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Abstract. In this article we discuss examples of fractal w-operads. Thus
we show that there is an w-operadic approach to explain existence of the
globular set of globular sets®, the reflexive globular set of reflexive globular
sets, the w-magma of w-magmas, and also the reflexive w-magma of reflexive
w-magmas. Thus, even though the existence of the globular set of globular
sets is intuitively evident,“many other higher structures which fractality are
less evident, could be described with the same technology, using fractal w-
operads. We have in-mind the non-trivial question of the existence of the
weak w-category of the weak w-categories in the globular setting, which is
described in [9]. with the same technology up to a contractibility hypothesis.

Introduction

This article is the second in a series of three articles (see [8, 9]). Here we give
some relevant examples of w-operads having the fractal property in the sense of
[8], exhibited by relevant higher structures where contractibility in the sense of
Batanin’s article [2] is not involved. The natural direction we propose allows us to
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consider four examples of higher structures: globular sets, reflexive globular sets,
w-magmas, and reflexive w-magmas.

We use two coglobular objects in the category T-Gr, . of pointed T-graphs
over constant globular sets to build these examples: the object C'* and a subobject
G* of C*, both described in the last section of [8]. Thanks to the object G*,
we freely generate the coglobular object of w-operads for globular sets and the
coglobular object of w-operads for reflexive globular sets. Thanks to the object
C*, we freely generate the coglobular object of w-operads for w-magmas and the
coglobular object of w-operads for reflexive w-magmas. It is then easy to show
that the w-operad B of globular sets, the w-operad Bgu of reflexive globular sets,
the w-operad BY, of w-magmas, the w-operad B?wu of reflexive w-magmas, all have
the fractal property. Using the same technology related to the standard action
in T-CAT; (see [8]), we deduce the existence of a globular set of globular sets, a
reflexive globular set of reflexive globular sets, a w-magma of w-magmas, and a
reflexive w-magma of reflexive w-magmas.

We suspect that the w-operad B of Batanin (see [2, 5, 13]), which algebras
are his definition of weak higher categories, has the fractal property. Thus the
weak w-category of weak w-categories should have a similar description as those of
this article, up to the contractibility of a specific w-operad. This important fact of
higher category theory is described in [9].

1 Preamble

We are going to describe four examples of fractal w-operads in the sense of [8]. Not
only is the w-operad of globular sets actually fractal, but so are the w-operad of
reflexive globular sets, the w-operad of w-magmas, and the w-operad of reflexive
w-magmas.

Remark 1.1. It is important to note that our technology also applies in low
dimensions.  For example, as an exercise, the reader can check easily that graphs
form a graph, or reflexive graphs form a reflexive graph, by interpreting in the
language of this article. Indeed we can also show easily that the 1-operad of graphs,
and the 1-operad of reflexive graphs are also fractals. Also the 2-operad of 2-graphs
is fractal as well, where we consider a finite 3-truncated coglobular objects build
with the 2-operad of 2-graphs, the 2-operad of morphisms of 2-graphs, and the
2-operad of transformations of 2-graphs. However this 2-operad of 2-graphs can be
also used to show that graphs do form a 2-graphs. But in that case this construction
doesn’t show the fractality structure? of such 2-operad of 2-graphs. Many such
low dimensions facts (such that the existence of the category of categories, the

?In the sense of [8].
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strict 2-category of strict 2-categories, the bicategory of bicategories?, etc.) can be
described easily to show more the pertinence of the technology developed in this
article.

Remark 1.2. In [17] Dimitri Tamarkin has shown that DG-categories form a DG-
category. We do not know if such proof is similar to the technology developed in
our article. If it is the case, such result might be still true for a higher version of
DG-categories*. But we do not want to give more details of such subject, because
we are not enough expert about DG-categories.

2 The coglobular object of graphical w-operads

The category w-Gr of globular sets has trivial higher transformations. First we are
going to describe these higher transformations as presheaves on appropriate small
categories G, and then see that they form a globular set that we call the globular
set of globular sets. It is the combinatorial description of these small categories
G,, which allows a straightforward proof of Proposition 2.2. This proposition ba-
sically says that these higher transformations are-algebras for adapted 2-coloured
w-operads.
Consider the classical globe category Gg

t t2 th1

subject to the relations®on cosources s"*1 and cotargets t"*1. For each each n > 1

we are going to build other small categories G,, resulting in a coglobular object in
CAT

3 83 Sy
Go Gy G2 Gy

1 2 n
Kg K1 Kn—1

Gn

where G is the globe category. The category G, is called the n-globe category.

3For these everyday cases, we use adapted truncations of operads build in [9].
“If such higher version makes sense.
®which are describe in [8]
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The 1-globe category Gy is presented by

1 2 n
_ So _ 51 _ Sn—1
S
0 1 2 Zn—1———=n
1 2 n
t() tl tn—l
al a(l, ocg 0461’1 ag
71 /2 m
= So = S1 5/ , Sn—1 ,
=
0 1 2 Tn—1 _—=n
/1 2 m
to ty Y

subject to a0 s/ t1

The 2-globe category G5 is presented by

_ on+1 n n+1 m+1 _ yn+1 n
=syToay, ap oty T =107 o o).

— 50 — 55 _ 5:—1
0 1 2 R e
1 2 71
to ty (26
6 [0) 6 1 Bn— n—1 ﬁ'n— n—l 56 (7)1
0 0 0 0 0
/1 2 /n
= S0 = S1 5 n—l ’
0 - 1 - 2 zn = — 1}
’ ’ n
tO tl tnfl

where in particular we have an arrow &p: 1/ ——=0 . Arrows sit ¢+l qn go.
and & satisfy the following relations

° ag+1 ° Sgwl

_ on+1 n n+1 m+1 _ yjn+1 n
=38p 0 Qq,y & Otn _tn 0 Qg,

o Byttosp e sl ey By oty =13+ o B,

o Sosit =af and & oty = 39.

More generally the n-globe category G,, is given by the category

/1 2 m
to ty t
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. . _ —
where in particular we have an arrow &, 1:m—1 ——=0, and also for each

1< p < n—2, we have arrows P —=% ? 0. The arrows s7 1 tn 1 ol B0, By,
P
and &, _1 satisfy the following relations

. ag-H o gntl

=s"loay, aftt ot = ntl o ap,
o Bittosmtl = gntlopgn gutlopmtl — yntlo gn.

mo_ Ip
® ap05, 1 =008, 1 =0 1andozpotp 1_Bpot ~q = 0p_1, and we put

aq = ag and By := BO,

—1
° fn 1OSn o = Qp— 2and§n 1Otn 2 —6n—2-

61
The cosources and cotargets functors Gy :; Gy are such that d§ sends Gg to
”0
&
Gy, and k} sends Gg to Gf). The cosources and cotargets functors G; —= G,
2
K1

send Gy to G, and G}, to Gj,. Also 07 sends the symbols o to the symbols af,
and k2 sends the symbols af to the symbols 35
Now we consider the case n > 3. The cosource and cotarget functors

§n

n—1

anl —_—
Kn—1

are constructed as follows. First we remove the cell &,_1 and the cell §,,_o
from'G,,, and we obtain the category G, ;. Clearly we have an isomorphism
of categories G, _; ~ G,,—1 (which sends a;,,—2 to &,—2), and also the embedding

Inl

G, _ C——> Gy, . The composition of this embedding with the last isomorphism

n

gives G, _1 2 G,

The cotarget functor klv_ is built similarly: First we remove the cell &,_;
and the cell a,,_o from Gm and we obtain the category G _,. Clearly we have
an isomorphism of categories GZ71 ~ G, -1 (which sends f,,—2 to &,_2), and also

the embedding (G:;fi; Gy, . The composite of this embedding with the last
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Ky .
isomorphism gives G,,_1 o Gy, . It is easy to see that these functors J;_; and

n_, verify the cosource/cotarget conditions as for the globe category Gy above.

We denote the category of sets by Set and the category of large sets by SET.
When we apply the contravariant functor [—; Set](0) to the coglobular object
in CAT

R

. R b
GO Gl G2 ; anl — & G?Lp
7 w1 K1

it is easy to see that we obtain the globular set of globular sets®

= [G27; Set] (0) === [G2P,;Sef] (0) -+ Z[C57; Set] (0) =% [G57; Sef] (0)
no1 Bs

Remark 2.1. If instead we apply to it the contravariant functor [—; Set] we obtain
the globular category of globular sets, which is useful in [9], for example to describe
the globular category of the strict w-categories.

An object of the category of presheaves [GoP;Set] is called an (n,w)-graph”.
For instance, if n > 3, then the source functor o;/_; is described as follows. Take

an (n,w)-graph X : G% —— Set with underlying (n — 1)-transformation
X(Er) s X(0) —= X(@=T) .

and then

/

7 1(X)(n—2) : X(0) —= X (n - 2)
is the underlying (n — 2)-transformation of o7’_;(X) defined by:
Tp-1(X)(En—2) = X (55" 1) 0 X (§n—1)-

Similarly for the target functors 5;_;.

SFor each n € N, [G%;Set](0) means the set of objects of the presheaf category
[GSP; Set].

"Do not confuse (n,w)-graphs with the (co,n)-graphs that we defined in [7]. They are
completely different objects. In [7], (0o, n)-graphs are a kind of globular set which plays
a central role in defining an algebraic approach of (oo, n)-categories.
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Now we are going to give an operadic approach to the globular set of globular
sets by using the technology of Section 2 of [8]. Let us denote by G* the coglobular
object in T-Gr, ¢

sk sl &
0 o 1 2 2 -1 nol
G G G zGn Gn
Ko K3 Kp1

built just by removing all cells “up” and “v;” from the object C*'in T-Gry .
(described in Section 4 of [8]):

5 53 )8
0 0 1 2 2 n—1_ 2"
C C C zC = C
Ky w3 Ko 4

If we apply to it the free functor M : T-Gr,, —— T-CAT. (see Section 2
of [8]) we obtain a coglobular object® in T-CAT;

0 6(1] 1 521’ 2 1 O
> pn— n
B, ——= 1} B PBE  ——= By
Ko Ky Kp—1

which produces the globular object

0’27 o'l
B Alg=—=s B L Alg % BL Alg —=% B% Alg
1 Bé

in CAT. We then have the following easy proposition.

Proposition 2.2. The category BY-Alg is the category [GJ¥; Set] of globular sets,
ﬁé—Alg is the category [G{¥;Set] of (1,w)-graphs, and for each integer n > 2,
B:-Alg is. the category [G;Set] of (n,w)-graphs.

Let us denote this coglobular object in T-CAT. by Bg. Its standard action is
given by the following diagram in T-CAT;:

Coend(Alg(. Coend(Ob(.))
_—

Coend(Bg,) ) Coend(AZ) End(Ay )

It is the standard action of higher transformations specific to the basic globular set
structure. The monochromatic w-operad Coend(Bg&) of coendomorphisms plays a

8Here B is the initial w-operad.
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central role for globular sets, and we call it the white operad. It is straightforward
that BZ has the fractal property because it is initial in the category T-CAT; of
w-operads and thus has a unique morphism

|
BY —— = Coend(Bg)
of w-operads. If we compose it with the standard action of the globular sets

Coend(Alg(. Coend(Ob(.))
_

Coend(Bg,) ) Coend(AZ) End(Ao,c)

we obtain a morphism of w-operads

0 &
BG

End(Aoc)

which expresses an action of the w-operad B of globular sets on the globular object
B2-Alg(0) in SET of (n,w)-graphs (n € N). This gives a globular set® structure
on (n,w)-graphs (n € N).

3 The functor of contractible units

We denote the category of the reflexive globular sets by w-Grr (see [16]). We have
the adjunction
U
w-Grr _T_ Gr
R

and the generated monad of reflexive globular sets is denoted by (R, 7, u). Objects
of w-Grr are usually written as (G, (12 )o<p<n)), Where the operations (12 )o<p<n is
a chosen reflexive structure on the globular set G. Also we consider the monad T
on the globular sets whose algebras are strict w-categories. In this paragraph we
will build the functor of the contractible units for pointed T-graphs (see [13]). It
plays the same role for the pointed T-graphs as the previous functor R plays for the
globular sets. First we must define pointed T-graphs with contractible units which
are, for the pointed T-graphs, what reflexive globular sets are for globular sets.
Throughout this paper we will work with pointed T-graphs and with T-categories
over constant globular sets (see [5]), and a subscript “c” on categories will mean
that we work with constant globular sets. For instance the category T-Gry, . of
pointed T-graphs is adorned with a “c” to indicate that objects of this category
are the pointed T-graphs over constant globular sets.

Now consider an object (C,d,c;u) of the category T-Grp .. Here u denotes a
chosen point of (C,d, ¢); that is, the data of a morphism

9Some mathematicians might prefer to say large globular set or globular class.
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(G7 nG, ZdG) M (Oa da C)

in T-Gr, where G designates the underlying constant globular set of arities of
(C,d,c) (or in other words, designates the set of colours of (C,d, ¢)).

Remark 3.1. A p-cell of G is denoted by g(p) and this notation has the following
meaning. The symbol ¢ indicates the “colour”, and the symbol p reminds us that
we must see g(p) as a p-cell of G because, while G is just a set, we are thinking of
it as a constant globular set.

In order to define pointed T-graphs with contractible units we are going first to
define an intermediate structure on T-graphs. Consider a T-graph (C, d, ¢) and, for
each n € N, we denote the set of n-cells of the T-graph (C,d, ¢) by C(n). Consider
also the reflexive globular set (T(G), (12 )o<p<n)) such that the operations 12 are
freely generated by the monad T. We say that the T-graph (C;d,c) is equipped
with a reflexive structure if its underlying globular set C' is equipped with a reflexive
structure in the usual sense and d is a morphism of reflexive globular sets. Note
that G is also equipped with a trivial reflexivity structure (G, (12 )ogp<n)) such that
the operations 12 are defined by 12(g(p)) = g(n), forcing ¢ to be a morphism of
reflexive globular sets as well. We denote reflexive T-graphs, where the operations
17 are those of C, by (C,d,¢c; (12)ogp<n)s A morphism between two reflexive T-
graphs is just a morphism of T-graphs which preserves reflexivity, and the category
of reflexive T-graphs over constant globular sets is denoted by T-Grr.,.

A pointed T-graph (C,d, ¢;p) over a constant globular set G has contractible

units if it is equipped with a monomorphism R(G) ——= C such that u factorise

as R(G)
7N
G _ c

d

and such that the induced T-graph T(G) R(G) —— G is reflexive. That

is, the restriction of d to R(G) is a morphism of reflexive globular sets. We denote
pointed T-graphs with contractible units by (C,d, ¢;p, v, (12 )o<p<n). A morphism

(f:h)

(07 d7 cp,v, (1g)0<p<n) (Ol7 d/a 0/517/; vl7 (12)0§p<n)

of pointed T-graphs with contractible units is given by a morphism of pointed
T-graphs (see [13])

(f:h)

(C.d,c;p) (c'd,d;p)
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such that fv = v'R(h), and (R(G),d,c) h) (R(G"),d', ) is a morphism

of reflexive T-graphs. Thus morphisms between two T-graphs equipped with con-
tractible units preserve this structure of contractibility on the units. The category
of pointed T-graphs with contractible units is denoted by UT-Grp, .. It is easy to see
that UT-Gr, . is locally presentable, because it is based on the locally presentable
category T-Grp ., and equipped with a structure of contractibility on the units,
whose operations 12, on the units and their axioms, show easily that UT-Grp, . is
also projectively sketchable!C.
Also we can easily prove that the forgetful functor

UT-Grp. L~ T-Gr,,

is a right adjoint by using basic techniques coming from logic as in [5]. Thus we
can apply Proposition 5.5.6 of [3] which shows the monad Ty induced by this
adjunction has rank. Also U’ is monadic by the Beck theorem-on monadicity. We
write R’ for the left adjoint of U’:

U/
UT-Grp. _T ~ T-Grp. .
R/
Furthermore, we have the general fact (which can be found in [10, 11}).

Proposition 3.2 (G.M. Kelly). Let K be a locally finitely presentable category,
and Mnd;(K) the category of finitary monads on K and strict morphisms of mon-
ads. Then Mnd(K) is itself locally finitely presentable. If T and S are object of

Mnd;(K), then the coproduct TI]S is algebraic, which means that KT x K is
K

equal to KTUS and the diagonal of the pullback square
KT x kS — " L KS
K

KT K

v

is the forgetful functor KTS — K. Furthermore the projections KT x K5 —
K

KT and KT x K5 — K*° are monadic.
K

9Good references for sketch theory are [1, 3, 12, 14].
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Remark 3.3. According to Steve Lack, this result can be easily generalised to
monads having ranks in the context of locally presentable category.

With the functor V defined in Section 2 of [8], we have the following diagram :

UT-Grp, x T-CAT. — > T-CAT,
p2 14
UT-Gryp,c o T-Grp .

Applying the above proposition, we see that

UT-CAT, := UT-Gr,. x T-CAT,

Tp,c

is a locally presentable category'!, and also that the forgetful functor
UT-CAT, <% T-Gr,..

is monadic. Denote by F'the left. adjoint to O.

In Sections 4 and 6, we apply this functor F' to the coglobular objects G* and
C* of T-Grp ., to obtain respectively, the coglobular object of higher operads for
reflexive globular sets, and the coglobular object of higher operads for reflexive
w-magmas.

4 The coglobular objects of the reflexive graphical w-operads

By taking the globe category Go (see Section 2) as basis, we build the reflexive
globe category Gy, as follow. For each n € N we add into G the formal morphism

____
n+1 - n such that 170 ;o Tt =17 ot?*! =15, Foreach 0 < p <n
we denote 18 := 10 0177 0 01771,

For each each n > 1 we are going to build similar categories G,,, in order to
obtain a coglobular object

NUT-CAT., is the category of coloured w-operads with chosen contractible units where
in particular morphisms of this category preserve contractibility of the units.
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i9 is in—t
/;\ /;\ m
GO T Gl T GQ,r > Gn 1,r ~ Gn,r
.o w7 K1

in CAT, equipped with coreflexivity functors i};, . Each category G, is called
the reflexive n-globe category. It is built as were the categories G, (n = 1) where
now we just replace Go and G by Go, and G ,.

For each n > 1, the cosource and the cotarget functors

Sn1
—_—
Gn 1,r —
K’nfl
are defined as were those for the
Sn1

Gn—l Gn

of Section 2, where in addition d sends, for all p > 0, the reflexivity morphism
1p 11 to the reﬂex1v1ty morphism lp 41, and K sends the reflexivity morphism 1p 11
to the reflexivity morphism 1er1 Also,if n'> 2, 65, and k;,, send, for all p > 0,
the reflexivity morphism 17 pt1 tOthe reﬂexivity morphism 12 11, and the reflexivity
morphism 1, » 1 to the reflexivity morphism 1P pr1- These functors 6;_; and rj_;
do indeed satlsfy the cosource and cotarget condltlons.

For each n > 1, the coreflexivity functor

n—1
’L’VL

Gn,r —_— anl,r

is built.as follows: the coreflexivity functor ¢{ sends, for all ¢ > 0, the object g to
q, the objectig’ to g, the cosource morphisms sdt! and s/9*! to s4t!, the cotarget
morphisms ¢Z™! and t;‘”l to t&™!, and the functor morphisms o to 15. Also the
coreflexivity functor il sends, for all ¢ > 0, the object ¢ to g, the object ¢ to ¢, the
cosource morphism sg“ to the cosource morphism 5‘”1 the cosource morphism
gq+1 to the cosource morphism s;q“ the cotarget morphlsm tq+1 to the cotarget
morphism t‘”’l the cotarget morphism t"“‘1 to the cotarget morphlsm t' 9+l the
functor morphlsms ag to the functor morphlsms ag, the functor morphlsms BO to
the functor morphisms ¢, and the natural transformation morphism &; to 040 017,
Also, for each n > 3, the coreflexivity functor i"~! sends, for all ¢ > 0, the
object ¢ to g, the object ¢ to ¢, the cosource morphlsm 5‘”1 to the cosource
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morphism sg‘H the cosource morphism s;‘”l to the cosource morphism s"“‘1 the
cotarget morphism tq‘H to the cotarget morphism t‘”‘l the cotarget morphlsm
t"”‘l to the cotarget morphism t’q'*‘1 the functor morphlsms ad to the functor
morphisms ag, the functor morphisms B¢ to the functor morphisms Bg. Also, if
0 < p < n—3, it sends the p-transformation «;, to the p-transformation o, the
p-transformation 3, to the p-transformation 3,'?, the (n — 2)-transformation a;,,—»
and (,,—2 to the (n—2)-transformation ,,_o, and finally the (n— 1)-transformation
gn ltofn 201/n 2

With this constructlon it is not difficult to show that functors "' (n > 1)
satisfy the coreflexivity identities

‘n—1

n—1 n o _
o 5n—1 = 1@;71 =1,

n
2% ol{n—l .

When we apply the contravariant functor [—;Set](0) to the coglobular object in
CAT

/\/\

we obtain the reflexive globular set of reflexive globular sets:

> Op
N Gn e = >G
KoY

n—1

2 (Gl Set)(0) == N (G0 1,5 Set](0) % (67 Set](0) —= = (Gl Set](0)

An object of the category of presheaves [G; Set] is called a reflexive (n,w)-graph.
For instance, if m >3, the reflexivity functor :»~! can be described as follows.

If X:G,”,——Set isan (n—1,w)-graph and

X(&ne2) : X(0) —= X(n=2)

is its underlying (n — 2)-transformation, then

X)) X(0) —>X(n—T1)

12By convention we put cg = o and 8o = B5. In fact this convention is natural
because from our point of view of n-transformations, 1-transformations are the usual
natural transformations, and a O-transformation should be seen as the underlying function
Fy acting on the O-cells of a functor F.
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is the (n — 1)-transformation defined by 1~ (X)(£,_1) = X (1"2) 0 X (€n_2).
Now we are going to give an operadic approach of the reflexive globular set

of reflexive globular sets by using the technology of Section 2 of [8]. Consider

the coglobular object G* in T-Gr, . as in 2. If we apply the free functor F' :

T-Grp,. — UT-CAT. (see Section 3) to it we obtain a coglobular object in
T-CAT,:

8 o3 ) ) 61

> n—4 > n
BGu > BGu N BGu
Ko K1 Kn—1

It is important to notice that the w-operad Bgu is initialin UT-CATy. Also this
coglobular object B¢, produces the following globular object in. CAT

o

n—1 o
= By, — Alg——= Bi' — Alg oz Bl — Alg—= B, — Alg
0

n—1
and we have:

Proposition 4.1. The category qu -Alg 1is the category [GSZ,)TE Set] of reflexive
globular sets, Qéu -Alg 1is the category [G'{f’r; Set] of reflexive (1,w)-graphs, and for
each integer n > 2, B, -Alg is the category [GP,; Set] of reflexive (n,w)-graphs.

n,r

We denote this coglobular object in T-CAT. by Bg, . According to the results
of Section 2 of [8], we obtain the diagram

Coend(Alg(. Coend(Ob(.
Coend(Bg, ) R Coend(Ag) CoendOM) Coend(Agl,)

in T-CAT; that we call the standard action of the reflexive globular sets. It is a
specific standard action. The monochromatic w-operad Coend(B¢, ) of coendo-
morphisms plays a central role for reflexive globular sets, and we call it the blue
operad. Also we have the following result:

Proposition 4.2. B?;u has the fractal property.

Proof. The units of the w-operad Coend(B&u) are given by the identity morphisms

Bg, —— Bg,, - We are going to exhibit a morphism of w-operads

lgn ;lgn o
R -
Gu G

u
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which is the contractibility of the unit 1p» with itself.

n
Crt

. B¢ of T-Gr., which sends

U, 1O Uy, Upy 1O Uy, o to o, B to B, oy to oy, By to By, ap to &, By to
&, and 1 t0 Y([Un; un]y 15 e, ). This map ¢y, equips B, with an operation
system of the type G"*'. Now B¢, has contractible units, so by the universality

of the map 7,41, we obtain a unique morphism [1pz ;1pn |54 of w-operads.

First consider the morphism of G"*t!

[1Bgu;1Bgu]Z+1

n+1 n
BGu > BGu
Nn41 -
Cnt1
(;n+1

This (n+1)-cell [1pz ;1pz |54 has as arity the degenerate tree 17 (1(n)). Now
we just need to prove that the following diagram commutes serially, which will
show that the source and target of [Ipn ;1pp |;iq are the unit 1pn :

n+1
Bg!

ol

n
BGu

But we have the following diagram which, on the left side commutes serially, and
on the right side commutes:

ot 1gn ;lgn |7
[ BGu’ Bcu]n+1

B
G,
u RZ+1 u
Mn NMn+1
n
snt1 T Cnt1
n

el 4444444444e>(;n+1
_ 5
KZ+1

The morphism ¢}, ; is a morphism of T-Gr, ., as are the morphisms ont1 and
k"*1 on the bottom of this diagram. Their combinatorial descriptions show easily
that we have the equalities ¢ ; o 07! = ¢, o kTt = n,. So we have the
equalities [1py ;1pp Inii0dn™ = [l slpy gy okt = 1py . This shows
that the w-operad C’oend(B&u) has contractible units, and thus we have a unique
morphism
!
BY ——"— Coend(By,,)

of w-operads which expresses the fractality of Bg“. O
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If we compose the morphism !¢, with the standard action of the reflexive
globular sets

Coend(Alg(.)) Coend(Ob(.))
_— _—

Coend(Bg, ) Coend(Ag ) Coend(Ap ¢, )op
we obtain a morphism of w-operads
0 G,
BG End(AOVG")

u

which expresses an action of the w-operad Bgu of reflexive globular sets on the
globular object B¢, -Alg(0) in SET of the reflexive (n,w)-graphs (n € N). This
gives a reflexive globular set structure on reflexive (n,w)-graphs (n € N).

5 The coglobular objects of magmatic w-operads

Consider now the case P = M (magmatic). That is, we deal with the category
T-CAT, of w-operads. We apply the free functor

T-Grp,c M

T-CAT.

to the coglobular object C'* in T-Gr, . of the higher transformations (see Section
3 of [8]) and we obtain a coglobular object’ B}, of w-operads in T-CAT,

0 il 1 % 2 1 on
> n—~14 — > n
BM 1 BM > BI\/I > BM — BM
Kg Ry Kp—1

If we write BT-CAT} for the category of w-operads equipped with a chosen compo-
sition system in Batanin’s sense, whose morphisms are those which preserve these
composition systems, then it is important to note that the w-operad BY, is initial
in BT-CAT}.

Also, this coglobular object Bj; produces the following globular object in CAT

On_1 oy
= BY,-Alg ——= B, -Alg % Bl,-Alg == BY,-Alg
" 83

In particular, BY; is the w-operad for w-magmas, and, for all n > 0, algebras for
B, are what we call (n,w)-magmas.

The standard action associated to B}, is given by the following diagram in
T—(CATll
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Coend(Alg(.)) Coend(Ob(.))
_ _—

Coend(BY;) Coend(ATY) End(Ao,m)

We call this the standard action of w-magmas, which is a specific standard action
of higher transformations. The monochromatic w-operad Coend(B3,) of coendo-
morphisms plays a central role for w-magmas. We call it the yellow operad. Also
we have the following result:

Proposition 5.1. BY, has the fractal property.

Proof. In 7 we built a composition system for Coend(B%,). Therefore, just using
the universality of BY, in BT-CAT; we get the result. O

If we compose the morphism !,

5Ys

BY, Coend(B3%,)
with the standard action associated to Bj;, we.obtain a morphism of w-operads

Jd

BY, End(Ao )

which expresses an action of the w-operad BY, of w-magmas on the globular object
B$,-Alg(0) in SET of (n,w)-magmas (n € N), and thus gives an w-magma structure
on (n,w)-magmas (n € N).

6 The coglobular ebject of reflexive magmatic w-operads

Consider the case .P-= M, (magmatic with contractible units). That is, we deal
with the category UT-CAT. of w-operads with chosen contractible units (see Sec-
tion 3). We apply the free functor (see Section 3)

F

T-Grp.. UT-CAT.

to the coglobular object C'* of higher transformations in T-Gr, . and we obtain a
coglobular object B}, of w-operads in T-CAT.

RO % Bl % B2 gn—1 b B
> n—14 0 5 n
M, M, M, >“M, . > "M,
1 2 n
Ko K1 Kn—1

If we write UBT-CAT for the category of w-operads equipped with a composi-
tion system in Batanin’s sense and which have chosen contractible units, where the
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morphisms are those which preserve these composition systems and contractibil-
ity of the units, then it is important to note that the w-operad Bjowu is initial in
UBT-CAT;.

Also this coglobular object B}, produces the following globular object in CAT

oy _y o}
> B, -Alg——= B '-Alg -z BY, -Alg —= BY, -Alg
u n u u 1 u
0

n—1

In particular B}, is the w-operad for reflexive w-magmas (see [7]). The standard
action associated to Bj, is given by the following diagram in T-CAT}:

Coend(Alg(.)) Coend(Ob(.))
_— _—

Coend(By; ) Coend(A%] ) End(Ao )

It is a specific standard action of higher transformations..=The monochromatic
w-operad Coend(B}; ) of coendomorphisms plays a central role for reflexive w-
magmas. We call it the green operad. Also we have the following result:

Proposition 6.1. th has the fractal property.

Proof. In 7 we built a composition system for Coend(Bj; ), and contractibility of
its units is proved as in Section 4. Thus we just use the universality of B}, in
UBT-CAT; to conclude. O

If we compose the morphism !y,

5V

BY,. Coend(Bj; )

with the standard action associated to B}, , we obtain a morphism of w-operads

Ty

B%u End(onMu)

which expresses an action of the w-operad BR/Iu of reflexive w-magmas on the glob-
ular object B}, -Alg(0) in SET of reflexive (n,w)-magmas (n € N), and thus gives
a reflexive w-magma structure on reflexive (n,w)-magmas (n € N).

Remark 6.2. In [9] we use the same combinatorics for the C™ but with different
monads of arities: In fact we will use monads T" (for all n > 2) on Glob? of the strict
n-transformations instead, where Glob? is the product of the category of globular
sets with itself in CAT. If we denote (1,1) the terminal object in Glob?, then all
free strict higher transformations T"(1,1) will play the role of arities domain for
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these C™'3. It give us a similar coglobular object C*® for the higher transformations
which fits completely the control of coherences cells for its generated higher operads
for the strict and the weak higher transformations. We could have proposed this
different coglobular object for building this article, but the author believe that
higher structures involved here are more simple and also more easily described by
using the simpler coglobular object C'* with arities domain T(1) 4+ T(1), that we
use all along this article.

We suspect that the w-operad B of Batanin which algebras aré his definition
of weak w-categories is fractal (see [6] and [9]). We also suspect that the w-operad
B¢ ' which algebras are the strict w-categories is fractal as well (see [9]): Supris-
ingly, we see in [9] that these two questions of fractality, for the strict case and for
the weak case, share in fact the same level of difficulty.

7 Composition systems

In this section we describe a composition system in Batanin’s sense for the yellow
operad Coend(Bj,) described in Section 5, and for the green operad Coend(Bj;, )
described in Section 6. B}, or B*® for short, denotes the coglobular object B},
(see Section 5) or the coglobular object.B}, (seeSection 6) in T-CAT,. Also, we
denote by B™ IEIP B™ the 3-coloured w-operad in T-CAT, which is obtained by the

pushout of

Bn
in T-CAT,, where 0f =6y_...00, | and x§ = k' _;...kp ;. For integers 0 < p <n
we are going to define a morphism
iy
cm B™ U B"
Bp

3Instead of the other useful arities domain T(1) 4+ T(1) of this article. These arities
domain T"(1, 1) follow the spirit of constructions of weak higher transformations as in [4],
where coherences must be controlled by strict higher transformations.

In [6] and [9], we show that the w-operad of the strict w-categories can be presented
in a completely similar way as the Batanin’s operad B : It is the initial object in the
category of the w-operads which are strictly contractible and equipped with a composition
system. This also explain the similar notation for this operad with those of Batanin.
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in T-Grp, . which, depending on the universality property required, gives us a unique
morphism

B™ B™ U B™
Bp

in T-CAT., that we still call u;; because there is no risk of confusion. The universal

map C” 1. pn gives us such morphism p;. The key point in defining these
morphisms 4 is first to describe the different compositions oy for the strict higher
transformations. If 0 < p < n, we know that for two strict n-transformations o
and 7, we have

(o 0p 7)(a) == o(a) ;7 7(a)

whose operadic interpretation is given by the cell fy(,u;}:ll;o * 11 7). Then the

morphism

n—
p—

on $_ B |B_| B
in T-Gr,, . sends the principal cell 7 of C™ to the (n — 1)-cell fy(,u;fll; o *2:11 7) of
B" EI?IL B™, sends for each i € N the i-cell F; of C™ to the i-cell F; of B™ EI?IL B™, and

sends the i-cell G; of C™to thei-cell H; of B™ ]|3—|p B™. This morphism of T-Gr, .

is boundary preserving in an evident sense.
For p = 0 it is a bit more complex. We are in the situation of the pushout
diagram

KO
BY z B"
50 i1

B" — = B" Il B".
i Bo

First we describe the composition of for the strict case in order to find the cells
that we need in our w-operad. Consider the following diagram in w-Cat, the strict
w-category of strict w-categories:

/E\/E\

c D ¢
~ s
G K
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Here C, D and & are 0-cells (that is, strict w-categories), F', G, H and K are 1-cells
(that is, strict w-functors) and T and o are n-cells (that is, strict n-transformations).
This picture describes 7 and o with 2-cells, but the reader must see them as n-cells.
Also, 7 and o are such that: sf(c) = C, ti(o) = sj(r) = D, and tj(r) = €. If

a € C(0), then FO° TG0 is an (n — 1)-cell of D and it induces the following

commutative square of (n — 1)-cells in &:

HO(FO(a)) LT 1060 (a))

U(FO)\L iU(G’O)

KO(FO(G)) m KO(GO(G))

This gives

Il
Q

(005 7)(a) (Go(a)) 05" Hy1 (7(a))
1

n-1((a)) 9 o(Fo(a))

which gives the two principal (n — 1)-cells of B™ 5} B™ that we need:

[
=

Y g (05 GO g A (H )
and

Y (g AT ) xg T (03 FO)).

Then we have two choices of

n

cn—to . pnypn
BP

which send the principal cell 7 of C™ to y* 1 (ud ™t v(0; GO) 4~ v(H" 1 7)) or
to v (g (K1 1) x5~ (03 FO)), and for both cases which send, for each
i € N, thei-cell E* of C™ to the i-cell v(F;; H;) of B™ ,lg_lo B", and the i-cell G* of
C™ to the i-cell v(G;; K;) of B" g} B™. These morphisms of T-Gr), . are boundary
preserving in an evident sense.

5

Thanks to the universal property of n™, we obtain the following unique!® mor-
phisms of w-operads yy; and g (the dotted arrows).

15We say unique for ul because we choose one presentation of pf among the two
choices as above which are possible for ufy. However it is important to note that under
the hypothesis of contractibility of [9], these two choices will connect with a coherence
cell or will equalise, depending on the contractibility involved.
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B .= B" || B" B %= B" | B"
Br BO
nnT / nnT /
Hyp Ho
Cn Cn

1pn
With the identity morphisms of operads B"™ ——> B"

C% —“= Coend(B*)
Hp =t
Up ——>1pn
Thus, anticipating Sections 5 and 6, we have the following conclusion:

Proposition 7.1. The w-operads of coendomorphisms Coend(B};) and Coend(B}; ),
both have a composition system.
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