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Abstract. In this paper, we consider the forgetful functor from the category

LDcpo of local depos (respectively, Depo of decpos) to the category Pos of
posets (respectively, LDcpo of local dcpos), and study the existence of its
left and right adjoints. Moreover, we give the concrete forms of free and
cofree S-ldcpos over a local dcpo, where S is a local dcpo monoid. The main
results are: (1) The forgetful functor U : LDcpo — Pos has a left adjoint,
but does not have a right adjoint; (2) The inclusion functor I : Dcpo —
LDcpo has a left adjoint, but does not have a right adjoint; (3) The forgetful
functor U : LDcpo-S — LDcpo has both left and right adjoints; (4) If
(S,-,1) is a good ldcpo-monoid, then the forgetful functor U: LDcpo-S —
Pos-S has a left adjoint.

1 Introduction

Domain theory is a branch of mathematics about a special class of partially
ordered sets. It has essential applications in theoretical computer science
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as well as other areas of mathematics. A poset is called directed complete
(or a dcpo, for short), if every its directed subset has a supremum. In
particular, the category Dcpo of all dcpos with Scott continuous maps
plays an important role in domain Theory (see [5]). Moreover, the free
dcpo over a poset has been given in [3]. Unfortunately, the set of real
numbers R and the set of natural numbers N are not dcpos under their usual
orders. This restricts the realm of applications of domain theory. In [§],
Mislove introduced the notion of local depos (also were called cups by Erné
in [4]), that is, each upper bounded directed subset has a supremum, and
presented the local dcpo-completion of posets. Using the dcpo-completion
of posets, Zhao and Fan (see [10]) construct a new type of local dcpo-
completion of posets, which revises the one given by Mislove. It is proved
in [10] that the category LDcpo, of all local dcpos with Scott continuous
maps is the reflective subcategory of the category Posy of all posets with
Scott continuous maps. Clearly, the notion of local dcpos is a generalization
of the notion of dcpos. It can be easily seen that R and N are local dcpos.
So the notion of local dcpos extends the research scope of domain theory.
In [7], Mahmoudi and Moghbeli considered the free and cofree objects in the
category Dcpo-S of all S-dcpos; depos equipped with a compatible right
action of a depo-monoid S, with Scott continuous action-preserving maps.

Let LDcpo denote the category of all local depos with local dcpo maps.
In this paper, we consider the forgetful (respectively, inclusion) functor from
LDcpo (respectively, Dcpo) to the category Pos of posets (respectively,
LDcpo), and study the existence of its left and right adjoints. Motivated
by the work of Mahmoudi and Moghbeli, we also study the existence of the
free and cofree objects in the category LDcpo-S of all local dcpos equipped
with a compatible right action of a local depo monoid S. In fact, we consider
the following two squares of functors

U
Dcpo-S ! Dcpo
13 12
' U
LDcpo-§ 1 Lf)cpo
Uﬁ U5
y Y
Pos-S Pos
U7
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and study the existence of the left and right adjoints for these functors. It is
proved in [7] that the horizontal forgetful functor U; has both left and right
adjoints. Following the idea of dcpo-completions in [10], it follows from [11]
that the vertical inclusion functor Is has a left adjoint. Also, the horizontal
forgetful functor U; has both left and right adjoints, which has been found
in [2].

Here, we show that none of the vertical forgetful functors in the above
two squares has a right adjoint, and U; (i = 5,6) has a left adjoint (for the
existence of Ug-free object, we had to add a condition on S). We also prove
that the horizontal forgetful functor Uy has both left and right adjoints.

2 Preliminaries

We refer to [5] for lattice theory, to [1] for category theory, and to [2] for
S-posets.

If X is a subset of a poset P, then | X = {y € P | y < x for some
x € X} and dually, t X = {y € P |y > x for some x € X}. The subset X
is called a lower set (respectively, an upper set) if X =] X (respectively,
X =1 X). We denote | {z} and 1 {z} by | = and 1 z, respectively.

A nonempty subset D of a poset P is called directed, if for every a,b € D
there exists ¢ € D such that a,b < ¢. A subset A of a poset P is called
an ideal if A is a directed lower set. A poset P is called directed complete
(or a dcpo, for short), if for every directed subset D, the directed join \/ D
exists in P (or simply, \/ D exists).

A map f: P — @ between dcpos is Scott continuous if for each
directed subset D C P, \/ f(D) exists in @ and f(\/ D) = \/ f(D). Let
Dcpo denote the category of all dcpos with Scott continuous maps, and
let Pos denote the category of all posets with order-preserving (monotone)
maps. Obviously, Dcpo is a subcategory of Pos.

Definition 2.1. (see [8]) A poset P is called a local dcpo if every directed
subset of P with an upper bound in P has a least upper bound.

Remark 2.2. (1) A local dcpo is also called a cup by Erné in [4].

(2) Every dcpo is a local dcpo. But the converse may not be true. For
example, the set of natural numbers N is a local dcpo under the usual order,
but not a dcpo.
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(3) The cartesian product of a collection of local dcpos under the com-
ponentwise order is a local dcpo.
(4) Let P be a local dcpo. Then for every z € P, | z is a dcpo.

A po-monoid S is a monoid (S,-,1) with a partial order < which is
compatible with the monoid operation: for all s,¢,5,t € S, s < t, 5 <1t
imply s-3 < t-¢. Similarly, a depo-monoid is a monoid which is also a dcpo
whose binary operation is a Scott continuous map. Throughout this paper,
unless otherwise stated, 1 is always to be regard as the identity element,
whenever a monoid concept is mentioned in the context.

Definition 2.3. (see [2]) Let (S,-,1) be a monoid. A (right) S-act is a
set A equipped with an action * : A Xx S — A such that a x 1 = a and
ax(s-t)=(axs)xtforalla e Aands,tes.

Definition 2.4. (see [2]) A map f : (A,*) — (B, ) between S-acts is
called action-preserving if for all a € A,s € S, f(axs) = f(a) x s.

For a po-monoid S, a (right) S-poset is a poset A which is also an S-act
whose action * : A x S — A is a monotone map, where A x S is considered
as a poset with the componentwise order. Let Pos-S denote the category
of all S-posets with monotone action-preserving maps.

For a dcpo-monoid S, an S-depo is a dcpo A which is also an S-act whose
action * : A x S — A is a Scott continuous map. A map f: A — B
between S-dcpos is called an S-depo map if it is both Scott continuous and
action-preserving. Let Dcpo-S denote the category of all S-dcpos with
S-dcpo maps. Clearly, Dcpo-S is a subcategory of Pos-S.

3 Adjunctions among LDcpo, Dcpo, and Pos

Let P and QQ be local dcpos. A map f : P — @ is called a local decpo
map, if for every upper bounded directed subset D of P, \/ f(D) exists and
f(\/ D) =V f(D). Let LDcpo denote the category of all local dcpos with
local dcpo maps. If f: P — @ is a local dcpo map and x,y € P with
x <y, then | y is an upper bounded directed subset of P, and f(y) = f(\/ |
y) =V f(l y) > f(z). Thus every local dcpo map is monotone. Clearly,
LDcpo is a subcategory of Pos. One can show that a Scott continuous

map between dcpos is a local dcpo map. Thus Dcpo is a full subcategory
of LDcpo.
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Remark 3.1. Let f: P — Q be a monotone map between local dcpos. If
D is an upper bounded directed subset of P, then f(D) is an upper bounded
directed subset of Q).

Lemma 3.2. Let P, QQ, R be local dcpos, and f: PxQ — R a map of two
variables. Then f is a local dcpo map if and only if f is a local dcpo map
in each variable, that is, for alla € P, b€ Q, fo: Q — R (b — f(a,b))
and f: P — R (a — f(a,b)) are local dcpo maps.

Proof. Let D be an upper bounded directed subset of Q. Then {a} x D is
an upper bounded directed subset of P x @ and \/({a} x D) = (a,\/ D)
for all a € P. Since f is a local dcpo map, f, is a monotone map. By
Remark 3.1, f,(D) is an upper bounded directed subset of R, and thus
Ja(\VV D) =V 4ep fa(d). Similarly, for all b € @Q, one can prove that f; is a
local dcpo map.

Conversely, let D be an upper bounded directed subset of P x ). Since
P x @ is a local dcpo, \/ D exists and \/ D = (\/ D1,\/ D2), where Dy =
{p € P | there exists ¢ € @ such that (p,q) € D} and Dy = {q € Q | there
exists p € P such that (p,q) € D}. One can check that D; and Ds are
upper bounded directed subsets. Since f, and f; are local dcpo maps for all
a € PandbeQ, fisamonotone map. By Remark 3.1, f(D) is an upper
bounded directed subset. So f(\/ D) =\ cp f(d). Thus f is a local dcpo
map. O

Lemma 3.3. Let P be a poset. Then the set L(P), of all upper bounded
ideals of P, is a local dcpo under the inclusion order.

Proof. Let D be an upper bounded directed subset of L(P). Then there
exists F' € L(P) such that D C F for all D € D. Thus |JD C F. Since
F € L(P), there exists x € P such that F' C| x. Then |JD C| z. Obviously,
(UD is an ideal, Thus |JD € L(P). O

Proposition 3.4. Let f : P — X be a monotone map from a poset P to
a local depo X. Then | f(F) € L(X), for all F € L(P).

Proof. Let F € L(P). Then there exists ¢ € P such that F C| x. Thus
1L f(F) Cl f(} ) €l f(x), where the last inclusion is true because f is a
monotone map. Hence | f(F') is an upper bounded directed subset of X
and so | f(F') € L(X), as required. O
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Theorem 3.5. The forgetful functor Us : LDcpo— Pos has a left ad-
joint.

Proof. Let P be a poset. By Lemma 3.3, L(P) is a local dcpo. Define a
map 1 : P — L(P) as follows:

VaeP, na)=|a.

Obviously, n is monotone. Next, we shall prove that n is universal. To see
this, let X be a local depo and f : P — X a monotone map. Define a map
f: L(P) — X as follows:

VFeL(P), f(F)=V [f(F).

By Remark 3.1, f(F') is an upper bounded directed subset of X, and so
\ f(F) exists in X. Hence f is well-defined. Also it is clear to see that
f is monotone. To prove that f is a local dcpo map, let D be an upper
bounded directed subset of L(P). Then {f(D) | D € D} is an upper
bounded directed subset of X and \/D = [JD. Thus V f(IUD) exists.
Also, for all D € D, \/ f(D) < Vf(UD). Then V f(IUD) is an upper
bound of {\/ f(D) | D € D}. Suppose that b € X is an upper bound of
{V f(D) | D € D}. Then for all D € D, \/ f(D) <b. For all y € f(UD),
there exists d € |J D such that y = f(d). Since d € |JD, there exists D; € D
such that d € Dy. Then y = f(d) € f(D1), and thus y < \/ f(D1) < b.
One can conclude that \/ f(IUD) < b. Then \/pp(V f(D)) =V f(UD),
that is, f(UD) = Vpep [(D). So f is a local dcpo map. Also, for all
e P, Tn() = T(L 2) = VF(L &) = f(z). Thus fon = f. To prove
the uniqueness of f, let g : L(P) — X be a local dcpo map such that
f=gomn. Foralle L(P),{l z|x¢€ I} isan upper bounded directed
subset of L(P), and \/{} = |z € I'} = J,c; | = I. Since g is a local dcpo
map, we have

g =g( U La)=Vglla)=Vigon =V ) =T

zel zel zel zel

Thus g = f. Thus the forgetful functor Us : LDcpo— Pos has a left
adjoint. ]

In the following, we can see that the right adjoint of the forgetful functor
Us : LDcpo — Pos does not necessarily exist.
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Proposition 3.6. Let P = {0,1} be a poset with 0 < 1. Then the cofree
local depo over P does not exist.

Proof. Suppose that K(P) is the cofree local dcpo over P. Take ¢ : K(P) —
P to be the cofree monotone map. Then we can conclude that £ is injective.
Thus |K(P)| < 2. Define a map f : P(N) — P as follows:

0, if A is finite,
F(4) = { 1, otherwise.

Then f is monotone. By the universal property of cofree maps, there exists
a unique local depo map f : P(N) — K(P) with £o f = f. Now, we
consider two cases:

Case 1: When |K(P)| = 1, without loss of generality, assume that
K(P) = {a}. If £(a) = 0, then ¢(f(N)) = 0 and f(N) = 1. Thus o f # f.
But this is a contradiction. If £(a) = 1, then £(f({n})) = 1 and f({n}) =0
for all n € N. Thus £ o f # f, which is a contradiction.

Case 2: When |K(P)| = 2, without loss of generality, assume that
K(P) = {z,y}. Then the order on K(P) can be three cases.

(1) The order on K (P) is discrete. Since £ is injective, we can conclude
that &(x) = 0, &(y) = L or £() = 1, £(y) = 0. I £(z) = 0 and £(y) =
1, whenever f(N) = =z, then 0 = £{(f(N)) = f(N) = 1. But this is a
contradiction; whenever f(N) = y, then f({n}) = y for all n € N. Thus
1 =¢(f({n})) = f({n}) = 0, which is a contradiction. Therefore, £(x) =0
and £(y) = 1 do not hold. Similarly, we can prove that {(z) = 1 and
¢(y) = 0 do not hold.

(2) If z < y, then &(z) = 0, £(y) = 1. Whenever f(N) = z, then
0 = &(f(N)) = f(N) = 1, which is a contradiction; whenever f(N) = y, since
f is a local depo map, we can conclude that y = f(N) = f(J{F | F is a
finite subset of N}) = \/{f(F) | F is a finite subset of N}. Then there exists
a finite subset F' of N such that f(F) = y. Thus 1 = £(f(F)) = f(F) =0,
which is a contradiction.

(3) The case y < z is proved similar to (2).

Therefore, the cofree dcpo over P does not exist. O

Corollary 3.7. The forgetful functor Us : LDcpo — Pos does not have
a right adjoint.
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Let P be a poset. A subset A of P is called D-closed if for any directed
subset D C A, if \/ D exists then \/ D € A. The set of all D-closed subsets
of P form the set of all closed sets of a topology on P, which will be called
the D-topology (see [6, 10]). A subset U of P is called Scott closed if it is a
lower set and D-closed. The set of all Scott closed sets of P is denoted by
L'(P).

Now, we consider the left adjoint of the inclusion functor I : Dcpo —
LDcpo. Let P be a local dcpo, and let ¥(P) = {] = | z € P}. Define a
map 1 : P — clg(V(P)) by n(z) =] x, where cly(¥(P)) is the closure of
U(P) in I'(P) with respect to the D-topology. Then cly(¥(P)) is a dcpo
and 7 is universal (see Theorem 1 in [11]).

Proposition 3.8. Dcpo is a full reflective subcategory of LDcpo.

In the following, we see that the right adjoint of the inclusion functor
I : Dcpo — LDcpo does not necessarily exist.

Example 3.9. We consider the local dcpo N. Assume that the inclusion
functor Iy : Dcpo — LDcpo has the right adjoint. Then there exist the
depo K(N) and the universal mapping ¢ : K(N) — N. Obviously, ¢ is
injective. Let @ = N@ {oo}. Then @ is a dcpo. Next, we shall consider the
following two cases.

Case 1: If {(K(N)) # N, then there exists ng € N such that ng ¢
¢§(K(N)). Define a map f : @ — N by f(x) = nyg, for all x € Q. Then
f is a local dcpo map. Since ¢ is universal, there exists a unique Scott
continuous map f : Q — K(N) with £ o f = f. Since ng ¢ £(K(N)), we
can conclude that £(f(z)) # no for all # € Q. Thus £o f # f. But this is a
contradiction.

Case 2: If {(K(N)) = N. Assume that K(N) is a directed set. Then
\V K(N) exists. Since £ is a local dcpo map, we have that £(\/ K(N)) =
VE(K(N)) = VN, but \/N does not exist, which is a contradiction. So
K(N) is not a directed set. Thus there exist z1, xo € K(N) such that
z1 % d or o £ d for all d € K(N). Therefore, z; and x5 are incomparable.
Let £(x1) = n; and &(x2) = na. Since N is a chain, without loss of generality,
we assume that ny <y no. Define a map f : Q — N as follows:

z, r < na,
no, otherwise.

)=
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Thus f is a local dcpo map. Since £ is universal, there exists a unique Scott
continuous map f : Q@ — K(N) with £ o f = f. Therefore, £(f(n1)) =
f(n1) =n1 = ¢(x1) and (f(n2)) = f(n2) = n2 = §(x2). Since ¢ is injective,
we have f(n1) = x1 and f(n2) = x3. Since ny <y mg2, we can conclude
that 21 < xo. This contradicts the fact that 1 and x9 are incomparable.
Therefore, the inclusion functor I» : Dcpo —> LDcpo does not have a

right adjoint.

Proposition 3.10. Dcpo is not a coreflective subcategory of LDcpo.

4 Free S-ldcpo and cofree S-ldcpo over a local dcpo

In this section, we consider the forgetful functor Uy, and prove that Uy has
both a left adjoint and a right adjoint.

Definition 4.1. A monoid (S5,-,1) is called a local dcpo monoid (or an
ldcpo-monoid, for short) if it satisfies the following conditions:

(1) S is a local dcpo;

(2) For each a € S and each upper bounded directed subset D C S,

a-(\/D)=\/(a-d)and (\/D)-a=\/(d-a).

deD deD

Definition 4.2. Let (S,-,1) be an ldcpo-monoid. An S-ldecpo is a pair
(A, e) such that

(1) A is alocal depo;

(2) (A, e)is an S-act;

(3) The action e : A x S — A is a local dcpo map, where A x S is
considered with the componentwise order.

Remark 4.3. Every S-dcpo is an S-ldcpo.

A homomorphism f : (A eq) — (B,ep) between S-ldcpos is a lo-
cal depo map such that f(aes s) = f(a) ep s for alla € A and s € S.
Let LDcpo-S denote the category of all S-ldcpos with homomorphisms.
Obviously, Dcpo-S is a subcategory of LDcpo-S.
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Definition 4.4. Let (5,-,1) be an ldcpo-monoid and P a local dcpo. A
free S-ldepo over a local depo P is a pair (F,7), where F is an S-ldcpo
and 7 : P — F' is a local dcpo map with the universal property that for
each S-ldcpo A and a local decpo map f : P — A there exists a unique
homomorphism f : F — A such that for1 = f.

Theorem 4.5. Let (S,-,1) be an ldcpo-monoid and P a local depo. Then
(P x S,n) is the free S-ldcpo over P, where n: P — P x S is defined as
follows:

VpeP np=(l).

Proof. By Remark 2.2(3), P x S is a local depo. Define a map * : (P x S) X
S — P x S as follows:

Vp,s)e PxS, tes, (p,s)xt=(p,s-1).

One can prove that (P x S,x) is an S-ldcpo. Recalling that P x S is the
free S-poset over the poset P with the universal map n: P — P x .S, given
by z — (x,1) (see [2]), we show that 7 is a local dcpo map. Let D be an
upper bounded directed subset of P. Obviously, 7 is a monotone map, we
can conclude that n(D) is an upper bounded directed subset of P x S. Thus

n(\/ D) =(\/ D,1) = \/ n(d).

deD

To prove the universal property of 7, let (B,x) be an S-ldcpo and f :
P — B a local dcpo map. Then the map f : P x S — B defined
by f((p,s)) = f(p) * s, which is the unique action-preserving map with
fon=f (see [2]), is a local dcpo map. By Lemma 3.2, it suffices to show
that for all s € S and p € P, f, and fp are local decpo maps. Let D be an

upper bounded directed subset of P. Clearly, f, is a monotone map. Thus
fs(D) is an upper bounded directed subset, and so one can conclude that

L D) =T/ D,s) = 1\ D) s = (\) (@) «s = \/ T.(a).

deD deD

Therefore, f, is a local dcpo map. Similarly, we can prove that 7p is a local
dcpo map. O
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Corollary 4.6. The forgetful functor Uy : LDcpo-S — LDcpo has a left
adjoint.

Definition 4.7. Let (S,-,1) be an ldcpo-monoid and P a local dcpo. A
cofree S-ldcpo over a local depo P is a pair (K, &), where K is an S-1dcpo
and £ : K — P is a local dcpo map with the universal property that for
each S-ldcpo A and a local dcpo map f : A — P there exists a unique
homomorphism f : A — K such that o f = f.

Lemma 4.8. Let (S,-,1) be an ldcpo-monoid and P a local dcpo. Then
P s a local depo under the pointwise order, where PYS) denotes the set
of all local dcpo maps from S to P.

Proof. Let {f; | i € I} be an upper bounded directed subset of P(5). For
all s € S, we have that {f;(s) | i € I} is an upper bounded directed subset
of P. Since P is a local dcpo, \/,¢; fi(s) exists. Take g(s) = \/,; fi(s) for
all s € S. One can show that g € P(%) and Vicr fi = g. Therefore, P g
a local dcpo. O

Lemma 4.9. Let (S,-,1) be an ldecpo-monoid and P a local dcpo. Define
an action « : P x § — P as follows:

VEePY s tes, (fxs)(t)=f(s-t).
Then (P9, %) is an S-ldcpo.

Proof. For all f € PO s e S, fxs € PO, In fact, let T be an upper
bounded directed subset of S. Then \/ T exists, and thus

(Fx) V1) =fis- (V1) =1(\ (5- )

a€eT

— \/ f(s-a)= \/((f*s)(a))

acT a€eT

Next, we shall prove that (P() ) is an S-ldcpo. Since for all f € P(%) and
te S, (f+1)(t) = f(1-t) = f(t), we have that f«1 = f. For all f € P()
and s,t € S, we shall prove that (f xs)xt = fx(s-t). Forall a € S,
((fxs)xt)(a) = (frs)(t-a)=f(s-(t-a)) = f((s-t) a)=(f*(s-1))(a).

Thus (f xs)xt = fx(s-t). Now, we show that the action is a local dcpo
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map. Applying Lemma 3.2, let {f; | i € I} be an upper bounded directed
subset of P®)| st € S. Then

((V)*s)®) = (V)6

iel i€l
- e
= V(fixs)0)
= (V(ix9)@.
il

Thus (viel fi> x5 = \/;c;(fixs). Now, let T' be an upper bounded directed
subset of S and f € P(%). Moreover, for all a € S, we have that

(F* V@ = (V@) =\ fit-a) = (\ (f*D)(a).

teT teT teT
Thus fx (V1) = Ver(f xt). Therefore, (P9 %) is an S-ldcpo. O

Theorem 4.10. Let (S,-,1) be an ldcpo-monoid and P a local dcpo. Then
(P9 €) is a cofree S-ldcpo over P, where & : P —s P is defined as
follows:

v feP9 &(f) = fQ).

Proof. By Lemma 4.9, we have that (P() x) is an S-ldepo. Recalling that
P(5) is the cofree S-poset over the poset P with the universal map ¢ (see [2]).
One can prove that £ is a local depo map. Next, we shall prove the universal
property of £. Let (A,<) be an S-ldcpo and f: A — P a local dcpo map.
Define a map f : A — P ags follows:

VaecAseS, fla)(s) = flaos).

Then f is the unique action-preserving map with o f = f (see [2]). Finally,
we prove that f is a local dcpo map. Let T be an upper bounded directed
subset of S. Then for all a € A, {aob| b € T} is an upper bounded directed
subset of A, and thus

Fa(\/ 1) = flao (VD) = £V (@ob) = \/ flaoh) = \/ F(@)®).

beT beT beT
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Therefore, f(a) € P®). Let D be an upper bounded directed subset of A.
Then for all t € S,

FN/ D)®) = £\ Dyot) = £\ (dot)) = \/ Fldoty = (\/ (@) (@),

deD deD deD

Thus f(\/ D) = Vyep f(d). Therefore, (PY) ) is a cofree S-ldcpo over
P. O

Corollary 4.11. The forgetful functor Uy : LDcpo-S— LDcpo has a
right adjoint.

5 Adjoint Relations for LDcpo-S

In this section, we consider the forgetful functor Ug, and show that if S
satisfied a condition which we call “good”, then Uy has a left adjoint. Also
we show that Us does not have a right adjoint.

Definition 5.1. Let P be a local dcpo, and D be an upper bounded directed
subset of P. If \/ D € D, then we say that P is good.

Remark 5.2. A local dcpo P is good if and only if every upper bounded
directed subset has a top element.

Definition 5.3. (see [9]) Let P be a poset and z,y € P. We write z <; y
and say that x universally approximates y if for any directed set D and any
upper bound z of D with y <\/, D (\/, D means that D has a supremum
in | z), there is d € D such that = < d.

Proposition 5.4. Let P be a local dcpo. Then P is good if and only if
r <L x forallz € P.

Proof. Let B be a directed subset of P, and d be an upper bound of B with
x <\, B. Since P is a local dcpo, we have that « <\/ B =\/, B. Since P
is good, \/; B € B. Thus =z < .

Conversely, let D be an upper bounded directed subset of P. Then there
exists x € P such that D C| x. Since P is a local dcpo, \/ D exists and
VD <z Then \/,D = \/D. Since VD <; \/ D =/, D, there exists
d € D such that \/ D < d. Then \/ D = d, and thus \/ D € D. O
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Proposition 5.5. Let (S, -, 1) be a good ldcpo-monoid and (P, *) an S-poset.
Define an action @ : L(P) x S — L(P) as follows:

VFeL(P), s€S, Fos=|(Fxs),
where F'xs ={axs|a&c F}. Then (L(P),®) is an S-ldcpo.

Proof. By Lemma 3.3, we have that L(P) is a local dcpo. For all F' € L(P),
s,t € S, we have that

Fol=|l{a*xl|laceF}=l{a|la€eF}=lF=F
and
F (s t) =L (Fx(s-1) = (Fxs)#) =L (L (Fx5) #8) = (Fos) 0.

Now, we show that the action is a local dcpo map. Applying Lemma 3.2,
let D be an upper bounded directed subset of L(P). By the given action,

we have that
WVD)eos = (UD)os
= L((U D)xs)

DeD

~ (U D=9

DeD

— U L{(Dxs)

DeD
— V (Dos).
DeD

Now, let T' be an upper bounded directed subset of S and F' € L(P). Since
S is good, VT € T. Then

FONT)=L(F«(NVT) =V L({Fxt)=V (Fol).

teT teT
Then (L(P),®) is an S-1dcpo. O

Theorem 5.6. Let (S,-,1) be a good ldcpo-monoid. For a given S-poset
(P, %), the free S-ldcpo over P is (L(P),®).

Proof. By Proposition 5.5, we have that (L(P),®) is an S-ldcpo. By the
proof of Theorem 3.5, the map 7, defined in Theorem 3.5, is an S-poset
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map. Finally, we show that 7 is universal. Let (B,e) be an S-ldcpo and
f: P —> B be an S-poset map. By the proof of Theorem 3.5, there exists
a unique local depo map f : L(P) — B such that fo |= f, where f is
defined by f(F) =\ f(F). It suffices to prove that f is action-preserving.
For all F' € L(P) and s € S, we have that

f(Fos) = (F xs)) \/f F*s)):\/f(F*s):?(F)os.

Then f is a homomorphism, and thus 7 is universal. O

Corollary 5.7. If (S,-,1) is a good ldcpo-monoid, then the forgetful functor
Us : LDcpo-S —Pos-S has a left adjoint.

Finally, by taking S = {1}, and applying Corollary 3.7 and Proposition
3.10, we have the following Propositions.

Proposition 5.8. The forgetful functor Ug : LDcpo-S — Pos-S does
not have a right adjoint for a general ldcpo-monoid S.

Proposition 5.9. Dcpo-S is not a coreflective subcategory of LDcpo-S
for a general depo-monoid S.

6 Conclusions

Applying the investigations done in the above sections, we get:
(1) The free local dcpo over a poset P is L(P).
(2) The free S-ldcpo over a local dcpo P is P x S.
(3 ) If S is a good ldcpo-monoid, the free S-ldcpo over an S-poset P is

10) The cofree S- dcpo over a local depo P does not necessarlly exist.
11) Dcpo is a full reflective subcategory of LDcpo.
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(12) Dcpo is not a coreflective subcategory of LDcpo.

(13) Dcpo-S is not a coreflective subcategory of LDcpo-S for a general
dcpo-monoid S.

However, there are several basic questions to which we possess no an-
swers. For instance, it is not known whether the inclusion functor I3 :
Dcpo-S — LDcpo-S has a left adjoint. Also, for any ldcpo-monoid S,
whether the forgetful functors Ug : LDcpo-S — Pos-S has a left adjoint.
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