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An equivalence functor between local
vector lattices and vector lattices

Karim Boulabiar

Abstract. We call a local vector lattice any vector lattice with a distin-
guished positive strong unit and having exactly one maximal ideal (its radi-
cal). We provide a short study of local vector lattices. In this regards, some
characterizations of local vector lattices are given. For instance, we prove
that a vector lattice with a distinguished strong unit is local if and only if it
is clean with non no-trivial components. Nevertheless, our main purpose is
to prove, via what we call the radical functor, that the category of all vec-
tor lattices and lattice homomorphisms is equivalent to the category of local
vectors lattices and unital (i.e., unit preserving) lattice homomorphisms.

1 Introduction

All vector lattices we consider in this paper are assumed to be real. Let L
and M be vector lattices. Recall that a linear map L > M is called a lattice
homomorphism if

w(|z|) = |w(z)|, forallze L.
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The category whose objects are all vector lattices and morphisms are lattice
homomorphisms is denoted by VL. Thus, by a VL-object we mean a vector
lattice and any lattice homomorphism between two VL-objects is referred
to as a VL-morphism.

Now, a vector subspace I of a VL-object E is called an (order) ideal in
E if I contains with any z all y such that |y| < |z|. Clearly, if € E then
the set

I,={ye E:|y <n|z|, forsomen=1,2,..}

is an ideal in E. Actually, I, is the smallest ideal in E containing x. An
element x € E for which I, = E is called a strong (order) unit in E. As
usual, an ideal I in F is said to be proper if I # E. By the way, a proper ideal
in E contains no strong units. A proper ideal M in F is said to be mazimal
if M is not contained in any other proper ideal in E. We call a unital
vector lattice any VL-object along with a distinguished positive strong unit.
Moreover, if E and F are unital vector lattices with distinguished strong
units e and f, respectively, then any VL-morphism E <% F for which the
equality w(e) = f holds is said to be unital. It is well-known that any
unital vector lattice £ has maximal ideals (see [7, Theorem 27.4]). It could
happen that F has exactly one maximal ideal. In this situation, we call E
a local vector lattice (see |8] for the corresponding concept in Ring Theory).
The subcategory of VL with objects all local vector lattices and morphisms
unital lattice homomorphisms is denoted by LVL. In other words, an LVL-
object is a local vector lattice and an LVL-morphism is a unital lattice
homomorphism between two local vector lattices. The main purpose of this
note is to prove that the categories VL and LVL turn out to be equivalent.
The equivalence functor R : VL — LVL in question is defined as follows.

As proved in |7, Theorem 27.4|, any LVL-object E has maximal ideals.
Then, the intersection of all maximal ideals in F is the radical of E, which
we denote by Rad(E). For every LVL-morphism E 5 F, we define a
VL-morphism Rad (E) “8 Rad (F) by putting

wo () =w(x) forall z € Rad (F).
Actually, wg is well-defined because, as we shall see later, w sends Rad (E)

to Rad (F'). Roughly speaking, wy is the restriction of w to Rad (E). Then,
R is the functor that takes each LVL-object E to the VL-object Rad (E),
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and each LVL-morphism E % F to the VL-morphism Rad (E) % Rad (F).
It will turn out that R is the functor we are looking for.

Finally, we point out that the standard monograph [7] is used as a unique
source of unexplained terminology and notations on Vector Lattices. But
for Category Theory, the reader can consult the text [6].

2 Preliminaries on local vector lattices

As usual, the symbol R is used to denote the totally-ordered field of all real
numbers. As mentioned before in the case of local vector lattices, any unital
vector lattice F has maximal ideals (see Theorem 27.4 in [7]) and the radical
of E (i.e., the intersection of all maximal ideals in F) is denoted by Rad (E).
It turns out that Rad (E) coincides with the ideal Ej of all infinitely small
elements of E (see |7, Theorem 27.5 |). Recall here that an element x € E
is said to be infinitely small if there exists y € F such that

nlz| <|y|, forallne{l,2,..}.

Furthermore, from [7, Theorem 27.3] it follows that if M is a maximal ideal

in F then the direct sum
E=Re® M

holds, where Re is the line generated by the vector e. Consequently, if
E has a unique maximal ideal, then £ = Re & Rad (E). Conversely, if
E =Re® Rad (E) then Rad (E) is the only maximal ideal in E. Indeed, let
M be a maximal ideal in £ and pick x € M. Then there exists r € R and
xo € Rad (F) such that

re=x—x9 € M.

It follows that r = 0 (otherwise, M would contains a strong unit which is
impossible). Therefore,
x = xo € Rad (F)

and so
M C Rad(E) C M.

We derive directly that Rad (F) is the unique maximal ideal in E. We call £
a local vector lattice provided one the following equivalent conditions hold.

(1) E has a unique maximal ideal.
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(2) The direct sum E = Re @ Rad (E) holds.

Thus, for any element x in the local vector lattice F there exist a unique
real number r (z) and a unique element p (z) € Rad (E) such that

z=r(z)e+p(x) € Red Rad(E).

We call r (z)e the real component of x and p(x) its infinitely small com-
ponent. By the way, the maps r and p that take each z € E to r (x) and
p (x), respectively, are linear. But one might still wonder what a local vector
lattice looks like. Some elements are clarified next.

Lemma 2.1. Let E be a local vector lattice and x € E. Then the following
hold.

(i) = € ET if and only if, either r (z) >0, or 0 < z € Rad (E).
(ii) If x ¢ Rad (E) then |z| = sign (r (x)) .
(iif) 7 (|z) = |r (2)| and, if r () # 0 then p(|z[) = sign (r (2)) p (z)-

Proof. (i) Let us prove the ‘if” part. There is nothing to prove if 0 < z €
Rad (E). Hence, assume that r (z) > 0. Since p(z) is an infinitely small
element of E, there exists y € E such that

nlp(x)| <ly|, forallne{l,2..}.

Choose m € {1,2, ...} such that |y| < me. Thus,
n
— |p(x)| <e, forallne{l,2,..}.
m

Therefore, we can take n € {1,2,...} large enough for the inequality m <
nr (z) to hold. Whence,

@) < i @< 2 () <

It follows that —p (x) < r(x) e, which yields that

z=r(x)e+p(z)>0.
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Now, we establish the ‘only if’ part. Assume that x € ET. Clearly, it suffices
to prove that r (x) > 0. Arguing by contradiction, suppose that r (z) < 0.
Hence,

r(—z)=—-r(x)>0

and so, by the ‘if’ part, —z € ET. We derive that x = 0 and so r (z) = 0,
which contradicts the inequality r (z) < 0. The proof of (i) is complete.

(ii) Suppose that = ¢ Rad (F) or, equivalently, r () # 0. Using (i) and
the equality r (—z) = —r (z), we infer that

x>0ifr(x) >0 and z<0ifr(x)<O0.

Summarizing, we get the equality |z| = sign (r (x)) x and (ii) follows.

(iii) If r () = 0 then « € Rad (E) and so |z| € Rad (E) because Rad (F)
is an ideal in E. Hence, 7 (|z|) = 0 = |r (x)|. Let’s suppose that r (x) # 0
or, equivalently, = ¢ Rad (F). By (ii), we have

|x| = sign (r (z)) x = sign (r (x)
— sign (r (2)) 7 () e + sign(
=|r(z)|e+sign(r(z))p(z).

Accordingly,
r(|z]) = |r(z)], forallzeFE

and
p(|z|) =sign (r (x)) p(x), forall z € E with r (z) # 0.

This completes the proof of the lemma. ]

The following characterization of local vector lattices may well not have
been quite on the agenda, but we think that it could be of interest to some.
Let E be vector lattice with a distinguished strong unit e > 0. We call a
component of E any element p € F such that

pA(e—p)=0.

Notice that 0 and e are components in E. The set of all components in £
is denoted by C (E). Clearly,

0<p<eande—peC(E), forallpeC(E).
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More about components can be found in [1, Section 1.4]. Following the
recent work [5] (see also [4]), we say that F is clean if each element of E
can be written as a sum of a strong unit and a component of £. In other
words, F is clean if and only if, for every x € E there exist a strong unit u
of E and p € C (F) such that x = u+ p. We are in position now to give the
characterization we were talking about.

Theorem 2.2. A wvector lattice E with with a strong unit e > 0 is local if
and only if E is clean and C (E) = {0, e}.

Proof. Necessity. Choose p € C(F) and assume that 0 < p < e. This
assumption together with the equality

pA(1—p)=0

yields that p is not a strong unit in F (otherwise, we would get e —p = 0
and so p = e). Since Rad (E) is the unique maximal ideal in E, Theorem
27.4 in [7] shows that p € Rad (E). Analogously, e — p € Rad (E) and so

e=p+ (e—p) € Rad (E).

But Rad (F) is a maximal ideal in £ and thus cannot contain strong units.
This contradiction allows us to conclude that p € {0,e} and so C(E) =
{0,e}. Now, we claim that F is clean. To this end, we prove that if z € F
then © = u + p for some strong unit v in E and p € {0,e}. If z itself is a
strong unit in F, then take u = x and p = 0. So, suppose that = is not a
strong unit in E. Again by Theorem 27.4 in [7], we infer that x € Rad (E).
Assume that e — x is not a strong unit in £. Similarly, we would obtain that
e —x € Rad (F) which leads to the contradiction

e=e—z+z € Rad(F).

Therefore, e — x is a strong unit in E. It suffices thus to put © = e — x and
p = e. This means that E is clean and proves Necessity.

Sufficiency. Assume that E is clean and C (E) = {0,e}. Let M and N
be two maximal ideals in E. We claim that M = N. To this end, we shall
argue by contradiction. Without loss of generality, suppose that there exists
x € M such that x ¢ N. So, there is € R for which

r#0 and xz—ree N
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(see [7, Theorem 27.3]). By (iii), we can find a strong unit w in E and
p € C(E) = {0, e} such that

1
- =u-+p.
r

If p = 0 then ru = x € M, which contradicts the maximality of M. Anal-
ogously, if p = e then ru = x — re € N, contradicting here the maximality
of N. We deduce that M = N and then E has only one maximal ideal. We
can conclude that F is local, as desired. ]

The following (and last) result in this section will be of much greater use
in the next section, in which categories are involved. For this reason, we are
once again using the Category language. Recall from the introduction that
VL denotes the category of all vector lattices and lattice homomorphisms,
while LVL is the used to denote the subcategory of VL. whose objects are
local vector lattices and morphisms are unital lattice homomorphisms. For
convenience, recall that if £ and F are LVL-objects with distinguished
positive strong units e and f, respectively, then a LVL-morphism E > F is
a VL-morphism for which w (e) = f. For instance, it follows from the third
assertion in Lemma 2.1 that the map r : £ — R that takes each element
x € E to the real number r (z) is an LVL-morphism. Notice by the way
that R is an LVL-object with Rad (R) = {0}. As previously pointed out,
we end this section with a lemma that will often come in handy in the next
section.

Lemma 2.3. Let E 2 F be an LVL-morphism. Then
w(z) € Rad (F) for all x € Rad (E).

Proof. Since the radical of a unital vector lattice coincides with the ideal of
all infinitely small elements, it suffices to prove that if an element z € F is
infinitely small, then so is w (z) € F. So, let x be an infinitely small element
of E. Therefore, there exists y € F such that

nlz| <l|y|, forallne{l,2..}.
Whence, if n € {1,2,...} then

nlw (@) =w(nlz)) <w(yl) = |w @I
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It follows that w (x) is an infinitely small element of F', leading to the desired
result. O

3 The radical functor

Notwithstanding its simpleness, Lemma 2.3 allow us to introduce a functor
from LVL to VL. Indeed, for every LVL-morphism E 5 F, we define a
VL-morphism Rad (E) “8 Rad (F) by putting

wo () =w(x), forallz € Rad(E).

Roughly speaking, wy is the restriction of w to Rad (F). Then, let R be the
function that takes each LVL-object F to the VL-object Rad (E), and each
LVL-morphism E % F to the VL-morphism Rad (E) “% Rad (F). We can
readily check that R is a functor from LVL to VL. We call R : LVL —
VL the radical functor. We begin our investigation with the following first
property of the radical functor. We emphasize that we shall keep the same
notations as previously used in the preceding sections.

Lemma 3.1. The radical functor R : LVL — VL is faithful.

Proof. Let E, F be two LVL-objects and let e, f denote the distinguished
positive strong units of £ and F, respectively. Pick two LV L-morphisms

EY Fand E F such that

wp =R (w) =R (¢) = 1o.

We claim that w = 1. To this end, pick x € F and observe that

w(z) =w(r(z)etp(x)) =r(@)we)+wlp(r))
=7 (@) f+wo(p(@) =r(x)P(e)+vo(p(2))
=r(x)v(e)+v(p(x) =v¢(r(z)e+p(x)) =v(z).
This completes the proof of the lemma. O

Next, we give the second fundamental property of the radical functor.

Lemma 3.2. The radical functor R : LVL — VL is full.
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Proof. Let E, F be two LVL-objects, and choose a VL-morphism Rad (E) 5
Rad (F). We claim that there exists an LVL-morphism E < F such that

wo =R (w) = .

To this end, let e and f denote the distinguished positive strong units of £
and F'| respectively. Define w : E — F' by putting

w(x)=r(x)f+e(p(x), foralzxekFE.

Observe that ¢ (p(x)) € Rad (F') (where we use Lemma 2.3). Furthermore,
it follows readily from the direct sum

E = Re @ Rad (E)

that w is linear. Also, w (e) = f because r (e) = 1 and p (e) = 0. Moreover,
if x € Rad (E) then r (z) = 0 and thus

wo (2) = w (x) = ¢ (p(2)) = ¢ (2) .

It remains to show that w is a lattice homomorphism. Let z € F and observe
that

w(r(z)e+p(z))
=7 (z)w(e) +w(p(z))
r(x) f+e(p(z)).

It follows quickly, again from Lemma 2.3, that
r(w(z) =r(@) and pw(x)=¢(p@).
Moreover, if 7 (z) = 0 then
w (|2]) = ¢ (lz]) = ¢ (2)] = |w ()]
On the other hand, if r () # 0 then Lemma 2.1 (iii) yields that

[ =7 ([z]) e + p(Jz]) = |r (x)[ e + sign (r (2)) p (z) -
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Hence, by linearity and Lemma 2.1 (iii), we derive that

w (Jz]) = w (|r (x)] e + sign (r (z)) p (2))
= [r(@)|w(e) +w (sign (r (2)) p (z))
=[r(w(z (

(z

(e
DIf + ¢ (sign (r (w (2))) p (2))
= |r(w(z))| f +sign (r (w (2))) ¢ (p (z))
= [r (W (@) f +sign (r (w (z))) p (w (2)) = |w (2)|.

Thus, w is a lattice homomorphism the proof is complete. O

To conclude that the radical functor is an equivalence, it remains to show
that it is isomorphism-dense. More precisely, we have to show that for every
VL-morphism L £ M, there exists an LVL-morphism E - F such that

Rad (E) 88 Rad (F) = L 5 M.

It turns out that this property is quite involved and requires much more
work than the properties of being faithful and full. In this prospect, further
backgrounds are needed. Let L be a VL-object. The Cartesian product
R x L is a real vector space with respect to the coordinatewise addition and
scalar multiplication. Moreover, it is clear that L can be identified with the
vector subspace {0} x L of R x L. Henceforth, we shall consider L as a
vector subspace of R x L. Analogously, identifying R with R x {0}, we can
assume that R is a vector subspace of R x L. Thus, we have the direct sum

RxL=R®L={r+u:rcRandueL}.

Consequently, each vector x € R @ L can be written uniquely as a sum of a
scalar Re () € R and a vector L (z) € L. Then, we have

x—Re(zx)=L(x)e L, forallz e R L.
Also, we can perform a simple calculation to see that
Re(rx+y) =rRe(z) +Re(y), forallreRandx,ye R&L (3.1)
and
L(re+y)=rL(x)+L(y), forallreRandz,yc RP L. (3.2)

We have gathered now all the ingredient we need to prove the following
theorem.
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Theorem 3.3. Let L be a VL-object. Then R & L is an LVL-object with
radical L and positive strong unit 1.

Proof. We shall keep the above notations. Let K denote the set of all z €
R ¢ L such that, either Re(z) > 0, or Re(x) = 0 and = € L. First, we
claim that K is a cone in R@® L (see Definition 1.2 in [3]). To this end, notice
that

0 <Re(zx), forallxelk.

Choose z,y € K and assume that Re (z) > 0 or Re (y) > 0. Since
Re (z +y) = Re (z) + Re (y)

(see (3.1)), we derive that Re (z +y) > 0 and thus x +y € K. Otherwise,
Re(z) = Re(y) = 0 and so x,y € LT. We get again # +y € K. This
means that IC is closed under addition. Furthermore, take r € [0,00) and
observe that rz € LT if Re(z) = 0 or r = 0, and Re (rz) = rRe(z) > 0 if
Re(z) > 0 and r > 0 (where we use (3.1)). We derive that rx € K. Now,
pick x € R@ L such that +2 € K. This together with (3.1) leads to

+ Re(z) = Re(z) > 0.

Accordingly, Re () = 0 and so +x € L*. This yields that z = 0 and finally
that K is a cone in R @ L, as required. In other words, R ¢ L is an ordered
vector space with K as positive cone (see Theorem 11.4 in |7]). Henceforth,
we give up the symbol K and we use instead the classical notation (R @ L)*.
In the next step, we prove that the order vector space RE L is a vector lattice.
Actually, we shall see that any element in R @ L has an absolute value in
R L.
Hence, let x € R@ L and define y € R® L by

|z|, if Re(z)=0
y =
sign (Re (z)) z, if Re(z) # 0.
Observe that if Re (x) # 0 then

y = [Re (2)| + sign (Re (2)) L (x).
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We infer that y € (R @ L)*. Moreover,

|| —z, if Re(z)=0
y—x=
[|[Re (z)| — Re (x)] + (sign (Re (z)) — 1) L (z), if Re(x) #0.

Clearly, if Re (z) = 0 then y — 2 € (R® L)T. Furthermore, if Re (z) > 0
then
y_:E:OE (R@L)+a

and if Re (z) < 0 then
y—z=2[Re(z)| —2L(z) e (RPL)".

Analogously, we may show that y + z € (R@L)+. Consequently, y is
an upper bounded in R @ L of the pair {—z,z}. Choose another upper
bound z of the pair {—z,z} in R @ L. We derive that Re (z 4+ 2) > 0 and
Re(z —z) > 0. It follows from (3.1) that Re(z) > |Re(z)|. If Re(x) # 0
then

y =sign (Re (z))z = £z < 2.

Also, if Re(z) = 0 then Re(x) = 0 and so z,z € L. Accordingly, the
inequalities z > 4z holds in L which gives z > |z| = y. Finally, if Re (z) =0
and Re (z) > 0 then, by (3.1),

Re(z —y) =Re(z —|z|]) =Re(z) >0

Accordingly, z —y € (R® L)+ and finally y is precisely the absolute value
of x in R L. Summarizing, R&® L is a vector lattice and the absolute value
in R& L is given by

" |L(z)] if Re(z)=0
sign (Re (z)) z = |Re (z)| + sign (Re (z)) L (z) if Re(z) # 0.

In particular,
Re(|z|) = |Re(z)|, forallz e R& L (3.3)

and

L (|z|) =sign(Re(z)) L (z), forallz e R& L with Re(z)#0. (3.4)
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At this point, observe that 1 € (R @ L)*. We claim that 1 is a strong unit
in R@® L. To do this, pick x € R® L and choose n € {1,2,...} such that
n > |Re (x)|. Hence, by (3.1),

Re(n—x)=n—Re(x) >0 and Re(n+z)=n+Re(zx)>0.
We derive that
n—zecRaL)" and n+zxecROL)T.

This means that the inequality |x| < n holds in R & L. It follows that 1 is
a strong unit in R @ L, as required.

The last step in the proof is to show that L is the unique maximal ideal
inR& L. Let z € L and y € R& L such that |y| < |z| in R & L. Whence,
|z| — |z| € (R@® L) from which we derive that

0 < Re(|z] - [y]) = Re (|z]) = Re(ly]) = —=Re (Jy|) = — [Re (y)| <0

(where we use (3.1) and (3.3)). This yields that Re(y) = 0 and so y € L.
We infer that L is an ideal in R & L, as desired. On the other hand, choose
a maximal ideal M and pick z € M. We claim that Re(z) = 0. To this
end, we shall argue by contradiction assuming that Re (z) > 0 (if Re (z) < 0
then we can work with —z). Observe that

x:1+<1+ L(m))ZlinR@L

2
Re (z) Re (z)

because
1+

L >0in R L.
Re (2) (x)>0inR&

But then x would be a strong unit in R @ L, which contradicts the fact that
M is a maximal ideal. Therefore, Re (z) = 0 and thus M is contained in
L. By maximality, we obtain that L = M. This yields that L is the unique
maximal ideal in R @ L and completes the proof of the theorem. O

As an application of Theorem 3.3, we get the following property of the
radical functor R : LVL — VL.

Corollary 3.4. The radical functor R : LVL — VL is isomorphic-dense.
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Proof. Let L % M be a VL-morphism. Put
EFE=R®L and F=R® L.

From Theorem 3.3 it follows that E is an LVL-object with 1 as a positive
strong unit and Rad (E) = L. Similarly, F' is an LVL-object with 1 as a
positive strong unit and Rad (F') = M. Now, since

o(L(z))e M, forallzelL,
we can define a map £ > F by putting
w(r) =Re(x)+¢(L(x)), foralaxekF.

It turns out that w is an LVL-morphism. Indeed, it is clear that w (1) = 1.
Moreover, the linearity of w follows straightforwardly from (3.1) and (3.2).
Also, if z € L then Re (z) = 0 and so

On the other hand, pick € E and observe that if Re (x) = 0 then
w (@) =l (L (@) = o (IL (2)]) = ¢ (J2]) = w (|«]) -
Furthermore, if Re (z) # 0 then, using (3.3) and (3.4), we get

w ()] = [Re (w (z))] + sign (Re (w (z))) M (w (z))
= |Re (z)[ + ¢ (sign (Re (2)) (L ()))
= Re (Jz]) + ¢ (L (Jz])) = w () -

Summarizing, E = F is an LVL-morphism and we have
Rad (E) &8 Rad (F) = L 5 M.
We conclude that the radical functor R : LVL — VL is full. ]

Combining Lemma 3.1, Lemma 3.2, and Corollary 3.4, we get straight-
forwardly the following theorem, which is the main (and the last) result of
the paper.
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Theorem 3.5. The radical functor R : LVL — VL is an equivalence.

We end this paper with the following comment. By Theorem 14.15 in [6],
there must exist an equivalence functor £ : VL — LVL. Such a functor can
be constructed as follows. For any VL-object L, we denote by £ (L) the

LVL-object R @ L (see Theorem 3.3). Then, any VL-morphism L % M

extends uniquely to an LVL-morphism £ (L) ) e (M) by putting
L(p)(z)=Re(x)+¢(L(x)) forallze L(L).

The proof of this is similar to the proof of Corollary 3.4. Finally, it is

routine to show that the function £ that assigns to each VL-object L the
LVL-object £ (L), and to each VL-morphism L % M the LVL-morphism

L (L) ) (M) is a functor from VL to LVL.
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