
Volume 3, Number 1, July 2015, 43-63

Order dense injectivity of S-posets

Leila Shahbaz

Abstract. In this paper, the notion of injectivity with respect to order dense
embeddings in the category of S-posets, posets with a monotone action of a
pomonoid S on them, is studied. We give a criterion, like the Baer condition
for injectivity of modules, or Skornjakov criterion for injectivity of S-sets,
for the order dense injectivity. Also, we consider such injectivity for S itself,
and its order dense ideals. Further, we define and study some kinds of weak
injectivity with respect to order dense embeddings, consider their relations
with order dense injectivity. Also investigate if these kinds of injectivity are
preserved or reflected by products, coproducts, and direct sums of S-posets.

1 Introduction and Preliminaries

The actions of a monoid on sets and on partially ordered sets have many explicit
and implicit applications in almost every mathematical and related disciplines.
Combining these two notions, one can get the more rich category Pos-S of partially
ordered sets with actions of a pomonoid S on them. Some properties of S-posets
have been studied by many authors, for example see [2–5, 11, 18].

The study of injectivity with respect to different classes of monomorphisms
is crucial in many branches of mathematics. Many mathematicians studied this
notion in different categories with respect to different classes of monomorphisms
(for example, see [1, 7, 19]).
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44 Leila Shahbaz

It is well known that there is no non-trivial injective object with respect to
monomorphisms in the categories Pos of posets and Pos-S of S-posets. The next
natural subclass of monomorphisms is the class of embeddings, which are the reg-
ular (equalizer) monomorphisms. In [10, 14, 20, 21] injectivity of S-posets with
respect to regular monomorphisms (embeddings) has been studied, in particular
in [10] it is shown that there are enough regular injective S-posets. Another natural
subclass of embeddings of S-posets is the class of down closed embeddings. In [15],
injectivity of S-posets with respect to down closed regular monomorphisms has
been studied.

In this paper, we study injectivity of S-posets with respect to the class of
order dense regular monomorphisms, and call it od-injectivity. It will be seen
that regular injectivity is equivalent to down closed regular injectivity plus order
dense regular injectivity. Some homological characterizations of pomonoids over
which all right od-ideals are od-injective are obtained. Also, we define some kinds
of weak od-injectvity, consider their relations with od-injectivity, and investigate
the behaviour of od-injectivity and weak od-injectivities with respect to products,
coproducts, and direct sums of S-posets.

Now we give some preliminaries needed in the sequel. For more information
see [1, 5, 7, 9, 12, 19].

Recall that a monoid (semigroup) S is said to be a pomonoid (posemigroup)
if it is also a poset whose partial order ≤ is compatible with its binary operation
(that is, s ≤ t, s′ ≤ t′ imply ss′ ≤ tt′). A (right) S-poset is a poset A which is also
an S-act whose action λ : A×S → A is order-preserving, where A×S is considered
as a poset with componentwise order. An S-poset map (or morphism) is an action
preserving monotone map between S -posets. Moreover, regular monomorphisms
(equalizers) are exactly order-embeddings; that is, (mono-)morphisms f : A → B
for which f(a) ≤ f(a′) if and only if a ≤ a′, for all a, a′ ∈ A.

Recall that an object A in a category C is called M-injective if it is injective
with respect to M-morphisms; that is, for every morphism f : B → C in M and
arbitrary morphism g : B → A there exists a morphism h : C → A such that
hf = g. Also, A is said to be an M-retract (or simply a retract if M =Mono) of
its M-extension f : A→ B if f has a left inverse g : B → A, called a retraction.

2 Order dense injectivity

In this section, we introduce a closure operator and dense monomorphisms with
respect to which are the subject of study in this paper. In fact, we study injectivity
with respect to this class and give a criterion to check such injectivity. Also, such
injectivity is considered for S itself, and its order dense ideals. First note that,
denoting the lattice of all sub S-posets of an S-poset B by SubB, following [6]
for the general definition of closure operators on a category (which is not a priori
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Order dense injectivity of S-posets 45

assumed to be idempotent), we get:

Definition 2.1. A family C = (CB)B∈Pos−S , with CB : SubB → SubB, taking
the subalgebra A ≤ B to CB(A), is called a closure operator on Pos-S if it satisfies
the following laws:

(c1) (Extension) A ≤ CB(A),
(c2) (Monotonicity) A1 ≤ A2 implies CB(A1) ≤ CB(A2),
(c3) (Continuity) f(CB(A)) ≤ CD(f(A)), for all morphisms f : B → D.

Now, one has two usual classes of monomorphisms related to a closure operator
as follows:

Definition 2.2. Let A ≤ B be in Pos-S. We say that A is C-closed in B if
CB(A) = A, and it is C-dense in B if CB(A) = B. Also, an S-poset map f : A→ B
is said to be C-dense (C-closed) if f(A) is a C-dense (C-closed) sub S-poset of B.

Now, we introduce the down set closure operator on the category of S-posets.

Definition 2.3. The down set closure operator C↓ = (C↓B)B∈Pos−S on Pos-S is
defined as

C↓B(A) = {b ∈ B : ∃a ∈ A, b ≤ a}
for any sub S-poset A of an S-poset B.

Note that, by Definition 2.2, a sub S-poset A of an S-poset B is C↓-dense,
which will also be called order dense, in B if for each b ∈ B there exists a ∈ A
with b ≤ a. Also, a sub S-poset A of an S-poset B is C↓-closed, which will also be
called down closed in B, if for each a ∈ A and b ∈ B with b ≤ a one has b ∈ A.

Definition 2.4. (1) We call an S-poset A order dense regular injective or briefly
od-injective if it is injective with respect to the class of order dense embeddings.

(2) We call an S-poset A down closed regular injective or briefly dc-injective if
it is injective with respect to the class of down closed embeddings.

Remark 2.5. (1) Clearly one can take order dense embeddings in the above defi-
nition of od-injectivity to be order dense inclsuions of S-posets.

(2) A (finitely generated, principal) right ideal I of the semigroup S is (finitely
generated, principal) order dense in S, which we also call it a (finitely generated,

principal) right od-ideal, if C↓SI = S.
(3) If A is a regular injective S-poset then it is clearly od-injective, but the

converse is not necessarily true. For example, let A be any regular injective S-
poset with more than two elements. Then it has a zero bottom element ⊥ and
zero top element > (see [10]), we also assume that A does not have any other zero
element. Now A− {>} is od-injective, for, if B → C is an order dense embedding
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46 Leila Shahbaz

and f : B → A − {>} is an S-poset map, then since A is regular injective, there
exists an S-poset map f : C → A which extends ιf , where ι : A − {>} → A is
the inclusion map. We claim that Imf ⊆ A − {>} and so f : C → A − {>} is
the required S-poset map which extends f . To see this, on the contrary, let c ∈ C
be such that f(c) = >, then since B is order dense in C, there exists an element
b ∈ B such that c ≤ b. Thus > = f(c) ≤ f(b) = ιf(b) = f(b), and so f(b) = >,
which is a contradiction. Therefore, A− {>} is od-injective. But, it is not regular
injective since it does not have a top element.

Proposition 2.6 ([15]). A right G-poset over a pogroup G is dc-injective if and
only if it is bounded from the top by a zero element.

Proposition 2.7. An (S-) poset P is regular injective if and only if it is dc-injective
as well as od-injective.

Proof. Let P be a regular injective poset. Then, it is clear that P is dc-injective
and od-injective. For sufficiency, let A,B, P be posets, where P is dc-injective as
well as od-injective, f : A → B be an embedding and g : A → P any poset map.

Consider the decomposition A
f∼= f(A)

od
↪→↓ f(A)

dc
↪→ B of f . Define g : f(A) → P

by g = gf−1. Since P is od-injective there exists a poset map g :↓ f(A) → P

which extends g. Now, since P is dc-injective there exists a poset map g : B → P

which extends g. Thus g is a poset map which extends g. Therefore P is regular
injective.

Recall from [10] that a non-trivial regular injective S-poset is bounded by two
zero elements and recall from [15] that a non-trivial dc-injective S-poset has a zero
top element. In the case of od-injectivity of S-posets, we have the following result.

Proposition 2.8. Every non-trivial od-injective S-poset has a zero which is the
bottom element.

Proof. Let A be an od-injective S-poset. Consider the S-poset B = {θ} ∪ A
obtained by adjoining a zero bottom element θ to A. Since A is od-injective, there
exists a retraction g : B → A. Then, the zero element g(θ) is the bottom element
of A.

Corollary 2.9. There exists no non-trivial od-injective pomonoid whose identity
is the bottom element.

Proof. By the above proposition, in an od-injective pomonoid S whose identity is
the bottom element, the identity has to be a zero too, which means that S has to
be trivial.
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Order dense injectivity of S-posets 47

Recall from [16] that, for an S-poset A and H ⊆ A×A, the S-poset congruence
θ = θ(H) on A generated by H is characterized as follows:

aθ(H)b⇔ a = b or ∃s1, s2, ..., sn, t1, t2, ..., tm ∈ S such that

a = c1s1, d1s1 = c2s2, d2s2 = c3s3, ..., dnsn = b; or

b = p1t1, q1t1 = p2t2, q2t2 = p3t3, ..., qmtm = a,

where (ci, di) ∈ H ∪H−1 and (pj , qj) ∈ H ∪H−1 for i = 1, 2, ..., n; j = 1, 2, ...,m.
In the next theorem which follows a lemma, we characterize od-injectivity by

absolute retractness.
First recall from [5] that the pushout of S-poset maps f : A→ B and g : A→ C

is the quotient of the coproduct B tC = ({1}×B)∪ ({2}×C) by the congruence
θ(H) generated by H = {((1, f(a)), (2, g(a))) : a ∈ A} with S-poset maps qB =
πuB : B → (B tC)/θ, qC = πuC : C → (B tC)/θ, where π : B tC → (B tC)/θ
is the natural epimorphism, and uB : B → B t C, uC : C → B t C are coproduct
injections.

Lemma 2.10. In the category Pos-S, pushouts transfer order dense embeddings.

Proof. It is known from [13] that in the category Pos-S, pushouts transfer regular
monomorphisms. To show that pushouts transfer order dense embeddings, applying
the notations preceding lemma, we should show that if f is an order dense S-
poset map, then so is qC . Let [x]θ ∈ (B t C)/θ, then either [x]θ = [(1, b)]θ for
some b ∈ B, or [x]θ = [(2, c)]θ for some c ∈ C. In the latter case, we have
[x]θ = [(2, c)]θ ≤ [(2, c)]θ = qC(c), and so the result holds. In the former case, since
b ∈ B and f is an order dense embedding, there exists a ∈ A such that b ≤ f(a)
and hence [(1, b)]θ = qB(b) ≤ qB(f(a)) = qC(g(a)). Therefore, qC is order dense
embedding.

Theorem 2.11. An S-poset A is od-injective if and only if it is a retract of each
of its extensions in which it is order dense.

Proof. Let A be od-injective and consider the following diagram,

A
f //

idA

��

B

A

where f : A→ B is an order dense embedding. Then there exists an S-poset map
g : B → A with gf = idA by od-injectivity of A. For the converse, let A be an
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S-poset and every order dense embedding A→ D have a left inverse S-poset map.
Consider the following diagram,

B
f //

g

��

C

A

where f : B → C is an order dense embedding and complete it to a pushout
diagram

B

g

��

f // C

h

��
A

k // Q.

By Lemma 2.10, k is order dense embedding, and by the assumption, there
exists an S-poset map k′ : Q → A such that k′k = idA. Now, g = k′h : C → A is
an S-poset map which extends g. Therefore, A is od-injective.

For a general version of the above theorem, one can see Proposition 3.12 of [8].

The following theorem gives a criterion for od-injectivity of S-posets over a
pomonoid S which is a counterpart of Skornjakov criterion for injectivity of acts
(see [12]).

Theorem 2.12. Let Q be an S-poset with a zero bottom element θ. Then the
following conditions are equivalent:

(i) Q is od-injective.
(ii) Q is injective with respect to the order dense embeddings of the form B ↪→

B ∪ cS to a singly generated extension of B.

Proof. It is clear that (i)⇒(ii).
(ii)⇒(i) Let Q be an S-poset with a zero bottom element θ and satisfy (ii).

Let B be an S-poset, A be an order dense sub S-poset, and f : A→ Q an S-poset
map. We must show that there exists an S-poset map f : B → Q which extends
f . Consider

P := {(X,h)| X is an order dense sub S−poset of B,A ⊆ X ⊆ B,
h : X → Q is an S−poset map extending f}.

Define a relation ≤ on P as follows:

(X1, h1) ≤ (X2, h2)⇔ X1 ⊆ X2, h2 |X1
= h1.
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Order dense injectivity of S-posets 49

One can easily check that ≤ is a partial order on P and any chain in P has an
upper bound. Then, by Zorn’s Lemma, there exists a maximal element (C, h) in
P. We show that C = B, and so f = h extends f . Let C 6= B. Then there exists
b ∈ B \C. Set D = C ∪ bS. Now B ↪→ C ∪ bS is an order dense embedding and by
hypothesis there is an S-poset map h : D → Q which extends h. This contradicts
the maximality of (C, h) in P, and so C = B.

Remark 2.13. It is known from [12] that if S is a group, any S-act is injective if
and only if it has a zero element. But, by Propositions 2.6 and 2.7 of the present
paper and Remark 4.5 of [10], this fact does not hold for od-injectivity in Pos-S.

In the following, we consider od-injectivity of right od-ideals, and investigate
when all right od-ideals are od-injective.

Lemma 2.14. Every od-injective right od-ideal K of S is a principal ideal which
is generated by an idempotent element.

Proof. Consider the order dense embedding K ↪→ S and extend the identity map
id : K → K to f : S → K, by od-injectivity. Then, we see that K is generated
by f(1) which is an idempotent element of K. This is because, f(1) ∈ K, so
f(1) = f(f(1)) = f(1f(1)) = f(1)f(1) and s = f(s) = f(1s) = f(1)s, for all
s ∈ K.

Now, applying the following definition, we characterize pomonoids S over which
all od-ideals are od-injective.

Definition 2.15. A pomonoid S is called od-regular if every s ∈ S, for which sS is
an od-ideal of S, is a regular element; that is, there exists t ∈ S such that sts = s.

Theorem 2.16. The pomonoid S is od-regular and an od-injective S-poset if and
only if all principal right od-ideals of S are od-injective.

Proof. Consider a principal right od-ideal sS of S. Since S is od-regular, s is a
regular element. Thus there exists t ∈ S such that sts = s. This gives that sS
is a retract of S, with the retraction λst : S → sS. Now, since S is od-injective,
so is sS. For the converse, let s ∈ S be such that sS is an od-ideal. Since sS is
od-injective, there exists an S-poset morphism f : S → sS such that fι = idsS
, where ι is the inclusion map from sS to S and idsS is the identity map on sS.
Consequently, one has that s = f(s) = f(1)s. Since f(1) ∈ sS, it follows that s is
regular, and hence S is od-regular.

Using the above theorem we clearly get the following corollary.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


50 Leila Shahbaz

Corollary 2.17. The pomonoid S is od-regular pomonoid and an od-injective S-
poset all of whose finitely generated right od-ideals are principal if and only if all
finitely generated right od-ideals of S are od-injective.

Proof. Let K be a finitely generated right od-ideal of S. By hypothesis, K is
principal, so K is od-injective, by Theorem 2.16.

By Theorem 2.16 and Lemma 2.14, we have the following result.

Corollary 2.18. The pomonoid S is od-regular and an od-injective S-poset all
of whose right od-ideals are principal if and only if all right od-ideals of S are
od-injective.

3 Some kinds of weak od-injectivity

There are different types of weak regular injectivity of S-posets. In this section,
we study injectivity with respect to some special kinds of order dense embeddings,
and in particular, embeddings I ↪→ S, where I is a kind of od-ideal. The following
definitions of injectivity are then natural.

Definition 3.1. We call an S-poset A:
(1) (finitely generated, principally) od-ideal od-injective if every S-poset map

f : I → A from a (finitely generated, principal) right od-ideal I of S can be
extended to an S-poset map f : S → A;

(2) finitely od-injective (cyclicly od-injective) if it is injective with respect to
every order dense embedding h : F → B from a finitely generated (cyclic) S-poset
F .

Remark 3.2. Note that, similar to the case of od-injectivity, every non-trivial
finitely (cyclicly) od-injective S-poset has a zero which is the bottom element and
so there exists no non-trivial finitely (cyclicly) od-injective pomonoid whose identity
is the bottom element.

Remark 3.3. Note that, for an S-poset A and a ∈ A, the map λa : S → A defined
by λa(s) = as and ρs : A → A defined by ρs(a) = as are S-poset maps and any
S-poset map f : S → A from a pomonoid S is equal to λa for a = f(1) where 1
is the identity element of the pomonoid S. Thus, the fact that an S-poset map
f : K → A from a right od-ideal of S to an S-poset can be extended to an S-poset
map f̄ : S → A is equivalent to f being of the form λa for some a ∈ A. This means
that:

An S-poset A is (finitely generated, principally) od-ideal od-injective if and
only if for any S-poset map f : K → A where K ⊆ S is a (finitely generated,
principal) right od-ideal there exists an element a ∈ A such that f = λa.
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Order dense injectivity of S-posets 51

The following theorem characterizes the posemigroups over which all S-posets
are od-ideal od-injective.

Theorem 3.4. Each S-poset is od-ideal od-injective if and only if every right od-
ideal of the posemigroup S is generated by an idempotent.

Proof. (⇒) Consider the identity map idI on a right od-ideal I of S, it is of the form
λa for some element a in I, by hypothesis. Thus a = idI(a) = λa(a) = aa = a2,
and so a is an idempotent element, also I = λa(I). For the converse, let I = eS
be a right od-ideal of S, where e is an idempotent element. Consider an S-poset
map f : I = eS → A. Thus f = λa for a = f(e). Therefore A is od-ideal
od-injective.

Recall from [14] ( [15]) that an S-poset A is called weakly regular injective
(poideal dc-injective) if every S-poset map f : I → A from a right (po)ideal I of S
can be extended to an S-poset map f : S → A.

The following theorem shows that when all S-posets are poideal dc-injective
and when od-ideal od-injectivity is equivalent to weakly regular injectivity.

Theorem 3.5. Let S be a pomonoid whose identity element is its bottom element.
Then all S-posets are poideal dc-injective, also od-ideal od-injectivity coincides with
weakly regular injectivity.

Proof. If the identity element of S is its bottom element then each ideal of S is an
od-ideal and the only poideal is S itself and so all S-posets are poideal dc-injective.
Therefore, by Proposition 2.7, od-ideal od-injectivity and weakly regular injectivity
are the same.

The following theorem shows when all S-posets are od-ideal od-injective and
when poideal dc-injectivity is equivalent to weakly regular injectivity.

Theorem 3.6. Let S be a pomonoid whose identity element is its top element.
Then all S-posets are od-ideal od-injective and poideal dc-injectivity coincides with
weakly regular injectivity.

Proof. If the identity element of S is its top element then the only od-ideal of S
is S itself and so all S-posets are od-ideal od-injective. Therefore, by Proposition
2.7, poideal dc-injectivity and weakly regular injectivity are the same.

Lemma 3.7. If a principal right od-ideal sS of S, s ∈ S, is principally od-ideal
od-injective then s is a regular element of S.
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Proof. Let a principal right od-ideal sS of S be principally od-ideal od-injective.
Then there exists an S-poset morphism f : S → sS such that fι = idsS . Conse-
quently, one has that s = f(s) = f(1)s. Since f(1) ∈ sS, taking f(1) = st for some
t ∈ S,

s = f(s) = f(1)s = sts.

Therefore, s is regular.

Theorem 3.8. The following conditions are equivalent for a pomonoid S:
(i) All right S-posets are principally od-ideal od-injective.
(ii) All right od-ideals of S are principally od-ideal od-injective.
(iii) All finitely generated right od-ideals of S are principally od-ideal od-injective.
(iv) All principal right od-ideals of S are principally od-ideal od-injective.
(v) S is an od-regular pomonoid.
In the case where S is a pomonoid whose identity element is its bottom element,

the above conditions are also equivalent to:
(vi) S is a regular pomonoid.
(vii) All right S-posets are principally weakly regular injective.

Proof. (i)⇒(ii)⇒(iii)⇒(iv) are clear.
(iv)⇒(v) is obvious by Lemma 3.7.
(v)⇒(i) Each S-poset map f : sS → A, from a principal right od-ideal sS to

an S-poset A, is of the form λa for a = f(sx) where s = sxs by od-regularity of S.
Thus, (i) holds.

(v)⇒(vi) If the identity element of S is its bottom element then each ideal of
S is an od-ideal and so by the definition we get the result.

(vi)⇔(vii) follows from Corollary 5.4 of [21].
(vii)⇒(i) Since principal weakly regular injectivity implies principal od-ideal

od-injectivity, (i) holds.

Definition 3.9. A pomonoid S is called right po-PP if and only if for every s ∈ S,
where sS is a right principal od-ideal of S, there exists an idempotent e ∈ S such
that s = se, and su ≤ sv implies eu ≤ ev for all u, v ∈ S.

Theorem 3.10. Every principally od-ideal od-injective right po-PP pomonoid whose
identity element is its bottom element is regular.

Proof. Let S be a principally od-ideal od-injective right po-PP pomonoid, and
s ∈ S. Since the identity of S is its bottom element, sS is an od-ideal and since
S is a right po-PP pomonoid, there exists an idempotent e ∈ S such that s = se
and su ≤ sv implies eu ≤ ev for all u, v ∈ S. Define a mapping f : sS → S
by f(st) = et for every t ∈ S. Then f is a well-defined S-poset map. Since S
is principally od-ideal od-injective, f is of the form λy for some y ∈ S. Thus
e = f(s) = ys. Then s = se = sys, so s, and hence S is regular.
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Now, we study finitely generated od-ideal od-injectivity and characterize pomonoids
over which all S-posets are finitely generated od-ideal od-injective.

Theorem 3.11. If a (finitely generated, principal) right od-ideal K of a pomonoid
S is (finitely generated, principally) od-ideal od-injective then K is generated by an
idempotent.

Proof. Let K be an od-ideal od-injective right od-ideal of S. Then, by Remark 3.3,
there exists an element e ∈ K such that idK = λe. In other words, we have k = ek
for every k ∈ K. This means that K = eS and e is an idempotent.

The following theorem characterizes pomonoids over which all S-posets are
finitely generated od-ideal od-injective.

Theorem 3.12. Let S be a pomonoid whose identity element is the bottom element.
Then all S-posets are finitely generated od-ideal od-injective if and only if S is a
regular pomonoid all of whose finitely generated right od-ideals are principal.

Proof. Let all S-posets be finitely generated od-ideal od-injective. Since finitely
generated od-ideal od-injectivity implies principally od-ideal od-injectivity, S is
regular by Theorem 3.8. Also, by Theorem 3.11 all finitely generated right od-
ideals are principal.

Conversely, let S be a regular pomonoid all of whose finitely generated right od-
ideals are principal. Then finitely generated od-ideal od-injectivity coincides with
principally od-ideal od-injectivity, and since S is regular, all S-posets are finitely
generated od-ideal od-injective by Theorem 3.8.

Theorem 3.13. The following conditions are equivalent:
(i) All right S-posets are od-ideal od-injective.
(ii) For every right od-ideal I, every S-poset map f : I → A is of the form λa

for some a ∈ A.
(iii) S is an od-regular pomonoid all of whose right od-ideals are principal.
If the identity element of S is the bottom element, then the above conditions

are also equivalent to:
(iv) S is a regular pomonoid all of whose right od-ideals are principal.

Proof. (i)⇔(ii) is clear.
(ii)⇒(iii) By (ii), all right S-posets and specially all right od-ideals of S are

od-ideal od-injective. So any right od-ideal of S is generated by an idempotent,
by Theorem 3.11. Then similar to the proof of Theorem 2.16, S is proved to be
od-regular.

(iii)⇒(ii) Assuming (iii), since all right od-ideals of S are principal, od-ideal od-
injectivity coincides with principal od-ideal od-injectivity, and since S is od-regular,
all right S-posets are od-ideal od-injective, by Theorem 3.8.
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(ii)⇒(iv) By (ii), all right S-posets and specially all right od-ideals of S are
od-ideal od-injective. So every right od-ideal of S is generated by an idempotent,
by Proposition 3.11. Hence S is regular, by Theorem 3.8.

(iv)⇒(i) Assuming (iv), since all right od-ideals of S are principal, od-ideal od-
injectivity coincides with principal od-ideal od-injectivity and since S is regular,
all S-posets are od-ideal od-injective, by Theorem 3.8.

The following results show when all S-posets are finitely od-injective.

Lemma 3.14. Every finitely generated finitely od-injective S-poset is od-injective.

Proof. Let A be a finitely generated finitely od-injective S-poset. Consider the
following diagram

A �
� ι //

idA

��

B

A

in which B is an order dense extension of A. Using that A is finitely generated,
there exists π : B → A such that πι = idA. This implies that A is an od-absolute
retract. Now, by Theorem 2.11, A is od-injective.

A posemigroup S is called completely finitely (cyclicly) od-injective if all S-
posets are (cyclicly) finitely od-injective.

Theorem 3.15. A posemigroup S is completely finitely od-injective if and only if
all finitely generated S-posets are od-injective.

Proof. (⇒) The proof is similar to the proof of the above lemma.
(⇐) Let A be any S-poset and h : F → B be an order dense embedding

from a finitely generated S-poset F , and f : F → A be any S-poset map. Then, by
hypothesis, F is od-injective and so an od-absolute retract, by Theorem 2.11. Thus
there exists an S-poset map g : B → F such that gh = idF . Then the composite
fg : B → A is an S-poset map with (fg)h = f . So, A is finitely od-injective.

Recalling from [17, Theorem 2.3] that every S-posetA is uniquely decomposable
into a disjoint union of down closed indecomposable sub S-posets, one has the
following result.

Proposition 3.16. An S-poset A with a zero bottom element is cyclicly od-injective
if and only if for any order dense embedding h : P → D from a cyclic S-poset P
into any indecomposable S-poset D, any S-poset map P → A can be extended to
an S-poset map D → A.
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Proof. (⇒) is clear.
(⇐) Let A be an S-poset with a bottom zero element and h : P → B be an order

dense embedding from a cyclic S-poset P , and f : P → A be any S-poset map.
Consider the decomposition of B =

⊔
i∈I Bi into its down closed indecomposable

sub S-posets Bi (which exists, by [17]). Since P is cyclic, there exists i ∈ I such
that h(P ) ⊆ Bi. Thus, by hypothesis, there exists an S-poset map g : Bi → A
which extends f . Define f : B =

⊔
i∈I Bi → A by

f(b) =

{
g(b) if b ∈ Bi
θ if b 6∈ Bi

where θ is the zero bottom element of A. Then f is an S-poset map which extends
f .

The following results show when all S-posets are cyclicly od-injective.

Lemma 3.17. Every cyclic cyclicly od-injective S-poset is od-injective.

Proof. It is similar to the proof of Theorem 3.15 by replacing finitely generated
S-posets with cyclic S-posets.

Theorem 3.18. A posemigroup S is completely cyclicly od-injective if and only if
all cyclic S-posets are od-injective.

Proof. The proof is similar to the proof of the above lemma.

4 Products, coproducts and direct sums of od-injective S-
posets

In this section, we consider the behaviour of od-injective S-posets with respect to
products, coproducts, and direct sums. First, we recall the following remark about
these notions in the category of S-posets.

Remark 4.1. Let {Ai}i∈I be a family of S-posets. Then
(a) the product of Ai’s in the category of S-posets is their cartesian product∏

i∈I Ai with the componentwise order and action.
(b) the coproduct

∐
i∈I Ai of Ai’s in the category of S-posets is their disjoint

union
⋃̇
i∈IAi with the order given by x ≤ y in coproduct if and only if x, y ∈ Ai

and x ≤ y in Ai, for some i ∈ I; and with the action as in Ai, for a ∈ Ai, s ∈ S.
(c) If each Ai has a unique zero element θi (which we denote all θi’s by 0), then

the direct sum
⊕

i∈I Ai is the sub S-poset of the product
∏
i∈I Ai consisting of all

(ai)i∈I such that ai = 0 for all i ∈ I except a finite number.
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Theorem 4.2. Let {Ai : i ∈ I} be a family of S-posets. Then the product
∏
i∈I Ai

is od-injective if and only if each Ai is od-injective. The same is true for all weak
od-injectivities defined in the last section.

Proof. As usual, the above types of injectivity behaves well with respect to products
using the universal property of products. For the converse, let A =

∏
i∈I Ai be

od-injective, and k ∈ I. To prove that Ak is od-injective, consider the diagram

B

f

��

// C

Ak

A

pk

OO

where B is an order dense sub S-poset of C, f is an S-poset map, and pk : A→ Ak
is the kth projection map. Define f : B → A by

f(b)(i) =

{
f(b) if i = k
θi if i 6= k

where for i ∈ I, θi is the zero bottom element of Ai, which exists since A has
the zero bottom element by Proposition 2.8, and the ith component of that zero
element is a zero element of Ai, i ∈ I. Then, since f is an S-poset map, so is f .

Now by od-injectivity of A, f can be extended to an S-poset map f : C → A.

Then, pkf : C → Ak extends f . Therefore Ak is od-injective.

To consider the counterpart of the above theorem for coproducts, we have:

Proposition 4.3. Let S be a pomonoid and {Ai : i ∈ I, |I| > 1} be an arbitrary
family of S-posets. Then

∐
i∈I Ai is not (finitely, cyclicly) od-injective.

Proof. The definition of a coproduct shows that
∐
i∈I Ai is not bounded from the

bottom, and so by Proposition 2.8, it is not od-injective.

Remark 4.4. (1) There exists no pomonoid S over which all S-posets are (finitely,
cyclicly) od-injective. This is because for a pomonoid S, if A is an S-poset then
A tA is not od-injective, by the above proposition.

(2) For any pomonoid S, there exists a finitely generated (cyclic) S-poset which
is not od-injective by Theorem 3.15 (Theorem 3.18) and the above proposition.

(3) Recall from [20] that a completely strongly convex pomonoid is a pomonoid
over which every S-poset fulfils that all of its sub S-posets are down closed. We
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show that there does not exist a completely strongly convex pomonoid. For, if S is
a completely strongly convex pomonoid then the only order dense embeddings are
isomorphisms and so all S-posets are od-injective which is a contradiction by (1).

Theorem 4.5. Let {Ai : i ∈ I} be a family of S-posets. If the coproduct
∐
i∈I Ai

is (finitely generated, principally) od-ideal od-injective then each Ai is (finitely gen-
erated, principally) od-ideal od-injective.

Proof. Let K be an (finitely generated, principal) od-ideal of S, i ∈ I, and f : K →
Ai be an S-poset map. Then, considering the ith injection map τi : Ai →

∐
i∈I Ai,

τif is an S-poset map and is of the form λa for some a ∈ ∐i∈I Ai, by (finitely
generated, principally) od-ideal od-injectivity. Now, let there exist j ∈ I such that
a ∈ Aj . Then for each s ∈ S, as ∈ Ai ∩ Aj , which is a contradiction. Thus we get
a ∈ Ai, and f = λa.

It is shown that the converse of the above theorem is not true in general. But
in the case of principally od-ideal od-injective S-posets, the converse is also true.

Theorem 4.6. All coproducts of principally od-ideal od-injective S-posets are prin-
cipally od-ideal od-injective.

Proof. Let {Ai : i ∈ I} be a family of principally od-ideal od-injective S-posets.
Notice that for each embedding I ↪→ S from an order dense principal right ideal
I of S, and any S-poset map f : I → ∐

Ai we have Imf ⊆ Ai for some i ∈ I.
Then f can be extended to an S-poset map f , since Ai is principally od-ideal
od-injective.

In the case of (finitely generated) od-ideal od-injective S-posets we have the
following.

Definition 4.7. A pomonoid S is called left od-reversible if every two right od-
ideals of S have a nonempty intersection.

Theorem 4.8. All coproducts of (finitely generated) od-ideal od-injective S-posets
are (finitely generated) od-ideal od-injective if the pomonoid S is left reversible. The
converse is also true if S is left od-reversible.

Proof. Let {Ai : i ∈ I} be a family of od-ideal od-injective S-posets. Notice that
by hypothesis, for any S-poset map f : K → ∐

Ai where K is a right od-ideal of
S we have Imf ⊆ Ai for some i ∈ I. This is because, if otherwise, Imf ⊆ Ai ∪Aj ,
for some i 6= j ∈ I, then taking J = f−1(Ai), L = f−1(Aj), we have K = J ∪ L,
J∩L = ∅. Also, J , L are right ideals of S. This decomposition of K contradicts left
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reversibility of S. Thus, f is of the form λa, for some a ∈ Ai, since Ai is od-ideal
od-injective. Therefore,

∐
Ai is od-ideal od-injective.

For the converse, on the contrary, suppose S is not left od-reversible. Then
there exist right od-ideals I, J of S with I ∩ J = ∅. Since the one element S-poset
11 is od-ideal od-injective, so is the two element discrete S-poset 11 t 11 = {a, b}, in
which a, b are zero elements, by hypothesis. But, the S-poset map f : I∪J → 11t11
given by

f(s) =

{
a if s ∈ I
b if s ∈ J

can not be extended to S, which is a contradiction. To see that f can not be
extended to S, let on the contrary, f be an extension of f . Then f(1) = a or b.
If f(1) = a, then for s ∈ J, f(s) = f(1)s = as = a 6= b = f(s), which is a
contradiction. Similarly, in the case f(1) = b, we get a contradiction.

The proof for finitely generated od-ideal od-injective S-posets is similar.

For the direct sum of od-injective S-posets we have:

Theorem 4.9. Let {Ai : i ∈ I} be a family of S-posets with a unique zero element.
(i) If the direct sum

⊕
i∈I Ai is od-injective then each Ai is od-injective. The

same is true for all kinds of weak od-injectivity defined in the last section.
(ii) The converse of (i) is also true for the case of all kinds of weak od-injectivity

defined in the last section except od-ideal od-injectivity.

Proof. (i) Let the direct sum
⊕

i∈I Ai be od-injective, g : A→ B be an embedding
from an order dense S-poset A, i ∈ I, and f : A→ Ai be an S-poset map. Consider
the injection map σi : Ai →

⊕
i∈I Ai, by ai 7→ (. . . , 0, ai, 0, . . .) where ai is the i-th

component. By hypothesis there exists an S-poset map σif : B →⊕
i∈I Ai which

extends σif . Then piσif : B → Ai extends f , where pi is the i-th projection map.
(ii) For the converse, let each Ai be a finitely od-injective S-poset. Let F be a

finitely generated S-poset which is an order dense sub S-poset of B and f : F →⊕
i∈I Ai be an S-poset map. Assume that F is generated by {x1, x2, . . . , xn}. Then,

since only finitely many components of each f(xi) are nonzero, Imf is contained
in a direct sum of finitely many Ai, say i1, i2, . . . , im. Then, since the direct sum
Ai1⊕Ai2⊕· · ·⊕Aim , which is in fact a product, is finitely od-injective by Theorem

4.2, there exists f ′ : B → ⊕im
j=i1

Aj which extends f : F → ⊕im
j=i1

Aj . Finally,

σf ′ : B → ⊕
i∈I Ai extends f , where σ :

⊕im
j=i1

Aj →
⊕

i∈I Ai is the injection

map, (aj)
im
j=i1
7→ (. . . , ai1 , . . . , ai2 , . . . , aim , . . .), where each aj , j = i1, . . . , im is the

j-th component and other components are 0.

In the case of od-ideal od-injective S-posets we have the following theorem
which comes after a definition.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Order dense injectivity of S-posets 59

Definition 4.10. A pomonoid S is said to be od-Noetherian if and only if every
right od-ideal of S is finitely generated.

It is easy to check that a pomonoid S is od-Noetherian if and only if it satisfies
the ascending chain condition for right od-ideals, that is, for every ascending chain

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ In+1 ⊆ . . .

of right od-ideals of S there exists n ∈ N such that In = In+1 = . . ..

Theorem 4.11. Each direct sum of od-ideal od-injective S-posets is od-ideal od-
injective if and only if S is od-Noetherian.

Proof. If S is od-Noetherian, a similar argument to that of the above theorem gives
the result. Conversely, let {0} = I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . . be an ascending chain
of right od-ideals of S. Consider the Rees factor S-posets S/θ(In × In), and let
En be the regular injective S-poset in which S/θ(In× In) can be embedded. Then
E =

⊕
n∈NEn is od-ideal od-injective by hypothesis. Take I =

⋃
n∈N In which is

clearly an od-ideal, and consider the natural epimorphisms fn : S → S/θ(In × In).
Define an S-poset map f : I → E by f(s) = (fn(s))n∈N. Notice that for each
s ∈ S only finitely many components of f(s) are nonzero, because s ∈ Ik for some
k ∈ N, and so fn(s) = In = 0S/θ(In×In), for all n ≥ k. Now, since E is od-ideal
od-injective, f = λa for some a ∈ E. Let a = (an)n∈N where for some k ∈ N,
an = 0 for all n ≥ k. Then for each s ∈ I, since f(s) = as, we get fk(s) = 0. So,
I ⊆ Ik, which gives I = Ik.

The condition that weak injectivity implies injectivity is known as the Baer
Criterion for injectivity. Here we study some Baer conditions and give some con-
ditions under which a special kind of od-injectivity implies od-injectivity itself.

First, we give some examples to show that some kinds of od-injectivity do not
imply some other kinds.

Example 4.12. (1) Principal od-ideal od-injectivity does not imply finitely gen-
erated od-ideal od-injectivity. To see this, let S = {0, 1, e, f} be the commutative
idempotent pomonoid in which 1 is the bottom identity element, 0 is the top
zero element, e, f are incomparable, and ef = fe = 0. Then, the right od-ideal
K = {0, e, f} of S can be seen to be principally od-ideal od-injective, but K can
not be finitely generated od-ideal od-injective since it is not generated by an idem-
potent.

(2) Finitely generated od-ideal od-injectivity does not imply od-ideal od-injectivity.
To see this, take the pomonoid S = (N,max) with the order

1 ≥ 2 ≥ 3 ≥ 4 ≥ · · · .
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Then, S, which is not generated by an idempotent, can not be od-ideal od-injective,
by Theorem 3.11. But at the same time each finitely generated right od-ideal of
S is of the form ↑ n = {x ∈ N : x ≥ n} = {1, 2, · · · , n}, and is generated by an
idempotent. This implies that S is finitely generated od-ideal od-injective.

(3) Od-ideal od-injectivity does not imply od-injectivity. To see this, consider
the pomonoid S = (N,max) with the ordinary order of natural numbers. Then S
is od-ideal od-injective since each od-ideal of S is generated by an idempotent, but
it is not od-injective, since it does not contain a zero element.

(4) Principally od-ideal od-injectivity does not imply cyclicly od-injectivity. To
see this, let T = {e, f} be a right zero semigroup, R = T 1 with the order e, f ≤ 1.
Then by Theorem 3.8, R is principally od-ideal od-injective. But, by Remark 3.2,
R is not cyclicly od-injective because it does not have any zero element.

(5) Od-ideal od-injectivity does not imply finitely od-injectivity. To see this,
consider the pomonoid S = (N,max) with the ordinary order of natural numbers.
Then S is od-ideal od-injective by Theorem 3.13, since S is a regular pomonoid
all of whose right od-ideals are principal, but it is not finitely od-injective since it
does not contain a zero element.

Theorem 4.13. Every finitely generated od-ideal od-injective S-poset is od-ideal
od-injective if and only if S is od-Noetherian.

Proof. Let A be a finitely generated od-ideal od-injective S-poset, and f : I → A
be an S-poset map from a right od-ideal I of S. Since S is od-Noetherian, I is
finitely generated. Now, since A is finitely generated od-ideal od-injective there
exists an S-poset map g : S → A which extends f . Then g is of the form λa for
a = g(1). Thus f is also of the form λa and hence A is od-ideal od-injective. For the
converse, let {Ai : i ∈ I} be a family of od-ideal od-injective S-posets. Since each
od-ideal od-injective S-poset is finitely generated od-ideal od-injective, each Ai is
finitely generated od-ideal od-injective. Then by Theorem 4.9,

⊕
i∈I Ai is finitely

generated od-ideal od-injective, and so it is od-ideal od-injective, by hypothesis.
Now, by Theorem 4.11, S is od-Noetherian.

Theorem 4.14. The following conditions are equivalent:
(i) Every od-ideal od-injective S-poset is regular injective and S is od-Noetherian.
(ii) Every finitely generated od-ideal od-injective S-poset is regular injective.

Proof. (i) ⇒ (ii) Since S is od-Noetherian, every finitely generated od-ideal od-
injective S-poset is od-ideal od-injective, and then regular injective by hypothesis.

(ii)⇒ (i) Let {Ai}i∈I be a family of od-ideal od-injective S-posets. Since every
od-ideal od-injective S-poset is finitely generated od-ideal od-injective,

⊕
i∈I Ai is

finitely generated od-ideal od-injective, by Theorem 4.9. Then
⊕

i∈I Ai is regu-
lar injective, by hypothesis. Hence S is od-Noetherian by Theorem 4.11. Every
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od-ideal od-injective S-poset is finitely generated od-ideal od-injective and hence
regular injective by hypothesis.

Theorem 4.15. All principally od-ideal od-injective S-posets over a pomonoid S
are finitely generated od-ideal od-injective if and only if all finitely generated right
od-ideals of S are principal.

Proof. To prove necessity, consider a finitely generated right od-ideal I =
⋃n
j=1 sjS.

By assumption and since principally weakly regular injectivity implies principally
od-ideal od-injectivity, its principally weakly regular injective extension I(2), which
is constructed in [21], is finitely generated od-ideal od-injective. Hence there exists
an S-poset morphism g : S → I(2) such that the diagram

I �
� ι //

f
��

S

g~~
I(2)

is commutative, where ι and f are inclusion mappings. Then, for every sj ∈ I,

sj = f(sj) = gι(sj) = g(sj) = g(1)sj

and hence

I =
n⋃

j=1

sjS =
n⋃

j=1

g(1)sjS ⊆ g(1)S.

Now g(1) ∈ In for some n ∈ N0 where In is as defined in Theorem 4.10 of [21].
If n = 0 then g(1) ∈ I. Otherwise, by n times applying Lemma 5.7 of [21], we
get an element d ∈ I such that I ⊆ dS. So in both cases I = sS for some s ∈ I.
Sufficiency, is obvious.

Acknowledgment. The author would like to thank the referee for his/her many
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کاربردها با جبری کلی ساختارهای و رسته ها
١٣٩۴ تیر ،١ شماره ،٣ جلد

ترتیبی چگال نشاننده های به نسبت مرتب S-مجموعه های انژکتیوی

شهباز لیلا

شاخه های از بسیاری در تکریختی ها مختلف کلاس های به نسبت انژکتیوی مطالعه
و مختلف رسته های در را مفهوم این بسیاری ریاضیدانان است. اهمیت با ریاضیات
به نسبت انژکتیوی مفهوم مقاله این در کرده اند. مطالعه متفاوت تکریختی های به نسبت
یکنوای کنش با مرتب مجموعه های مرتب، مجموعه های -S ترتیبی چگال نشاننده های
برای بئر محک مشابه محکی، می گیرد. قرار مطالعه مورد آنها روی S مرتب تکواره ی
انژکتیوی برای S-مجموعه ها، انژکتیوی برای اسکورنیاکوف محک یا مدول ها انژکتیوی
ایده آل های و خود برای را انژکتیوی نوع این همچنین، می دهیم. ارائه ترتیبی چگال
نشاننده های به نسبت ضعیف انژکتیوی نوعی علاوه، به می کنیم. بررسی آن ترتیبی چگال
می دهیم. قرار بررسی مورد ترتیبی چگال انژکتیوی با را آن رابطه ی و معرفی ترتیبی چگال
مجموع و همضرب ضرب، عمل های انژکتیوی انواع این آیا که می کنیم بررسی همچنین،

می کنند. منعکس یا حفظ را مرتب S-مجموعه های مستقیم
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