¢ order isomorphic
P(I,1,t,1,5) P(Ss,Ss, f, f,S) P(S,S,. [, f,S)
¢ surjective ¢ surjective
P(SS7 SS7 L? [/7 S) P(S7 S? f7 f7 S)

¢ surjective
P(S,5,t,t,5)

Figure 1.

Where I (Ss) stands for a (principal) left-ideal of S, and ¢ for a monomorphism of
left S-posets. Every rectangle stands for a class of right S-posets that is defined by
the property it contains. In the second and third columns, for instance, a rectangle
with the text “¢ ordersisomorphic P(M, N, f,g,Q)” denotes the class of all right
S-posets Ag such that the mapping ¢ is order isomorphic corresponding to every
subpullback diagram P(M, N, f,g,Q). But in the first column, for instance, a
rectangle with the text “¢ surjective P(Ss, Ss,t,t,5)” denotes the class of all right
S-posets Ag such that the mapping ¢ is surjective corresponding to every pullback
diagram P(Ss;S5s,t,t,5). A line between two rectangles indicates that the class
of right S-posets corresponding to the rectangle at the upper end of the line is
contained in the class corresponding to the rectangle at the lower end.

An S-poset Ag is called subpullback flat (respectively, subequalizer flat) if the
functor Ag ® — takes subpullbacks (respectively, subequalizers) in S-Pos to sub-
pullbacks (respectively, subequalizers) in Pos. Clearly, Ag is subpullback flat if
and only if the mapping ¢ is order isomorphic corresponding to every subpullback
diagram P(M, N, f,g,Q) in S-Pos.

It is proved in [1] that an S-poset Ag is subpullback flat and subequalizer flat
if and only if Ag satisfies the following conditions:

(P): (Va,a’ € As)(Vu,v € S)(au < a’v
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= (Fa" € Ag)(3s,t € S)(a=a"sNd =a"t A su<itv));

(E): (Va € Ag)(Yu,v € S)(au < av
= (3a' € Ag)(3s € S)(a = da's A su < sv)).

It is shown in [9] that an S-poset Ag satisfies condition (P) if and only if the
mapping ¢ is surjective corresponding to every subpullback diagram
P(M,N, f,9,Q). Conditions (WP) and (PWP) are also introduced in [9]. An
S-poset Ag is said to satisfy condition (W P) if the mapping ¢ is surjective corre-
sponding to every subpullback diagram P(I,1, f, f, S), where I is a left ideal of S.
An S-poset Ag is said to satisfy condition (PW P) if the mapping ¢ is surjective
corresponding to every subpullback diagram P(Ss,Ss, f; f,S),s €.S.

In Section 2 of this paper, we introduce three additional flatness properties
(weakly kernel po-flat, principally weakly kernel po-flat, translation kernel po-flat)
of S-posets by means of subpullback preservation, and present equivalent descrip-
tions of them (both for arbitrary and for cyclic S-posets).

It is shown in [10] that most of flatness properties of acts over a monoid S
are equivalent to the surjectivity or bijectivity of mappings corresponding to the
pullback diagrams in special cases. Furthermore, it is shown in [8] that these
flatness properties can be transferred to their coproducts. The purpose of Section
3 of this paper is to carry over these results to the setting of S-posets, and we show
that flatness properties introduced in [9]-¢an be transferred from S-posets over a
pomonoid S to their coproducts.

Although much of our work follows directly from the unordered case, some care
is needed. Moreover, the results need to be stated and justified, which is the aim
of this article.

2  Subpullbacks and flatness

In this section, we discuss the classes of right S-posets Ag corresponding to the
three lowest cells in the third column of Figure 1. We give an alternative description
of a right (cyclic, one-element) S-poset having the corresponding property.

We begin with the following result used by many authors and formulated in [12,
Theorem 5.2].

Lemma 2.1. Let Ag be a right S-poset, sB a left S-poset, a,a’ € Ag, b,b € sB.
Then a @b < d @b in A®g B if and only if there exist ai,az, -+ ,a, € Ag,
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ba, - ,bn € sB and s1,t1, -+ ,8n,tn € S such that
a < a;s;
aity < agss s1b < t1by
agty < asss S9by < tob3
apt, <ad Spbp < tLb.

Definition 2.2. A right S-poset Ag is called

(i) weakly kernel po-flat if the mapping ¢ is order isomorphic corresponding to
every subpullback diagram P(I, 1, f, f,S), where I is a left ideal of S

(ii) principally weakly kernel po-flat if the mapping ¢'is order isomorphic corre-
sponding to every subpullback diagram P(Ss, Ss, fyf,S),s € S;

(iil) translation kernel po-flat if the mapping ¢'is order isomorphic corresponding
to every subpullback diagram P(S, S, f, f,.5).

From Figure 1 and Theorems 2.1, 2.2, 2.3, 2.4, 3.2, 4.1, 5.3 of [9], we see that
the new properties just defined are related to properties already studied as shown
in Figure 2.

SPF

N\

WKF

(P)
/ \ \PWKF
F (WP) | ?

NN T

WF (PWP)

PWF

TF
Figure 2.

Note 2.3. SPF = subpullback flatness, F = flatness, WF = weak flatness, PWF =
principal weak flatness, WKF = weak kernel po-flatness, PWKF = principal weak
kernel po-flatness, TKF = translation kernel po-flatness, TF = torsion freeness.
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If S is a pomonoid and t € S, then p; : S — S will denote the right translation
by t, that is, p:(s) = st for every s € S.

Recall that a binary relation ¢ on an S-poset Ag is called a compatible quasi-
order on Ag if it is transitive, compatible with the S-action, and contains the
relation < on Ag. The relationship between order-congruences and compatible
quasi-order on Ag is given in [13].

Suppose that p is a right order congruence on a pomonoid S. Define a relation
p by

sptels], <[], in S/p.
It is clear that p is a compatible quasi-order on Ag.

The subkernel or directed kernel of an S-poset morphism f : Ag — Bg is de-
fined by l?g"f ={(a,d') € Ax A| f(a) < f(a')} (see [5]). It is shown in [13] that
lg; f is a compatible quasi-order on Ag. Furthermore, we first give equivalent char-
acterizations of weak kernel flatness, principal weak kernel flatness and translation

kernel flatness, both for arbitrary and for cyclic S-posets. ‘If p is an equivalence
relation on S and s € S, then 5 denotes the equivalence class of s modulo p.

Proposition 2.4. A right S-poset Ag is weakly kernel po-flat if and only if Ag
satisfies condition (W P) and for every left ideal I of S and every morphism f :
sl —gS the following condition holds:

(Va,a’ € Ag)(Vs, s t,t' € I)
a®@s<ad ®@sin AQI, f(s) < f(t)
at<d®t inAxI, f(s') < f({t) } -
a®(s,t) <a @ (s,t) in ARg @f.
Proof. Tt follows from Tiemma 5.1 of [9] and Definition 2.2. O

As a direct consequence, we have

Corollary 2.5. A cyclic right S-poset S/p is weakly kernel po-flat if and only if
S/p satisfies condition (W P) and for every left ideal I of S and every morphism
f sl —5S the following condition holds:

(Vs,s',t,t' € 1)
1os<1l®s inS/pel, f(s)<f
Iet<iet inS/pel, f(s)<f(t)

- - —
1®(s,t) <1®(s,t) in S/p®g kerf.
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Proposition 2.6. A right S-poset Ag is principally weakly kernel po-flat if and
only if Ag satisfies condition (PW P) and the following condition holds:

— —
(Va,a' € Ag)(Vs,s',t,t', z,x € S such that kerp, C kerp,)

asx < a's'z, sz <tz . L
< , < _ e
atr < dt'z, §z<tz } = a® (sz,tr) < d @ (s'z,t'z) in A®g P,

where s P = {(ux,vx) | u,v € S,uz <wvz}.

Proof. Necessity. Let Ag be principally weakly kernel po-flat. Then Ag satisfies
condition (PW P). Suppose that

asr <ds'z, sz<tz,
atr < adt'z, sz2<t'z

for some a,a’ € Ag and s,s',t,t',z,x € S such_‘)chat ng - lg;pz. Define a
mapping f : s(Sz) =S by f(x) := z. Since kerp, C kerp,, f is well-defined.
Clearly, f is a morphism of left S-posets. [ Using Theorem 4.1 of [9], from the
inequality asr < a's’x we obtain that there exist b € Ag and u,v € S such that
as = bu, a’s’ = bv and ux < vr. Hencewe have

a®sr =asQr=buRr=bxur <bRQux
=bhuRr=dsRXr=d sz

in A ®g Sz. Analogously, a @tz < o’ ® t'z in A ®g5 Sz. Because Ag is principally
weakly kernel po-flat, the mapping ¢ is an order embedding corresponding to the
subpullback diagram P(Sz, Sw; f, f,S). Then the inequalities

a®sr <d®sz, f(sz)<f(tz),
a®tr <detx, f(sz)<f({t'x)

imply
a® (sw,tr) <ad @ (s'z,t'z) in A®g P,

where
P ={(uz,vx) € Sz x Sz | f(uzx) < f(vz)}
= {(uz,vx) | u,v € S,uz <wz}.

Sufficiency. Let ¢ be the canonical mapping corresponding to the subpullback
diagram P(Sxz, Sz, f, f,S) for Ag, where s € S and f : g(Sz) —¢S is a morphism.
Because Ag satisfies condition (PW P), the mapping ¢ is surjective corresponding
to every subpullback diagram P(Sz, Sz, f, f,S) by Theorem 4.1 of [9]. Next wet
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show that ¢ is also an order embedding corresponding to every subpullback diagram
P(Sxz,Sx, f, f,S). Suppose that

a®sr <d®@srin A®g Sz, f(sz)< f(tz),
a®tr <ad@trin A®g Sz, f(s'z) < f(t'z)

for some a,a’ € Ag and s,t,s',t',2 € S. Then

asr < ad's'z, sz<tz,
atr < dtx, sz<tz

where z = f(x). By assumption
a® (sz,tr) <ad @ (s'z,t'z) in A®s P,

A%
where ¢ P = {(uz,vz) | u,v € S,uz < vz} = kerf. Hence ¢ is-an order embedding,
and so Ag is principally weakly kernel po-flat. O

Using Proposition 2.6, we have the following description for a principally weakly
kernel po-flat cyclic S-poset.

Corollary 2.7. A cyclic right S-poset S/plis principally weakly kernel po-flat if
and only if S/p satisfies condition (PW P) and._the following condition holds:

— —
(Vs, ', t,t',z,x € S such that kerp, C kerp,)

sr p sz, sz<tz £ s TN
txi)\t/.%‘, S/thlz ﬁ]‘@(S?t)_l@(S?t)ZnS/lD®SP7
where gP = {(uz,vzx) | u,v €S, uz < vz}.

Proposition 2.8. A right S-poset Ag is translation kernel po-flat if and only if
Asg satisfies condition (PW P) and the following condition holds:

(Va,a’ € Ag)(Vsys',t,t',z € S)

as<a's', sz<tz

. —
at <a't. sz <tz } = a® (s,t) < a,®(8/7t/) in A®g kerp,.

Proof. It.s similar to that of Proposition 2.6. O

For a cyclic right S-poset, Proposition 2.8 yields the following

Corollary 2.9. A cyclic right S-poset S/p is translation kernel po-flat if and only
if S/p satisfies condition (PW P) and the following condition holds:

(Vs, ', t,t',2 € 5)

sps, sz<tz

= . —
s < ! ! . .
tpt, sz<tz }:>1®(8’t) <1®(s't) in S/p @s kerp,
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We now consider whether a one-element S-poset Og = {0} satisfies each of our
new properties. In preparation, we need to give the definition of connectedness for
S-posets.

Definition 2.10. An S-poset gB is called connected if for all b,b’ € gB there exist
elements s1,t1,- - ,8,,t, € S and by, --- , b, € gB such that

31b S tlbg
Saby < tobs
Spbn < tpb.

The foregoing sequence of inequalities will be called a scheme of length n con-
necting b and b'.

Proposition 2.11. For any pomonoid S, the following statements are equivalent:
(i) Og is principally weakly kernel po-flat;
(ii) Og is translation kernel po-flat;
(iil) For every z € S, 151)“;72 is connected as a left’S-poset.

Proof. (1)=-(ii) is clear. 1
(il)=-(iii). Take (s,t),(s',t") € kerp,:-Using translation kernel po-flatness,

fs <0s', sz<ltz,
0t <0t', s’2<tz

H
imply 0®(s,t) < 0@(s',t') in ORgkerp,. By Lemma 2.1, there exist s1,t1, -+ , Spn,tn €
S and bo, - - - , b, € kerp; such that

0 S 981

9t1 S 982 Sl(S,t) S t1b2

Oty < 0s;3 s9by < tobs

ot, <40 Snbn < tn (8, 1).

T_h)e right hand part of a scheme corresponding to the latter inequality shows that
kerp, is connected.

(iii)=-(i). Note first from Theorem 4.1 of [9] that ©¢ always satisfies condition
(PWP). Consider any z,z € S such that kerp, C k—e1>rpz. Because kerp, is con-
nected, there exists a scheme corresponding to the inequality 0 ® (s,t) < 0 ® (s',t')
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— —
in @ ®gkerp, for any (s,t), (s/,t') € kerp,. Multiplying each inequality in the right
hand column of this scheme (on the right) by z establishes

0 ® (sz,tz) <O0® (sz,t'x) in O ®g P,

where ¢P = {(uz,vx) | u,v € S,uz < vz}, and so, by Proposition 2.6, Og is
principally weakly kernel po-flat and the proof is complete. O

From Corollary 5.4 of [9], it follows that ©g satisfies condition (W P). if and
only if S is weakly right reversible. So, using Proposition 2.4, we have

Proposition 2.12. Og is weakly kernel po-flat if and only if S is weakly right

reversible, and for every left ideal I of S, ker f is connected for every homomorphism
f sl —5 S.

The following example from [2, Proposition/26] illustrates that principal weak
kernel flatness does not imply weak kernel flatness.

Example 2.13. Let S be a right zero semigroup K with 1 adjoined and |K| >
1. The order of S is discrete. Then S is not weakly right reversible, and so
by Proposition 2.12, ©g is not weakly kernel po-flat. Now we show that Og is
principally weakly kernel po-flat. By Proposition 2.11, we need to check that lzgrpz
is connected as a left S-poset for every z € S. Since the order of S is discrete,
kerp, = kerp, and connectedness only involves equalities. Thus, we could directly
apply Proposition 26 from {2] and obtain the result.

Note 2.14. From the preceding example we obtain that there exists a principally
weakly kernel po-flat-right S-poset, but does not satisfy conditions (W P), (W P),,,
(P) or (P)y, and is not subpullback flat, flat, po-flat, weakly flat, or weakly po-flat
by Theorem 6:2 of [9].

We have been unable so far to answer the question of whether principally
weakly kernel po-flat and translation kernel po-flat are equivalent, we also have
not yet been able to provide a suitable example to distinguish them. But, if S is
an ordered Ipp monoid, then all translation kernel po-flat S-posets are principally
weakly kernel po-flat.

Recall that a pomonoid S is called an ordered lpp monoid if the S-subposet
Sz is projective for all x € S. By Proposition 4.8 of [12], a pomonoid S is an
ordered lpp monoid if and only if for every a € S there exists an idempotent e of
S such that a = ea and sa < ta implies se < te for s,t € S. These pomonoids
comprise quite an extensive class, including all I-regular pomonoids and all right
po-cancellable pomonoids (See [12], for more information).
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Theorem 2.15. If S is an ordered lpp monoid, then all translation kernel po-flat
S-posets are principally weakly kernel po-flat.

Proof. Suppose S is an ordered Ipp monoid and Ag is translation kernel po-flat.
To show that Ag is principally weakly kernel po-flat, we check the condition of
Proposition 2.6. Suppose that a,a’ € Ag and s,s',t,t',2,2 € S are such that
kerp, C lg%pz and

asr < ad's'z, sz<tz,

atr < dtz, sz<tz.

Because S is an ordered lpp monoid, there exists e € E(S) such that ex = z (and
hence ez = z), and px < gx implies pe < ge for all p,q € S." Because Ag satisfies
condition (PW P), from (as)x < (a’s’)x, we obtain ¢ € Ag and p,q € S such that

!/

as = cp,a’s’ = ¢q and pr < qx by Theorem 4.1 of [9]/ From (at)z < (a't’)z, we
obtain d € Ag and g, h € S such that at = dg,a’t’ = dh and gz < hx. Because S
is an ordered lpp monoid, we have pe < ge and ge < he. We can now calculate

ase = cpe < cqe = a's'e,
ate = dge < dhe = a't’e.

Therefore, we have ase < a’s’e and ate < a’t'e. Moreover,
sez =5z <tz=tezand s'ez =s'z2 < t'z="tez.

Using trarisiation kernel po-flatness of Ag, we know that a® (se, te) < o’ ® (s'e,t'e)
in A ®g kerp, by Proposition 2.8. Using Lemma 2.1, there exist a1, -+ ,a, €
Ag, (2,y2), -, (20, yn) € kerps, and s1,t1,- -+ , Sp, by € S such that

a < a8

arty < azs s1(se,te) < t1(r2,y2)
asty < azss s2(x2,y2) < ta(x3,y3)
aptn, < a Sn(xna yn) < tn(slea t/€)~

Multiplication of each inequality in the right-hand column on the right by x pro-
duces the scheme

a < aisi
arty < aosy s1(sx, tx) < t1(z2z, ya)
asty < agss  sa(zox,yox) < to(zsx, ysx)

antn < a' Sn(Tpz, ynx) <ty (s'z, t'x),
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where each (x;z,y;x), i = 2,--- ,n, belongs to P = {(uz,vzx) | u,v € S, uz <vz}.
In other words,
a® (sw,tr) <a @ (s'z,t'z) in A®g P,

as was to be shown. O

3 Flatness and coproducts

In this section, we will show that most of flatness properties of S-posets over a
pomonoid S can be transferred to their coproducts.
Recall from [12] that an S-poset Ag is called decomposable if there exist nonempty

strongly convex S-subposets A, Ao C A such that A = A, U As (e. A= A1 U Ay
and A; N Ay = 0). Otherwise Ag is called indecomposable.

Lemma 3.1. Let A = UAi, where A;, i € I, are right S-subposets of Ag. Let
il
sB be a left S-poset. Ifa®@b<ad @V in A; s B, thena®b < a @V in ARg B.

Proof. 1t is obvious. O

The next result will be useful for the remainder of this section.

Lemma 3.2. Let A = |J A;, where A;, €1, are right strongly convex S-subposets
il

of As. Let sB be a left S-poset and suppose that a @b < a’' @b in ARgsB. Then

a € A; for some i € I, if and only if a’ € A;.

Proof. Necessity. Let a @b < ¢’ @b in A®g B. Using Lemma 2.1, there exist

ai,- -+ ,an € Ag,ba, -+ by € gB and s1,t1, -+, Sp,tn, € S such that
a < ais
aity < a8 s1b < t1bo
asty < asss s9by < tabs3 (%)
ant, <a Spbn <t

Since a € A;, we have a; € A;. Otherwise there exists j # 7 € I such that a; € A4,
and so a1s1 € A;. The inequality a < a;s; and the fact that A; is strongly convex
imply a € A; which is a contradiction. Thus a; € A; and a;t; € A;. Again the
inequality a1t; < agsy implies as € A;. Otherwise there exists j # i € I such that
as € Aj, and so asse € A;. Applying strong convexity of A; to the inequality
ait; < agss, we obtain ait; € Aj, and so this implies that ai;t; € A; N A; =0
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which is again a contradiction. By continuing this process we get a,, € A;. Since
ant, < a’ and A; is strongly convex, we have a’ € A;, as required.

Sufficiency. Suppose that a @ b < ad’ ® b’ in A ®s B. By Lemma 2.1, we get
the above system of inequalities (). Since a’ € A; and A; is strongly convex, we
have a,t, € A;, and so a,, € A;. Applying strong convexity of A; to the inequality
Gn_1tn_1 < GnSy, we obtain a,_1t,_1 € A;, and so a,_1 € A;. By continuing this
process we get a;s; € A;. Again applying strong convexity of A; to the inequality
a < a1s1, we have a € A;, as required. O

Using Lemmas 3.1 and 3.2, we immediately get the following

Corollary 3.3. Let A = UAi, where A;, i € I, are right strongly convezr S-
iel

subposets of Ag. Let sB be a left S-poset. If a € A;, thena®b <a' @b in AQs B

if and only ifa®@b<a @V in A; ®s B.

Lemma 3.4. Let A = U A;, where A;, i € I, -are right strongly convex S-subposets
il

of As. Let ¢B be a left S-poset and a ® b € A ®RgB fora € Ag and b € sB. If

a € A; for somei €1, thena®be€ A;®RgB.

Proof. If there exists j # i such that a ® b € A; ®g B, then a ® b = o’ @ V' for
some a’ € Aj and V' € gB. By.Lemma 3.2, a’ € A; which is a contradiction. Hence
a®be A; ®s B, as required. O

Corollary 3.5. Let A = UAi, where A;, i € I, are right strongly convex S-
i€l

subposets of As. Let ¢+ A g P — P’ be the mapping corresponding to the

subpullback diagram P(M, N, f,q,Q) for As. If i = ¢|la,eqp, then ¢; : A;@g P —

P/

Proof. Because ¢(a ® (m,n)) = (a®@m,a®@n) for all a € Ag and (m,n) €g P, it
suffices to show that a@m € A; ®s M and a®n € A; g N for a € A;, m esM
and n €glN. But these are true by Lemma 3.4. O

Lemma 3.6. Let A = U A;, where A;, i € I, are right strongly convexr S-subposets
i€l

of Ag. Let ¢ : AQgP — P’ be a mapping and ¢; = ¢|a,osp- Then ¢ is the mapping

corresponding to the subpullback diagram P(M, N, f,g,Q) for As, if and only if ¢;

is the mapping corresponding to the subpullback diagram P(M,N, f,g,Q) for A;.
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Proof. Necessity. Suppose that ¢ is the mapping corresponding to the subpull-
back diagram P(M, N, f,g,Q) for As. We need to prove that p},¢; = ida, ® p1
and ph;¢; = ida, ® p2 in the diagram (Pa;). By assumption, the lower square

Ph;

P!

K2

A; ®sN

p’u idAi ®g

ida; @
A, @sM A—>A¢ ®sQ

in diagram (Pg;) is subcommutative. Next to show p};¢; = ida, ® p1. Let a; ®
(m,n) € A; ®s P. Then

Pridi(a; @ (m,n)) = pi(a; ® m,a; @ n) =a; @m

= tda, (ai) ®pl(m’ n) = (ZdAL ®pl)(ai ® (m’ n))

It can also be seen that ph;¢; = ida, ® pa. Since ¢; makes p’;¢; = ida, ® p; for
j = 1,2, in the diagram (Pg;), then by uniqueness, ¢; is the mapping corresponding
to the subpullback diagram P(M, N, f, g, Q) for A;.

Sufficiency. Let ¢; be the mapping corresponding to the subpullback diagram
P(M,N, f,g,Q) for A;,i € I. Since the lower square

P e . A®gN
Pl ida®g
ida®
AosM —M% _ 490

in the diagram (P2) is subcommutative, it suffices to show that p{¢ = ids ® py
and pho = ida @ p2. Let (a ® (m,n)) € A®gP. Then there exists ¢ € I such that
a € A;. Thus we have

Piola® (m,n)) = pigia® (m,n)) =pila@m,a®@n) =a®m
=ida,(a) @ p1(m,n) =ida(a) @ p1(m,n) = (ida @ p1)(a @ (m,n)).
The same argument shows that phe = ids ® pa. O
The following two theorems are our main results in this section.

Theorem 3.7. Let ¢ be the mapping corresponding to the subpullback diagram
P(M,N, f,g,Q) for As and let ¢;,i € I, be as in Lemma 3.6. Then ¢ is surjective
if and only if ¢; is surjective for every i € I.
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Proof. Necessity. Let ¢ be surjective. Since a;,a; € A;, we have a;,a; € Ag. By
Lemma 3.1, a; ® f(m) < a} ® g(n) in A; ®g Q implies a; ® f(m) < a; ® g(n) in
A ®g Q. Using surjectivity of ¢,
(Fa] € Ag)(Im' €sM)(In’ €gN)
(f(m') < gy Na; @m =a @m' Aa; @n =a] @n).

By Lemma 3.2, a; @ m = a @ m' in A®g M and a; € A; imply a} € A;. Hence
¢; is surjective.

Sufficiency. Let ¢; be surjective for every i € I and suppose that a ® f(m) <
ad ®g(n)in A®g Q for a,a’ € Ag, m € sM, n € gN. Since a € Ag, there exists

i € I such that a € A;. By Corollary 3.3, we have a® f(m) <&/ ®g(n) in 4; ®s Q.
Using surjectivity of ¢;,

(Fa" € A;)(3m' €gM)(In’ €sN)
(f(m")y <gn')ha@m=ad"@m' Ad @n=ad"@n).
By Lemma 3.1, a@m = a”’ @m’ in A; @s M anda’®@n = a” ®n’ in A; ®s N imply

that a®@m = a” @ m' in A®sM and o’ ® n = a’ ®n’ in A ®g N, respectively.
Thus ¢ is surjective, as required. O

Theorem 3.8. Let ¢ be the mapping corresponding to the subpullback diagram
P(M,N, f,9,Q) for As and let ¢;,i € I; be.as in Lemma 3.6. Then ¢ is an order
embedding if and only if ¢; is an order embedding for every i € I.

Proof. Necessity. Let ¢ be an order embedding and suppose that
F(m) < gn) A F).< ) A (a®m < d @) Ala®n < d @),

where a@m < ad’'@m'in A;®gM and a®n < o’ @n' in A; Qg N for i € I. Because
a,a’ € A;, and by Lemma 3.1, we have a®@m < o’ ®m’ in AQgM and a®n < a’@n’
in A®g N. Using order embeddability of ¢, we obtain a ® (m,n) < a’ ® (m’,n’)
in A®gsP. But a € A; and so a ® (m,n) < a' ® (m',n’) in A; ®s P by Corollary
3.3. Hence ¢; is an order embedding.

Sufficiency. Let ¢; is an order embedding for every ¢ € I and suppose that

fim) < gm)Af(m') <gn)A(a@m<d @m)A(a@n<d @n'),

where a@m <d @m' anda®@n <a ®n’ in A®s M and A ®g N, respectively.
Because a € Ag, there exists ¢ € I such that a € A;. By Corollary 3.3, a ® m <
a @m' in ARs M and a®@n < ad ®n' in A®s N imply a®@m < a ® m' in
A;®s M and a®n < a’ ®n’ in A; ®s N, respectively. Using order embeddability
of ¢;, we obtain a ® (m,n) < a’ ® (m',n’) in A; ®s P. By Lemma 3.1, we have
a® (m,n) <d ®(m',n')in A®g P, and so ¢ is an order embedding. The proof
is complete. O
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For every subpullback diagram, the corresponding ¢ is a surjection or an order
embedding if and only if the corresponding ¢, is a surjection or an order embedding,
and surjectivity or order isomorphism of ¢ for a special subpullback diagram is
equivalent to certain kind of flatness property. It follows from Theorems 2.1, 2.2,
2.3, 24, 3.2, 4.1, 5.3 of [9] and Definition 2.2 that

Proposition 3.9. Let S be a pomonoid and A = |J A;, where A;, i € I, are right
iel

strongly convex S-subposets of Ag. Then Ag is torsion free, principally weakly

flat, weakly flat, flat, pullback flat, subpullback flat, principally weakly kernel po-

flat, weakly kernel po-flat, translation kernel po-flat, and satisfies conditions (P),

(WP), (PWP) if and only if A; has these properties for everyi € I.
From Proposition 3.9 and Theorem 2.3 of [12], we have

Corollary 3.10. Let S be a pomonoid. Then a right S-poset Ag is torsion free,
principally weakly flat, weakly flat, flat, pullback flat, subpullback flat, principally
weakly kernel po-flat, weakly kernel po-flat, translation kernel po-flat, and satisfies
conditions (P), (WP), (PWP) if and only/if its strongly convex indecomposable
components have these properties.
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