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ABSTRACT: In the present study, analytical solutions are obtained for two-dimensional 
advection dispersion equation for conservative solute transport in a semi-infinite 
heterogeneous porous medium with pulse type input point source of uniform nature. The 
change in dispersion parameter due to heterogeneity is considered as linear multiple of 
spatially dependent function and seepage velocity whereas seepage velocity is n

th
 power of 

spatially dependent function. Two forms of the seepage velocity namely exponentially 
decreasing and sinusoidal form are considered. First order decay and zero order production 
are also considered. The geological formation of the porous medium is considered of 
heterogeneous and adsorbing nature. Domain of the medium is uniformly polluted initially. 
Concentration gradient is considered zero at infinity. Certain new transformations are 
introduced to transform the variable coefficients of the advection diffusion equation into 
constant coefficients. Laplace Transform Technique (LTT) is used to obtain analytical 
solutions of advection-diffusion equation. The solutions in all possible combinations of 
temporally and spatially dependence dispersion are demonstrated with the help of graphs. 

Keywords: Advection, Dispersion, Retardation factor, Point source, Heterogeneous 
medium. 

 
 
 
INTRODUCTION


 

The development of mathematical models 

plays an important role in understanding and 

prediction of solute transport phenomenon in 

an aquifer. Prediction of contaminant 

transport in porous media is a critical 

prerequisite for waste containment blueprint 

and evaluation of remediation effort. The rate 

of contaminant attenuation in subsurface 

depends on mixing process caused by 

dispersion which is mainly occurs due to 

special variation in aquifer properties like, 

variation in hydraulic conductivity. Solute 

transport in porous media is mathematically  

governed by advection dispersion equation 

which is a second order parabolic partial 
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differential equation based upon the 

conservation of mass and Fick’s first law of 

diffusion.  A number of analytical solutions 

describing groundwater flow and solute 

transport in porous media have been 

published in literature. Notable analytical 

solutions for advection-dispersion equation 

are in favor of (Banks & Ali, 1964; Ogata, 

1970; Marino, 1974; Al-Niami & Rushton, 

1977) considering unsteady seepage velocity, 

constant dispersion, adsorption, first order 

decay and zero order production, etc. Yates 

(1990 & 1992) obtained the analytical 

solutions for linearly or exponentially 

increasing dispersion coefficient in one-

dimensional porous media. Aral & Liao 

(1996) obtained analytical solutions of two-
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dimensional advection dispersion equation 

with a time-dependent dispersion coefficient. 

Hunt (1998) discussed analytical solutions 

for an instantaneous source and for steady 

flow with a continuous source in one, two 

and three-dimensional advection dispersion 

equation with scale-dependent dispersion 

coefficients. Chen et al. (2003, 2008) 

obtained the analytical solutions in a 

cylindrical coordinate system with distance-

dependent dispersion of a tracer in 

convergent and divergent radially symmetric 

flow fields. Su et al. (2005) obtained 

similarity solution using a time and scale-

dependent dispersivity in fractal porous 

media. Smedt (2006) presented analytical 

solutions for solute transport in rivers 

considering the effects of first order decay 

and transient storage. Zhan et al. (2009) 

obtained an analytical solution for two-

dimensional solute transport using first and 

third type boundary conditions. Chen and 

Liu (2011) developed analytical solutions for 

advection-dispersion equation in finite 

domain with arbitrary time-dependent 

boundary conditions. Yadav and Jaiswal 

(2011) obtained an analytical solution of 

temporally dependent solute dispersion in a 

two-dimensional shallow aquifer while 

longitudinal solute transport for a pulse type 

source along temporally and spatially 

dependent flow was discussed by Yadav et 

al. (2012). Singh et al. (2013) discussed 

analytical solutions for time-dependent 

point-source in two-dimensional 

homogeneous porous medium. Bing
 
et al. 

(2015) discussed analytical solutions for 

solute transport in one-dimension semi-

infinite porous media using the source 

function method. Most of these works have 

included the attenuation effect due to 

adsorption, first order decay and/or chemical 

reactions. Majdalani et al. (2015) obtained 

analytical solution of solute transport with 

scale dependent dispersion in a 

heterogeneous porous media. Sanskrityayn et 

al. (2016) developed analytical solution of 

advection-dispersion equation with space 

and time dependent dispersion using Green’s 

function. Djordjevich & Savovic (2017) 

developed numerical solution for two-

dimensional solute transport with periodic 

flow in homogeneous porous media using 

finite difference technique. Das et al. (2018) 

discussed analytical and numerical solutions 

for solute transport modelling in 

homogeneous semi-infinite porous medium 

with the variable temporally dependent 

boundary. Yadav and Kumar (2018) 

developed a mathematical model for two-

dimensional solute transport in a semi-

infinite heterogeneous porous medium with 

spatially and temporally dependent 

coefficients for pulse type input 

concentration of varying nature. 

Sanskrityayn et al. (2018) obtained analytical 

solution of solute transport due to spatio-

temporally dependent dispersion coefficient 

and velocity in a heterogeneous porous 

medium. Two-dimensional contaminant 

transport models have multiple advantages 

over one-dimensional models. For example, 

two-dimensional models can account for 

concentration gradients and contaminant 

transport in the direction perpendicular to the 

groundwater flow. In previous published 

literature almost all solutions derived in two-

dimensions in which only longitudinal 

velocity component were considered, 

neglecting transverse velocity component, 

while in the present study longitudinal and 

lateral directions of dispersion coefficients 

and velocity components are considered. The 

dispersion parameter is considered as linear 

multiple of spatially dependent function and 

seepage velocity while the seepage velocity 

is the n
th
 power of spatially dependent 

function. Two form of ground water velocity 

namely sinusoidal form and exponential 

decreasing form of time varying function are 

taken into account. The concentration of the 

inlet stream is not zero it means the chamber 

is fed with polluted water. The pulse type 

conservative solute is introduced at the origin 

of the domain and other end considered of 

flux type boundary condition. The first order 
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decay and zero order production term are 

also considered. Geological formations are 

taken semi-infinite and adsorbing nature. The 

medium is considered heterogeneous as a 

result the velocity of the flow field is 

considered a spatially dependent function in 

both the directions. Analytical solution is 

obtained with the help of Laplace 

Transformation Technique for uniform input 

point source concentration. Concentration 

distributions are demonstrated graphically. 

THEORY AND METHODS 
The pollutants are entered in subsurface by 

mainly two mechanism first one, advection 

which is caused by flow of groundwater 

and second one, by dispersion which is 

caused by mechanical mixing and 

molecular diffusion. Molecular diffusions 

are not taken into consideration due to 

small seepage velocity. The mathematical 

form of the advection-diffusion equation in 

two-dimensions can be given by a second 

order partial differential equation of 

parabolic type which is written as: 
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






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
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In which ][ML 3C  is the solute 

concentration of the pollutant transporting 

along the flow field through the medium at 

any position ),( yx and time t . ]T[L 12 
xD  and 

]T[L 12 
yD are the longitudinal and transverse 

dispersion coefficient respectively while 

][LT 1u  and ][LT 1v are the unsteady uniform 

seepage velocity along longitudinal and 

transverse directions respectively. ][T 1  is 

the first order decay constant and ]T[ML 13   

is the zero order production rate coefficient 

for solute which represents internal/external 

production of the solute in the medium. First 

term on the left hand side of the Eq.(1) is 

represent change in concentration with time 

in liquid phase and R  is the retardation factor 

which is a dimensionless quantity. First term 

on the right-hand side of the Eq.(1) describes 

the influence of the dispersion on the 

concentration distribution in longitudinal 

direction while second term is the change of 

concentration due to advective transport in 

longitudinal direction. Third term on the 

right-hand side of the Equation (1) describes 

the influence of the dispersion on the 

concentration distribution in transverse 

direction while fourth term is the change of 

concentration due to advective transport in 

transverse direction. Fifth and sixth term on 

the right-hand side of the Eq.(1) describe the 

first order decay and  zero order production 

respectively. 

The medium through which the solute 

dispersion occurs is supposed to be of semi-

infinite extended along the longitudinal 

5)(0  mx  and transverse 3)(0  my

directions. Let the ground water velocity 

components of the flow satisfy the Darcy’s 

law in both directions.  Let pollutant enter in 

the medium continuously at a uniform rate 

up to a certain time period and just after, it 

becomes zero. In other words, the source of 

pollution is invariably uniform pulse-type 

point source. A set of initial and boundary 

conditions are assumed to solve the 

advection-dispersion equation. Initially the 

semi-infinite medium is considered not 

solute free. Let the medium be horizontal and 

solute particle entered from the origin. Let 

0t  be the time of elimination of the point 

source. Flux type homogeneous conditions 

are assumed at far ends of the medium, along 

both the directions. Mathematically initial 

and boundary conditions may be written as:  

0,0,0;),,(  yxtCtyxC i  (2) 
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(3) 

   
0 0

0

C x, y,t C x, y,t
, ;

x y

t ,x , y

 
 

 

  

  
(4) 

Equation (2) represents initially there is 

some concentration present in the domain. iC  

is the initial concentration present in the 

domain. A pulse-type input condition 
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represented by Equation (3), in which 0t  is 

the time span of the contaminant release 

(assuming release starts at time zero) and 0C is 

the constant concentration of the pulse at the 

inlet boundary. Equation (4) indicates that 

concentration gradient is zero at infinity. The 

medium is considered heterogeneous. The 

temporal variation in velocity is the result of 

temporal variation in the hydraulic gradient. 

Sykes et al., (1982) and Sudicky, (1986) have 

concluded that the magnitude and direction of 

the spatial mean hydraulic gradient fluctuate 

over time. In natural flow systems these are 

rarely in a steady state.  Dispersion coefficient 

and velocity both are considered spatially and 

temporally dependent in general form. Some 

particular expressions are chosen. In the 

present study retardation factor is also 

considered in degenerate form. Thus the 

expressions for velocity and dispersion 

coefficient components are written in the 

general form as: 
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(5) 

where ba, are the heterogeneity 

parameters along longitudinal and lateral 

directions, respectively, have dimension 

inverse of space variable (Kumar et al., 

2010). The various value of ),( ba
 

represents different heterogeneity. 

Heterogeneity of the porous medium 

means porosity or hydraulic conductivity is 

dependent upon position.
00 yx D,D , 0u and 

0v  are initial dispersion coefficients and 

unsteady uniform seepage velocities along 

longitudinal and transverse directions 

respectively. 0 , 0 and 0R are the initial 

first order decay, zero order production and 

retardation factor, respectively. m  
represents unsteady parameter whose  

dimension is inverse of time variable t .
 

0m  corresponds to the temporally 

independent parameters.  It is assumed that 

1)( tmf for 0or0  tm . The first case 

represents the steady flow and second case 

represents the initial state. Thus )(mtf  is a 

non-dimensional expression.  In the 

proposed problem two form of )(mtf  

namely sinusoidal form of time varying 

)sin(1)( tmtmf   and exponential 

decreasing form of time varying 

)(exp)( tmtmf  are taken. 

 Substituting values from Equation (5) 

in Equation (1), we have 
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 (6) 

Let us introduce new independent space 

variables X  and Y  defined as (Kumar et 

al., 2010); 
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With the help of these transformations, 

Equation (6) can  be written as: 
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(8) 
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Equations (2-4) may be written in terms 

of new independent space variables, X  and 

Y  as follows: 

0,0,0;),,(  YXtCtYXC i  (9) 
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Let a new independent space variable, 

Z  be introduced as (Carnahan & Remer, 

1984): 

YXZ    (12) 

Using this transformation, Equation (8) 

may be written as:  
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Equation (9-11) may be written in terms 

of new independent space variable Z  as: 
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Let us introduce a new time variable, T  by 

the following transformation (Crank, 1975): 


t

tdtmfT
0

)(   (17) 

where )( tmf  is taken as two form of time 

varying function, namely exponential 

decreasing and sinusoidal. Therefore from 

this transformation Equation (17), we have 
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Using transformation Equation (17) in 

Equation (13), it reduces into 
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Equations (14-16) may be written in 

terms of new time variable T as: 
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Equations (18-21) becomes  
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Applying the Laplace Transformation on 

Equations (23-26) , one can find transformed 

equation and boundary condition as: 
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where 



0

),( dTeTZKK Tp

 and p  Laplace 

parameter. 

Now the general solution of Equation 

(27) may be written as: 
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arbitrary constants.
 

With the help of Equation (28) and 

Equation (29), one can get particular 

solution of Equation (30) as: 
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Now, Applying inverse Laplace 

Transformation and back transformations 

Equation (22), Equation (17), Equation 

(12) and Equation (7) as  (Van Genuchten 

& Alves, 1982), 
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Solution obtained in Equation (32.a) 

represents the solute concentration in the 

presence of source, in the time domain 0tt    

beyond this time the concentration values 

are evaluated from the solution obtained in 

Equation (32.b). The obtained solutions 

have several application and extension. 

Some known solutions are derived as 

particular case from the obtained solution 

of the present study. It accomplishes the 

validation of the mathematical formulation 

and analytical procedure obtaining the 

solution. 

If we put 0,0,0  ba and 0m , in 
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the Equation (32a, b) it has good 

agreement to the result obtained by Yadav 

et al. (2011) for two dimensional steady 

flow solute transport  and may be given as: 

00 0;),(),(),( tttZGCtZFCtZC i    (33.a) 

0000 ;),(),(),(),( tttZGCttZFCtZFCtZC i   (33.b) 
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If we extend in 0,0,0  ay and

)exp()( mtmtf   in Equation (32a,b) it 

shows good agreement with result obtained 

by Yadav et al. (2011) for one-dimensional 

unsteady flow and may be written as: 

00 0;),(),(),( TTTxGCTxFCTxC i    (34.a) 

0000 ;),(),(),(),( TTTxGCTTxFCTxFCTxC i   (34.b) 
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If we put 0,0,0  ba and

)exp()( mtmtf  , in the Equation (32a,b), 

the obtained result again fully matched 

with the result derived by Yadav et al. 

(2011) for two-dimensional unsteady flow 

and may be written  as: 

00 0;),(),(),( TTTZGCTZFCTZC i    (35.a) 

0000 ;),(),(),(),( TTTZGCTTZFCTZFCTZC i   (35.b) 

where 
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If we put parameters and variable 

0,0,1  myn and 0,0,0  iC , 

in the Equation (32a, b) the obtained result 

again fully matched with the result derived by 

Kumar & Yadav (2015) for one-dimensional 

steady flow and may be  given as: 

00 0;),(),( tttXFCtXC    (36.a) 

0000 ;),(),(),( ttttXFCtXFCtXC   (36.b) 
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If we put the parameters and variable

0,1  mn , 0and0,1  R , in the 

Equation (32a,b), it shows good agreement 

of the result obtained  by Jaiswal et al. 

(2011) for two-dimensional steady flow 

solution and may be given as: 

00 0;),(),(),( tttZGCtZFCtZC i    (37.a) 
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If we put 0,0,1  myn and

0,0,0,1  iCR   , in the Equation 

(32a,b) it shows good agreement  with the 

result obtained by Kumar et al. (2010)  for 

one-dimensional steady flow solution with 

continuous input concentration of uniform 

nature and may be written   as: 
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If we extend 0m  in Equation (32a, b), 
then two-dimensional solution for steady 

flow and continuous input concentration of 

uniform nature may be  given as: 
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If we put 0,0  ba and 0m , in the 

Equation (32a,b) it shows good agreement 

with result obtained by Al-Niami & 

Rushton (1977)   for constant coefficients 

and  may be written as: 
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If we put 0y  in Equation (32a,b)  i.e. all 

terms corresponding to y axis are taken to be 

zero, the solution  may be written in one-

dimension for pulse type input point source 

as: 

0
1

0

1

0
0

1

0 0;),(),(),( TTTXGCTXFCTXC i 

































  (41.a) 

0
1

0
00

1

0
0

1

0 ;),(),(),(),( TTTXGCTTXFCTXFCTXC i 

































 (41.b) 

where  

   

   































































































TRD

TDUXR
erfc

D

XDUU

TRD

TDUXR
erfc

D

XDUU

TXF

00

2
1

01
2
00

0

2
1

01
2
00

00

2
1

01
2
00

0

2
1

01
2
00

2

4

2

4

exp
2

1

2

4

2

4

exp
2

1
),(







 


















 


































 
















TRD

TUXR
erfcX

D

U

TRD

TUXR
erfcT

R
TXG

00

00

0

0

00

00

0

1

2
exp

2

1

22

1
1exp),(


 

a

xa
X

)1log( 
 ,   

t

tdtmfT
0

)( ,
00 000 , xx DanuUDD  , 001 una . 

RESULTS AND DISCUSSIONS 
The concentration values obtained from the 

solution Equation (32.a) in the presence of 

the source, in the time domain 0tt   is 

discussed graphically for a chosen set of 

data taken from the published experimental 

and theoretical literatures. The 

concentration values 0/CC  are evaluated 

assuming reference concentration as

0.10 C , in a finite domain along 

longitudinal and transverse directions

5)(0  mx  and 3)(0  my  respectively. The 

medium is supposed to be heterogeneous 

along both the directions. The source of the 

input pollutant is assumed to be eliminated 

at 60 t day, beyond this time the 

concentrations values evaluated from the 

Equation (32.b). The obtained solution is 
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demonstrated graphically with two forms 

of ground water velocity namely sinusoidal 

time varying velocity )(sin1)( tmtmf   

and exponential decreasing form 

)(exp)( tmtmf  . In ground water, water 

level may demonstrate seasonally 

sinusoidal behaviour (Kumar & Kumar, 

1998). In real scenario, the solute mass 

dissipates in both directions longitudinal as 

well as lateral direction but the dissipation 

along the lateral direction may be much 

less than in comparison to the longitudinal 

direction. Considering this fact lateral 

velocity is considered one-tenth of 

longitudinal. The common input 

parameters are taken 10 C , 1.0iC , 

)(01.0 1 ma , )(01.0 1 mb , 

)/(05.10 daymu  , )/(105.00 daymv  , 

)(04.0 1
0

 day
 
and )/(0021.0 3

0 daymkg . 

The common input parameters for Figure 

1a, 1b, 2a and 2b are )/(25.1 2

0
daymDx  ,

)/(125.0 2

0
daymDy  and )(1.0 1 daym .  

  

Fig. 1(a): Comparison of solution Eq.(32.a), for 

different time for exponentially decreasing  velocity 

)exp()( tmtmf  . 

Fig. 1(b): Comparison of solution Eq.(32.a), for 

different time for sinusoidal velocity 

)(sin1)( tmtmf  . 

Figure 1(a) and 1(b) are drawn for 

exponentially decreasing and sinusoidal 

form of velocity respectively at different 

time 2)( dayst  and 5 . In both figures it 

reveals that concentration profiles at 

particular position for exponentially 

decreasing form of groundwater velocity 

are lower for smaller time and higher for 

larger time, but in comparison  to 

sinusoidal form velocity the concentration 

levels are higher for all time at the same 

position. It also illustrates that in the 

exponential form of velocity, the 

rehabilitation process is faster than 

sinusoidal form. In both form of velocity 

the concentration at origin 0x and 0y  

are equals to 1. 

Figure 2(a) and 2(b) illustrate the effect 

of various retardation factor 15.10 R  and 

85.1 on the concentration profile at time 

)(5 dayt   and ground water velocities are 

taken same as in Figure 1a and 1b, 

respectively. In both form of velocity the 

concentration profile are lower for higher 

and higher for lower retardation factor. It 

means that pollutant rehabilitate slowly for 

higher retardation value.  

The common input parameters values 

considered for Figure 3a, 3b, 4a and 4b are 

)(5 dayt  and 15.10 R   
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Fig. 2(a):  Comparison of solution Eq.(32.a), for 

different retardation factor for exponentially 

decreasing  velocity )(exp)( tmtmf  . 

Fig. 2(b): Comparison of solution Eq. (32.a), for 

different retardation factor for sinusoidal form of 

velocity )(sin1)( tmtmf  . 

  

Fig. 3(a): Effect of different dispersion coefficient on 

solute transport described by solution Eq.(32.a). 

where )(exp)( tmtmf  . 

Fig. 3(b): Effect of different dispersion coefficient 

on solute transport described by solution 

Eq.(32.a). where )(sin1)( tmtmf  . 

Figure 3(a) and 3(b) demonstrates effect 

of different dispersion coefficient

)/(25.1 2

0
daymDx  , 

)/(125.0 2

0
daymDy   and )/(85.1 2

0
daymDx  , 

)/(185.0 2

0
daymDy  on concentration 

profiles at unsteady parameter 

)(1.0 1 daym  and ground water velocity 

are taken same form as in Figure 1a and 

1b, respectively. It reveals that for both 

form of seepage velocity the concentration 

levels are lower for lower and higher for 

higher dispersion coefficient. 
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Figure 4(a): Effect of for different unsteady 

parameter on solute transport described by solution 

Eq.(32.a). where )(exp)( tmtmf  . 

Fig. 4(b): Effect of for different unsteady 

parameter on solute transport described by 

solution Eq.(32.a). where )(sin1)( tmtmf  . 

  

Fig. 5(a): Comparison of solute concentration for 

different time
 
due to )(exp)( tmtmf   described 

by solution Eq.(32.b). 

Fig. 5(b): Comparison of solute concentration for 

different time due to )(sin1)( tmtmf 

described by solution Eq.(32.b). 

Figure 4(a) and 4(b) illustrate the effect 

of various unsteady parameter

1.0)( 1 daym  and 3.0 on the concentration 

profiles at particular dispersion coefficient

)/(25.1 2

0
daymDx  , )/(125.0 2

0
daymDy  . It 

demonstrates that concentration level at 

particular position is lower for higher 

unsteady parameter and higher for lower 

unsteady parameter. This phenomenon  

remains same for both form of velocity but 

sinusoidal form of velocity the 

rehabilitation rate are  faster than 

exponential form.  

Figure 5(a), 5(b), 6(a), 6(b), 7(a), 7(b) and 

8(a), 8(b) are drawn for the solution in 

Eq.(32.b) when pollutants are not entering in 

the domain. Figure 5(a) and 5(b) are drawn 

at different time 7(day)t  and 10 and rest 

parameters and ground water velocity are 

taken same form same as Figure 1(a) and 

1(b), respectively. It reveals that near the 

source boundary the concentration levels 

initially increases for both form of 

groundwater velocity up to certain distance 

and then it deceases slowly with space. 
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Fig. 6(a):  Comparison of solute concentration for 

different retardation coefficient due to 

)(exp)( tmtmf   described by solution Eq.(32.b). 

Fig. 6(b):  Comparison of solute concentration for 

different retardation coefficient due to 

)(sin1)( tmtmf  described by solution 

Eq.(32.b). 

Figure 6(a) and 6(b) are drawn at 

different retardation factors at time

)(10 dayt    and rest parameters and ground 

water velocity are taken same form as 

Figure 2(a) and 2(b), respectively. It 

reveals that near source boundary the 

concentration levels initially increases for 

both form and then deceases slowly with 

space, but for higher retardation factor the 

pollutants rehabilitates faster. At particular 

position the concentration level near the 

boundary is lower for higher retardation 

factor and higher for lower retardation 

factor in both forms of velocity but after 

certain distance travelled from boundary 

the concentration level is also lower for 

higher retardation factor and higher for 

lower retardation factor. 

  

Fig. 7(a): Comparison of solute concentration for 

different dispersion coefficient due to 

)(exp)( tmtmf   described by solution Eq.(32.b). 

Fig. 7(b): Comparison of solute concentration for 

different dispersion coefficient due to 

)(sin1)( tmtmf  described by solution Eq.(32.b). 
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Figure 7(a) and 7(b) are drawn at various 

dispersion coefficient )/(25.1 2

0
daymDx  , 

)/(125.0 2

0
daymDy   and )/(85.1 2

0
daymDx  , 

)/(185.0 2

0
daymDy  on concentration 

profiles at particular  time )(10 dayt  and rest 

parameters and ground water velocity are 

taken same form as Figure 3a and 3b, 

respectively. It reveals that near the source 

boundary the concentration levels initially 

increases for both functions and after some 

distance travelled it deceases but decreasing 

levels of concentration are lower for lower 

dispersion coefficient.  

  

Fig. 8(a): Comparison of solute concentration for 

different unsteady parameter due to 

)(exp)( tmtmf   described by solution Eq.(32.b). 

Fig. 8(b): Comparison of solute concentration for 

different unsteady parameter due to 

)(sin1)( tmtmf  described by solution 

Eq.(32.b). 

Figure 8(a) and 8(b) are drawn at 

various unsteady parameter 1.0)( 1 daym  

and 2.0 on concentration profiles at 

particular time )(10 dayt   and rest 

parameters and ground water velocity are 

taken same form are same as Figure 4a and 

4b, respectively. It reveals that near the 

source boundary the concentration levels 

initially increases up to certain distance for 

both function then deceases but decrease 

level of concentration are lower for higher 

unsteady parameter. This phenomenon  

remains same for both form of 

groundwater velocity but sinusoidal form 

of velocity the rehabilitation rate are faster 

than exponential form. It is ascertained that 

the contaminant concentration decreases in 

both longitudinal and lateral directions 

with time and distance travelled in 

presence of source contaminant. While in 

the absence of source contaminants, it 

increases and goes on increasing which 

arrive towards maximum and then starts 

decreases and goes on decreasing which 

arrive towards minimum or harmless 

concentration. This decreasing inclination 

of contaminant concentration with time and 

distance travelled may help to rehabilitate 

the contaminated ground water table. 

The derived mathematical model can be 

extended in three dimensions which may 

be given by Equations (42.a, b) as
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where new notations 
0zD , 0w and c  

represents initial dispersion coefficient, 

unsteady uniform seepage velocity and 

heterogeneity parameter respectively, along 

the direction  perpendicular to both  

longitudinal and transverse directions or 

water table. 

CONCLUSIONS 
This study mainly concerns the development 

of a new analytical solution of the advection-

dispersion equation in two-dimensions by 

taking into account a semi-infinite porous 

domain and a point-like injection, with a 

variable dispersion coefficient for non-

reactive contaminant transport. The pulse 

type boundary conditions are considered in 

the aquifer system. Due to the effects of the 

boundary condition and flow velocity, the 

amount of solute retained decreases with 

time and position. The solutions are obtained 

for sinusoidal and exponential decreasing 

form of velocity which represents the 

seasonal pattern in tropical regions. 

Analytical solution for this hypothetical  

scenario, which is based on the assumption 

that the contaminant is distributed 

exponentially decreasing function of position 

throughout the domain, can be used as a 

benchmark tool for analytical analyses and 

may helpful to predict the concentration 

levels at space and time which may help to 

reduce/eliminate the concentration. Some 

known solutions are derived as particular 

cases from the solutions of the present paper. 

It accomplishes the validation of the 

mathematical formulations and analytical 

procedures obtaining the solutions. The 

obtained solutions show a good applicability 

to real cases of solute transport phenomenon. 

An analytical solution is very important and 

economical because it provide better 

physical insight into the water  and solute 

transport phenomenon and  it is also needed 

as validation test for numerical schemes. The 

analytical solutions developed in the present 

study are apropos to more general 

hydrological conditions influencing the 

solute transport in groundwater originating 

from pulse type input point  sources. 
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