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Abstract. In this paper, we consider the forgetful functor from the category
LDcpo of local dcpos (respectively, Dcpo of dcpos) to the category Pos of
posets (respectively, LDcpo of local dcpos), and study the existence of its
left and right adjoints. Moreover, we give the concrete forms of free and
cofree S-ldcpos over a local dcpo, where S is a local dcpo monoid. The main
results are: (1) The forgetful functor U : LDcpo −→ Pos has a left adjoint,
but does not have a right adjoint; (2) The inclusion functor I : Dcpo −→
LDcpo has a left adjoint, but does not have a right adjoint; (3) The forgetful
functor U : LDcpo-S −→ LDcpo has both left and right adjoints; (4) If
(S, ·, 1) is a good ldcpo-monoid, then the forgetful functor U : LDcpo-S −→
Pos-S has a left adjoint.

1 Introduction

Domain theory is a branch of mathematics about a special class of partially
ordered sets. It has essential applications in theoretical computer science
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as well as other areas of mathematics. A poset is called directed complete
(or a dcpo, for short), if every its directed subset has a supremum. In
particular, the category Dcpo of all dcpos with Scott continuous maps
plays an important role in domain Theory (see [5]). Moreover, the free
dcpo over a poset has been given in [3]. Unfortunately, the set of real
numbers R and the set of natural numbers N are not dcpos under their usual
orders. This restricts the realm of applications of domain theory. In [8],
Mislove introduced the notion of local dcpos (also were called cups by Erné
in [4]), that is, each upper bounded directed subset has a supremum, and
presented the local dcpo-completion of posets. Using the dcpo-completion
of posets, Zhao and Fan (see [10]) construct a new type of local dcpo-
completion of posets, which revises the one given by Mislove. It is proved
in [10] that the category LDcpod of all local dcpos with Scott continuous
maps is the reflective subcategory of the category Posd of all posets with
Scott continuous maps. Clearly, the notion of local dcpos is a generalization
of the notion of dcpos. It can be easily seen that R and N are local dcpos.
So the notion of local dcpos extends the research scope of domain theory.
In [7], Mahmoudi and Moghbeli considered the free and cofree objects in the
category Dcpo-S of all S-dcpos; dcpos equipped with a compatible right
action of a dcpo-monoid S, with Scott continuous action-preserving maps.

Let LDcpo denote the category of all local dcpos with local dcpo maps.
In this paper, we consider the forgetful (respectively, inclusion) functor from
LDcpo (respectively, Dcpo) to the category Pos of posets (respectively,
LDcpo), and study the existence of its left and right adjoints. Motivated
by the work of Mahmoudi and Moghbeli, we also study the existence of the
free and cofree objects in the category LDcpo-S of all local dcpos equipped
with a compatible right action of a local dcpo monoid S. In fact, we consider
the following two squares of functors

Dcpo-S

LDcpo-S

I3

Dcpo
U1

U4

I2

LDcpo
?

-

?
-

Pos-S Pos
?? -

U5U6

U7
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and study the existence of the left and right adjoints for these functors. It is
proved in [7] that the horizontal forgetful functor U1 has both left and right
adjoints. Following the idea of dcpo-completions in [10], it follows from [11]
that the vertical inclusion functor I2 has a left adjoint. Also, the horizontal
forgetful functor U7 has both left and right adjoints, which has been found
in [2].

Here, we show that none of the vertical forgetful functors in the above
two squares has a right adjoint, and Ui (i = 5, 6) has a left adjoint (for the
existence of U6-free object, we had to add a condition on S). We also prove
that the horizontal forgetful functor U4 has both left and right adjoints.

2 Preliminaries

We refer to [5] for lattice theory, to [1] for category theory, and to [2] for
S-posets.

If X is a subset of a poset P , then ↓ X = {y ∈ P | y ≤ x for some
x ∈ X} and dually, ↑ X = {y ∈ P | y ≥ x for some x ∈ X}. The subset X
is called a lower set (respectively, an upper set) if X =↓ X (respectively,
X =↑ X). We denote ↓ {x} and ↑ {x} by ↓ x and ↑ x, respectively.

A nonempty subset D of a poset P is called directed, if for every a, b ∈ D
there exists c ∈ D such that a, b ≤ c. A subset A of a poset P is called
an ideal if A is a directed lower set. A poset P is called directed complete
(or a dcpo, for short), if for every directed subset D, the directed join

∨
D

exists in P (or simply,
∨
D exists).

A map f : P −→ Q between dcpos is Scott continuous if for each
directed subset D ⊆ P ,

∨
f(D) exists in Q and f(

∨
D) =

∨
f(D). Let

Dcpo denote the category of all dcpos with Scott continuous maps, and
let Pos denote the category of all posets with order-preserving (monotone)
maps. Obviously, Dcpo is a subcategory of Pos.

Definition 2.1. (see [8]) A poset P is called a local dcpo if every directed
subset of P with an upper bound in P has a least upper bound.

Remark 2.2. (1) A local dcpo is also called a cup by Erné in [4].

(2) Every dcpo is a local dcpo. But the converse may not be true. For
example, the set of natural numbers N is a local dcpo under the usual order,
but not a dcpo.

Archive of SID

www.SID.ir

http://www.sid.ir


92 B. Zhao, J. Lu, and K. Wang

(3) The cartesian product of a collection of local dcpos under the com-
ponentwise order is a local dcpo.

(4) Let P be a local dcpo. Then for every x ∈ P , ↓ x is a dcpo.

A po-monoid S is a monoid (S, ·, 1) with a partial order ≤ which is
compatible with the monoid operation: for all s, t, s, t ∈ S, s ≤ t, s ≤ t
imply s · s ≤ t · t. Similarly, a dcpo-monoid is a monoid which is also a dcpo
whose binary operation is a Scott continuous map. Throughout this paper,
unless otherwise stated, 1 is always to be regard as the identity element,
whenever a monoid concept is mentioned in the context.

Definition 2.3. (see [2]) Let (S, ·, 1) be a monoid. A (right) S-act is a
set A equipped with an action ∗ : A × S −→ A such that a ∗ 1 = a and
a ∗ (s · t) = (a ∗ s) ∗ t for all a ∈ A and s, t ∈ S.

Definition 2.4. (see [2]) A map f : (A, ∗) −→ (B, ⋆) between S-acts is
called action-preserving if for all a ∈ A, s ∈ S, f(a ∗ s) = f(a) ⋆ s.

For a po-monoid S, a (right) S-poset is a poset A which is also an S-act
whose action ∗ : A×S −→ A is a monotone map, where A×S is considered
as a poset with the componentwise order. Let Pos-S denote the category
of all S-posets with monotone action-preserving maps.

For a dcpo-monoid S, an S-dcpo is a dcpo A which is also an S-act whose
action ∗ : A × S −→ A is a Scott continuous map. A map f : A −→ B
between S-dcpos is called an S-dcpo map if it is both Scott continuous and
action-preserving. Let Dcpo-S denote the category of all S-dcpos with
S-dcpo maps. Clearly, Dcpo-S is a subcategory of Pos-S.

3 Adjunctions among LDcpo, Dcpo, and Pos

Let P and Q be local dcpos. A map f : P −→ Q is called a local dcpo
map, if for every upper bounded directed subset D of P ,

∨
f(D) exists and

f(
∨
D) =

∨
f(D). Let LDcpo denote the category of all local dcpos with

local dcpo maps. If f : P −→ Q is a local dcpo map and x, y ∈ P with
x ≤ y, then ↓ y is an upper bounded directed subset of P , and f(y) = f(

∨ ↓
y) =

∨
f(↓ y) ≥ f(x). Thus every local dcpo map is monotone. Clearly,

LDcpo is a subcategory of Pos. One can show that a Scott continuous
map between dcpos is a local dcpo map. Thus Dcpo is a full subcategory
of LDcpo.
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Remark 3.1. Let f : P −→ Q be a monotone map between local dcpos. If
D is an upper bounded directed subset of P , then f(D) is an upper bounded
directed subset of Q.

Lemma 3.2. Let P , Q, R be local dcpos, and f : P ×Q −→ R a map of two
variables. Then f is a local dcpo map if and only if f is a local dcpo map
in each variable, that is, for all a ∈ P , b ∈ Q, fa : Q −→ R (b 7→ f(a, b))
and fb : P −→ R (a 7→ f(a, b)) are local dcpo maps.

Proof. Let D be an upper bounded directed subset of Q. Then {a} ×D is
an upper bounded directed subset of P × Q and

∨
({a} × D) = (a,

∨
D)

for all a ∈ P . Since f is a local dcpo map, fa is a monotone map. By
Remark 3.1, fa(D) is an upper bounded directed subset of R, and thus
fa(

∨
D) =

∨
d∈D fa(d). Similarly, for all b ∈ Q, one can prove that fb is a

local dcpo map.
Conversely, let D be an upper bounded directed subset of P ×Q. Since

P × Q is a local dcpo,
∨
D exists and

∨
D = (

∨
D1,

∨
D2), where D1 =

{p ∈ P | there exists q ∈ Q such that (p, q) ∈ D} and D2 = {q ∈ Q | there
exists p ∈ P such that (p, q) ∈ D}. One can check that D1 and D2 are
upper bounded directed subsets. Since fa and fb are local dcpo maps for all
a ∈ P and b ∈ Q, f is a monotone map. By Remark 3.1, f(D) is an upper
bounded directed subset. So f(

∨
D) =

∨
d∈D f(d). Thus f is a local dcpo

map.

Lemma 3.3. Let P be a poset. Then the set L(P ), of all upper bounded
ideals of P , is a local dcpo under the inclusion order.

Proof. Let D be an upper bounded directed subset of L(P ). Then there
exists F ∈ L(P ) such that D ⊆ F for all D ∈ D. Thus

∪D ⊆ F . Since
F ∈ L(P ), there exists x ∈ P such that F ⊆↓ x. Then

∪D ⊆↓ x. Obviously,∪D is an ideal, Thus
∪D ∈ L(P ).

Proposition 3.4. Let f : P −→ X be a monotone map from a poset P to
a local dcpo X. Then ↓ f(F ) ∈ L(X), for all F ∈ L(P ).

Proof. Let F ∈ L(P ). Then there exists x ∈ P such that F ⊆↓ x. Thus
↓ f(F ) ⊆↓ f(↓ x) ⊆↓ f(x), where the last inclusion is true because f is a
monotone map. Hence ↓ f(F ) is an upper bounded directed subset of X
and so ↓ f(F ) ∈ L(X), as required.
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Theorem 3.5. The forgetful functor U5 : LDcpo−→ Pos has a left ad-
joint.

Proof. Let P be a poset. By Lemma 3.3, L(P ) is a local dcpo. Define a
map η : P −→ L(P ) as follows:

∀ a ∈ P, η(a) =↓ a.

Obviously, η is monotone. Next, we shall prove that η is universal. To see
this, let X be a local dcpo and f : P −→ X a monotone map. Define a map
f : L(P ) −→ X as follows:

∀ F ∈ L(P ), f(F ) =
∨
f(F ).

By Remark 3.1, f(F ) is an upper bounded directed subset of X, and so∨
f(F ) exists in X. Hence f is well-defined. Also it is clear to see that

f is monotone. To prove that f is a local dcpo map, let D be an upper
bounded directed subset of L(P ). Then {f(D) | D ∈ D} is an upper
bounded directed subset of X and

∨D =
∪D. Thus

∨
f(

∪D) exists.
Also, for all D ∈ D,

∨
f(D) ≤ ∨

f(
∪D). Then

∨
f(

∪D) is an upper
bound of {∨ f(D) | D ∈ D}. Suppose that b ∈ X is an upper bound of
{∨ f(D) | D ∈ D}. Then for all D ∈ D,

∨
f(D) ≤ b. For all y ∈ f(

∪D),
there exists d ∈ ∪D such that y = f(d). Since d ∈ ∪D, there exists D1 ∈ D
such that d ∈ D1. Then y = f(d) ∈ f(D1), and thus y ≤ ∨

f(D1) ≤ b.
One can conclude that

∨
f(

∪D) ≤ b. Then
∨
D∈D(

∨
f(D)) =

∨
f(

∪D),
that is, f(

∪D) =
∨
D∈D f(D). So f is a local dcpo map. Also, for all

x ∈ P , f(η(x)) = f(↓ x) =
∨
f(↓ x) = f(x). Thus f ◦ η = f . To prove

the uniqueness of f , let g : L(P ) −→ X be a local dcpo map such that
f = g ◦ η. For all I ∈ L(P ), {↓ x | x ∈ I} is an upper bounded directed
subset of L(P ), and

∨{↓ x | x ∈ I} =
∪
x∈I ↓ x = I. Since g is a local dcpo

map, we have

g(I) = g
( ∪
x∈I
↓ x

)
=

∨
x∈I

g(↓ x) =
∨
x∈I

(g ◦ η)(x) =
∨
x∈I

f(x) = f(I).

Thus g = f . Thus the forgetful functor U5 : LDcpo−→ Pos has a left
adjoint.

In the following, we can see that the right adjoint of the forgetful functor
U5 : LDcpo −→ Pos does not necessarily exist.

Archive of SID

www.SID.ir

http://www.sid.ir


Adjoint relations for the category of local dcpos 95

Proposition 3.6. Let P = {0, 1} be a poset with 0 < 1. Then the cofree
local dcpo over P does not exist.

Proof. Suppose thatK(P ) is the cofree local dcpo over P . Take ξ : K(P ) −→
P to be the cofree monotone map. Then we can conclude that ξ is injective.
Thus |K(P )| ≤ 2. Define a map f : P(N) −→ P as follows:

f(A) =

{
0, if A is finite,
1, otherwise.

Then f is monotone. By the universal property of cofree maps, there exists
a unique local dcpo map f : P(N) −→ K(P ) with ξ ◦ f = f . Now, we
consider two cases:

Case 1: When |K(P )| = 1, without loss of generality, assume that
K(P ) = {a}. If ξ(a) = 0, then ξ(f(N)) = 0 and f(N) = 1. Thus ξ ◦ f ̸= f .
But this is a contradiction. If ξ(a) = 1, then ξ(f({n})) = 1 and f({n}) = 0
for all n ∈ N. Thus ξ ◦ f ̸= f , which is a contradiction.

Case 2: When |K(P )| = 2, without loss of generality, assume that
K(P ) = {x, y}. Then the order on K(P ) can be three cases.

(1) The order onK(P ) is discrete. Since ξ is injective, we can conclude
that ξ(x) = 0, ξ(y) = 1 or ξ(x) = 1, ξ(y) = 0. If ξ(x) = 0 and ξ(y) =
1, whenever f(N) = x, then 0 = ξ(f(N)) = f(N) = 1. But this is a
contradiction; whenever f(N) = y, then f({n}) = y for all n ∈ N. Thus
1 = ξ(f({n})) = f({n}) = 0, which is a contradiction. Therefore, ξ(x) = 0
and ξ(y) = 1 do not hold. Similarly, we can prove that ξ(x) = 1 and
ξ(y) = 0 do not hold.

(2) If x ≤ y, then ξ(x) = 0, ξ(y) = 1. Whenever f(N) = x, then
0 = ξ(f(N)) = f(N) = 1, which is a contradiction; whenever f(N) = y, since
f is a local dcpo map, we can conclude that y = f(N) = f(

∪{F | F is a
finite subset of N}) =

∨{f(F ) | F is a finite subset of N}. Then there exists
a finite subset F of N such that f(F ) = y. Thus 1 = ξ(f(F )) = f(F ) = 0,
which is a contradiction.

(3) The case y ≤ x is proved similar to (2).

Therefore, the cofree dcpo over P does not exist.

Corollary 3.7. The forgetful functor U5 : LDcpo −→ Pos does not have
a right adjoint.
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Let P be a poset. A subset A of P is called D-closed if for any directed
subset D ⊆ A, if

∨
D exists then

∨
D ∈ A. The set of all D-closed subsets

of P form the set of all closed sets of a topology on P , which will be called
the D-topology (see [6, 10]). A subset U of P is called Scott closed if it is a
lower set and D-closed. The set of all Scott closed sets of P is denoted by
Γ(P ).

Now, we consider the left adjoint of the inclusion functor I2 : Dcpo −→
LDcpo. Let P be a local dcpo, and let Ψ(P ) = {↓ x | x ∈ P}. Define a
map η : P −→ cld(Ψ(P )) by η(x) =↓ x, where cld(Ψ(P )) is the closure of
Ψ(P ) in Γ(P ) with respect to the D-topology. Then cld(Ψ(P )) is a dcpo
and η is universal (see Theorem 1 in [11]).

Proposition 3.8. Dcpo is a full reflective subcategory of LDcpo.

In the following, we see that the right adjoint of the inclusion functor
I2 : Dcpo −→ LDcpo does not necessarily exist.

Example 3.9. We consider the local dcpo N. Assume that the inclusion
functor I2 : Dcpo −→ LDcpo has the right adjoint. Then there exist the
dcpo K(N) and the universal mapping ξ : K(N) −→ N. Obviously, ξ is
injective. Let Q = N⊕{∞}. Then Q is a dcpo. Next, we shall consider the
following two cases.

Case 1: If ξ(K(N)) ̸= N, then there exists n0 ∈ N such that n0 /∈
ξ(K(N)). Define a map f : Q −→ N by f(x) = n0, for all x ∈ Q. Then
f is a local dcpo map. Since ξ is universal, there exists a unique Scott
continuous map f : Q −→ K(N) with ξ ◦ f = f . Since n0 /∈ ξ(K(N)), we
can conclude that ξ(f(x)) ̸= n0 for all x ∈ Q. Thus ξ ◦ f ̸= f . But this is a
contradiction.

Case 2: If ξ(K(N)) = N. Assume that K(N) is a directed set. Then∨
K(N) exists. Since ξ is a local dcpo map, we have that ξ(

∨
K(N)) =∨

ξ(K(N)) =
∨

N, but
∨

N does not exist, which is a contradiction. So
K(N) is not a directed set. Thus there exist x1, x2 ∈ K(N) such that
x1 ≰ d or x2 ≰ d for all d ∈ K(N). Therefore, x1 and x2 are incomparable.
Let ξ(x1) = n1 and ξ(x2) = n2. Since N is a chain, without loss of generality,
we assume that n1 <N n2. Define a map f : Q −→ N as follows:

f(x) =

{
x, x ≤ n2,
n2, otherwise.
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Thus f is a local dcpo map. Since ξ is universal, there exists a unique Scott
continuous map f : Q −→ K(N) with ξ ◦ f = f . Therefore, ξ(f(n1)) =
f(n1) = n1 = ξ(x1) and ξ(f(n2)) = f(n2) = n2 = ξ(x2). Since ξ is injective,
we have f(n1) = x1 and f(n2) = x2. Since n1 <N n2, we can conclude
that x1 ≤ x2. This contradicts the fact that x1 and x2 are incomparable.
Therefore, the inclusion functor I2 : Dcpo −→ LDcpo does not have a
right adjoint.

Proposition 3.10. Dcpo is not a coreflective subcategory of LDcpo.

4 Free S-ldcpo and cofree S-ldcpo over a local dcpo

In this section, we consider the forgetful functor U4, and prove that U4 has
both a left adjoint and a right adjoint.

Definition 4.1. A monoid (S, ·, 1) is called a local dcpo monoid (or an
ldcpo-monoid, for short) if it satisfies the following conditions:

(1) S is a local dcpo;

(2) For each a ∈ S and each upper bounded directed subset D ⊆ S,

a · (
∨
D) =

∨

d∈D
(a · d) and (

∨
D) · a =

∨

d∈D
(d · a).

Definition 4.2. Let (S, ·, 1) be an ldcpo-monoid. An S-ldcpo is a pair
(A, •) such that

(1) A is a local dcpo;

(2) (A, •) is an S-act;

(3) The action • : A × S −→ A is a local dcpo map, where A × S is
considered with the componentwise order.

Remark 4.3. Every S-dcpo is an S-ldcpo.

A homomorphism f : (A, •A) −→ (B, •B) between S-ldcpos is a lo-
cal dcpo map such that f(a •A s) = f(a) •B s for all a ∈ A and s ∈ S.
Let LDcpo-S denote the category of all S-ldcpos with homomorphisms.
Obviously, Dcpo-S is a subcategory of LDcpo-S.
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Definition 4.4. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. A
free S-ldcpo over a local dcpo P is a pair (F, τ), where F is an S-ldcpo
and τ : P −→ F is a local dcpo map with the universal property that for
each S-ldcpo A and a local dcpo map f : P −→ A there exists a unique
homomorphism f : F −→ A such that f ◦ τ = f .

Theorem 4.5. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. Then
(P × S, η) is the free S-ldcpo over P , where η : P −→ P × S is defined as
follows:

∀ p ∈ P, η(p) = (p, 1).

Proof. By Remark 2.2(3), P ×S is a local dcpo. Define a map ⋆ : (P ×S)×
S −→ P × S as follows:

∀ (p, s) ∈ P × S, t ∈ S, (p, s) ⋆ t = (p, s · t).

One can prove that (P × S, ⋆) is an S-ldcpo. Recalling that P × S is the
free S-poset over the poset P with the universal map η : P −→ P ×S, given
by x 7→ (x, 1) (see [2]), we show that η is a local dcpo map. Let D be an
upper bounded directed subset of P . Obviously, η is a monotone map, we
can conclude that η(D) is an upper bounded directed subset of P ×S. Thus

η(
∨
D) = (

∨
D, 1) =

∨

d∈D
η(d).

To prove the universal property of η, let (B, ∗) be an S-ldcpo and f :
P −→ B a local dcpo map. Then the map f : P × S −→ B defined
by f((p, s)) = f(p) ∗ s, which is the unique action-preserving map with
f ◦ η = f (see [2]), is a local dcpo map. By Lemma 3.2, it suffices to show
that for all s ∈ S and p ∈ P , fs and fp are local dcpo maps. Let D be an

upper bounded directed subset of P . Clearly, fs is a monotone map. Thus
fs(D) is an upper bounded directed subset, and so one can conclude that

f s(
∨
D) = f(

∨
D, s) = f(

∨
D) ∗ s =

( ∨

d∈D
f(d)

)
∗ s =

∨

d∈D
f s(d).

Therefore, fs is a local dcpo map. Similarly, we can prove that fp is a local
dcpo map.
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Corollary 4.6. The forgetful functor U4 : LDcpo-S −→ LDcpo has a left
adjoint.

Definition 4.7. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. A
cofree S-ldcpo over a local dcpo P is a pair (K, ξ), where K is an S-ldcpo
and ξ : K −→ P is a local dcpo map with the universal property that for
each S-ldcpo A and a local dcpo map f : A −→ P there exists a unique
homomorphism f : A −→ K such that ξ ◦ f = f .

Lemma 4.8. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. Then
P (S) is a local dcpo under the pointwise order, where P (S) denotes the set
of all local dcpo maps from S to P .

Proof. Let {fi | i ∈ I} be an upper bounded directed subset of P (S). For
all s ∈ S, we have that {fi(s) | i ∈ I} is an upper bounded directed subset
of P . Since P is a local dcpo,

∨
i∈I fi(s) exists. Take g(s) =

∨
i∈I fi(s) for

all s ∈ S. One can show that g ∈ P (S) and
∨
i∈I fi = g. Therefore, P (S) is

a local dcpo.

Lemma 4.9. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. Define
an action ⋆ : P (S) × S −→ P (S) as follows:

∀ f ∈ P (S), s, t ∈ S, (f ⋆ s)(t) = f(s · t).

Then (P (S), ⋆) is an S-ldcpo.

Proof. For all f ∈ P (S), s ∈ S, f ⋆ s ∈ P (S). In fact, let T be an upper
bounded directed subset of S. Then

∨
T exists, and thus

(f ⋆ s)(
∨
T ) = f(s · (

∨
T )) = f

( ∨

a∈T
(s · a)

)

=
∨

a∈T
f(s · a) =

∨

a∈T
((f ⋆ s)(a)).

Next, we shall prove that (P (S), ⋆) is an S-ldcpo. Since for all f ∈ P (S) and
t ∈ S, (f ⋆ 1)(t) = f(1 · t) = f(t), we have that f ⋆ 1 = f . For all f ∈ P (S)

and s, t ∈ S, we shall prove that (f ⋆ s) ⋆ t = f ⋆ (s · t). For all a ∈ S,
((f ⋆ s) ⋆ t)(a) = (f ⋆ s)(t · a) = f(s · (t · a)) = f((s · t) · a) = (f ⋆ (s · t))(a).
Thus (f ⋆ s) ⋆ t = f ⋆ (s · t). Now, we show that the action is a local dcpo
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map. Applying Lemma 3.2, let {fi | i ∈ I} be an upper bounded directed
subset of P (S), s, t ∈ S. Then

(( ∨
i∈I

fi

)
⋆ s

)
(t) =

( ∨
i∈I

fi

)
(s · t)

=
∨
i∈I

fi(s · t)
=

∨
i∈I

(fi ⋆ s)(t)

=
( ∨
i∈I

(fi ⋆ s)
)
(t).

Thus
( ∨

i∈I fi
)
⋆s =

∨
i∈I(fi ⋆s). Now, let T be an upper bounded directed

subset of S and f ∈ P (S). Moreover, for all a ∈ S, we have that

(f ⋆ (
∨
T ))(a) = f

( ∨

t∈T
(t · a)

)
=

∨

t∈T
f(t · a) =

( ∨

t∈T
(f ⋆ t)

)
(a).

Thus f ⋆ (
∨
T ) =

∨
t∈T (f ⋆ t). Therefore, (P (S), ⋆) is an S-ldcpo.

Theorem 4.10. Let (S, ·, 1) be an ldcpo-monoid and P a local dcpo. Then
(P (S), ξ) is a cofree S-ldcpo over P , where ξ : P (S) −→ P is defined as
follows:

∀ f ∈ P (S), ξ(f) = f(1).

Proof. By Lemma 4.9, we have that (P (S), ⋆) is an S-ldcpo. Recalling that
P (S) is the cofree S-poset over the poset P with the universal map ξ (see [2]).
One can prove that ξ is a local dcpo map. Next, we shall prove the universal
property of ξ. Let (A, ⋄) be an S-ldcpo and f : A −→ P a local dcpo map.
Define a map f : A −→ P (S) as follows:

∀ a ∈ A, s ∈ S, f(a)(s) = f(a ⋄ s).

Then f is the unique action-preserving map with ξ ◦f = f (see [2]). Finally,
we prove that f is a local dcpo map. Let T be an upper bounded directed
subset of S. Then for all a ∈ A, {a⋄b | b ∈ T} is an upper bounded directed
subset of A, and thus

f(a)(
∨
T ) = f(a ⋄ (

∨
T )) = f

( ∨

b∈T
(a ⋄ b)

)
=

∨

b∈T
f(a ⋄ b) =

∨

b∈T
f(a)(b).
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Therefore, f(a) ∈ P (S). Let D be an upper bounded directed subset of A.
Then for all t ∈ S,

f(
∨
D)(t) = f((

∨
D) ⋄ t) = f

( ∨

d∈D
(d ⋄ t)

)
=

∨

d∈D
f(d ⋄ t) =

( ∨

d∈D
f(d)

)
(t).

Thus f(
∨
D) =

∨
d∈D f(d). Therefore, (P (S), ξ) is a cofree S-ldcpo over

P .

Corollary 4.11. The forgetful functor U4 : LDcpo-S−→ LDcpo has a
right adjoint.

5 Adjoint Relations for LDcpo-S

In this section, we consider the forgetful functor U6, and show that if S
satisfied a condition which we call “good”, then U6 has a left adjoint. Also
we show that U6 does not have a right adjoint.

Definition 5.1. Let P be a local dcpo, andD be an upper bounded directed
subset of P . If

∨
D ∈ D, then we say that P is good.

Remark 5.2. A local dcpo P is good if and only if every upper bounded
directed subset has a top element.

Definition 5.3. (see [9]) Let P be a poset and x, y ∈ P . We write x≪l y
and say that x universally approximates y if for any directed set D and any
upper bound z of D with y ≤ ∨

zD (
∨
zD means that D has a supremum

in ↓ z), there is d ∈ D such that x ≤ d.

Proposition 5.4. Let P be a local dcpo. Then P is good if and only if
x≪l x for all x ∈ P .

Proof. Let B be a directed subset of P , and d be an upper bound of B with
x ≤ ∨

dB. Since P is a local dcpo, we have that x ≤ ∨
B =

∨
dB. Since P

is good,
∨
dB ∈ B. Thus x≪l x.

Conversely, let D be an upper bounded directed subset of P . Then there
exists x ∈ P such that D ⊆↓ x. Since P is a local dcpo,

∨
D exists and∨

D ≤ x. Then
∨
xD =

∨
D. Since

∨
D ≪l

∨
D =

∨
xD, there exists

d ∈ D such that
∨
D ≤ d. Then

∨
D = d, and thus

∨
D ∈ D.
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Proposition 5.5. Let (S, ·, 1) be a good ldcpo-monoid and (P, ∗) an S-poset.
Define an action ⊙ : L(P )× S −→ L(P ) as follows:

∀ F ∈ L(P ), s ∈ S, F ⊙ s =↓ (F ∗ s),

where F ∗ s = {a ∗ s | a ∈ F}. Then (L(P ),⊙) is an S-ldcpo.

Proof. By Lemma 3.3, we have that L(P ) is a local dcpo. For all F ∈ L(P ),
s, t ∈ S, we have that

F ⊙ 1 =↓ {a ∗ 1 | a ∈ F} =↓ {a | a ∈ F} =↓ F = F

and

F ⊙ (s · t) =↓ (F ∗ (s · t)) =↓ ((F ∗ s) ∗ t) =↓ ((↓ (F ∗ s)) ∗ t) = (F ⊙ s)⊙ t.

Now, we show that the action is a local dcpo map. Applying Lemma 3.2,
let D be an upper bounded directed subset of L(P ). By the given action,
we have that

(
∨D)⊙ s = (

∪D)⊙ s
= ↓ ((

∪
D∈D

D) ∗ s)

= ↓
( ∪
D∈D

(D ∗ s)
)

=
∪
D∈D

↓ (D ∗ s)
=

∨
D∈D

(D ⊙ s).

Now, let T be an upper bounded directed subset of S and F ∈ L(P ). Since
S is good,

∨
T ∈ T . Then

F ⊙ (
∨
T ) =↓ (F ∗ (

∨
T )) =

∨
t∈T
↓ (F ∗ t) =

∨
t∈T

(F ⊙ t).

Then (L(P ),⊙) is an S-ldcpo.

Theorem 5.6. Let (S, ·, 1) be a good ldcpo-monoid. For a given S-poset
(P, ∗), the free S-ldcpo over P is (L(P ),⊙).

Proof. By Proposition 5.5, we have that (L(P ),⊙) is an S-ldcpo. By the
proof of Theorem 3.5, the map η, defined in Theorem 3.5, is an S-poset
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map. Finally, we show that η is universal. Let (B, •) be an S-ldcpo and
f : P −→ B be an S-poset map. By the proof of Theorem 3.5, there exists
a unique local dcpo map f : L(P ) −→ B such that f◦ ↓= f , where f is
defined by f(F ) =

∨
f(F ). It suffices to prove that f is action-preserving.

For all F ∈ L(P ) and s ∈ S, we have that

f(F ⊙ s) = f(↓ (F ∗ s)) =
∨
f(↓ (F ∗ s)) =

∨
f(F ∗ s) = f(F ) • s.

Then f is a homomorphism, and thus η is universal.

Corollary 5.7. If (S, ·, 1) is a good ldcpo-monoid, then the forgetful functor
U6 : LDcpo-S −→Pos-S has a left adjoint.

Finally, by taking S = {1}, and applying Corollary 3.7 and Proposition
3.10, we have the following Propositions.

Proposition 5.8. The forgetful functor U6 : LDcpo-S −→ Pos-S does
not have a right adjoint for a general ldcpo-monoid S.

Proposition 5.9. Dcpo-S is not a coreflective subcategory of LDcpo-S
for a general dcpo-monoid S.

6 Conclusions

Applying the investigations done in the above sections, we get:

(1) The free local dcpo over a poset P is L(P ).

(2) The free S-ldcpo over a local dcpo P is P × S.

(3) If S is a good ldcpo-monoid, the free S-ldcpo over an S-poset P is
L(P ).

(4) The free S-dcpo over a local dcpo P is cld(Ψ(P ))× S.

(5) The free S-ldcpo over a poset P is L(P )× S.

(6) The cofree local dcpo over a poset P does not necessarily exist.

(7) The cofree S-ldcpo over a local dcpo P is P (S).

(8) The cofree S-ldcpo over an S-poset P does not necessarily exist.

(9) The cofree S-ldcpo over a poset P does not necessarily exist.

(10) The cofree S-dcpo over a local dcpo P does not necessarily exist.

(11) Dcpo is a full reflective subcategory of LDcpo.
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(12) Dcpo is not a coreflective subcategory of LDcpo.
(13) Dcpo-S is not a coreflective subcategory of LDcpo-S for a general

dcpo-monoid S.
However, there are several basic questions to which we possess no an-

swers. For instance, it is not known whether the inclusion functor I3 :
Dcpo-S −→ LDcpo-S has a left adjoint. Also, for any ldcpo-monoid S,
whether the forgetful functors U6 : LDcpo-S −→ Pos-S has a left adjoint.
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کاربردها با جبری کلی ساختارهای و رسته ها
بناشفسکی) برنارد سالگی ٩٠ بزرگداشت برای ویژه (شماره ١٣٩۶ تیر ،١ شماره ،٧ جلد

موضعی dcpoهای رسته ی الحاقی رابطه های

وانگ کابون و لو، ژینگ ژائو، بین

(به موضعی dcpoهای از LDcpo رسته ی از فراموشکار تابعگون مقاله، این در
مرتب مجموعه های از Pos رسته ی به dcpoها) از متشکل Dcpo رسته ی ترتیب،
وجود و می گیریم، نظر در را موضعی) dcpoهای از LDcpo رسته به ترتیب، (به جزئی
Sها − ldcpo ملموس صورت علاوه، به می کنیم. مطالعه را آن راست و چپ الحاقی های
است. موضعی تکواره ی dcpo یک S آن در که می کنیم، ارائه موضعی dcpo یک روی را

از: عبارت اند اصلی قضیه های
الحاق ولی است، چپ الحاق دارای U : LDcpo → Pos فراموشکار تابعگون (١)

ندارد؛ راست
الحاق ولی است، چپ الحاق دارای I : Dcpo → LDcpo شمولی تابعگون (٢)

ندارد؛ راست
راست و چپ الحاق دارای U : LDcpo-S → LDcpo فراموشکار تابعگون (٣)

است؛
فراموشکار تابعگون آنگاه باشد، خوب تکواره ی ldcpo یک (S, ·,١) اگر (۴)

U : LDcpo-S → Pos-S

است. چپ الحاق دارای

۴

٢٠١٧ ژانویه ١۶ پذیرش: ،٢٠١۶ اکتبر ٢٠ دریافت:
٢٣۴۵-۵٨۶١ برخط: ٢٣۴۵-۵٨۵٣ چاپی: شاپا

بهشتی شهید دانشگاه ©

Archive of SID

www.SID.ir

http://www.sid.ir

