Amenability and Weak Amenability of the Semigroup Algebra $\ell^1(S_T)$

*Mohammadi S.M.; Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Laali J.; Department of Mathematics, Faculty of Mathematical Science and Computer, Kharazmi University

Received: 18 Nov 2013 Revised: 10 Nov 2014

Abstract

Let S be a semigroup with a left multiplier T on S . A new product on S is defined by T related to **S** and T such that **S** and the new semigroup S_T have the same underlying set as **S**. It is shown that if T is injective then $\ell^1(\mathbf{S}_T) \cong \ell^1(\mathbf{S})_{\tilde{T}}$ where, \tilde{T} is the extension of T on $\ell^1(S)$. Also, we show that if T is bijective, then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is so. Moreover, if **S** completely regular, then $\ell^1(\mathbf{S_T})$ is weakly amenable.

Mathematics Subject Classification: 43A20, 43A22, 43A07. 2010 **Keywords:** Semigroup,Semigroup algebra, Multiplier, Amenability, Weak amenability.

Introduction

Let S be a semigroup and T be a left multiplier on S. We present a general method of defining a new product on S which makes S a semigroup. Let S_T denote S with the new product. These two semigroups are sometims different and we try to find conditions on S and T such that the semigroups S and S_T have the same properties. This idea has started by Birtel in [1] for Banach algebras and continued by Larsen in [11]. Recently, this notion developed by some authors, for more details see $[1]$, $[10]$, $[11]$, $[12]$ and [15]. One of the best result in this work expresses that $L^1(G)_T$ is Arens regular if and only if G is a compact group $[10]$. We continue this direction on the regularity of S and S_T and the amenability of their semigroup algebras.

The term of semigroup will be a non-empty set S endowed with an associative binary operation on S, defined by $(s, t) \rightarrow st$. If S is also a Hausdorff topological space and the binary operation is jointly continuous, then S is called a topological semigroup.

^{*}Corresponding author: s11mohamadi@iausr.ac.ir

Let $p \in S$. Then p is an idempotent if $p^2 = p$. The set of all idempotents of S is denoted by $E(S)$.

An element e is a left (right) identity if $es = s$ (resp. $se = s$) for all $s \in S$. An element $e \in S$ is an identity if it is a left and a right identity. An element z is a left (resp. right) zero if $zs = z$ (resp. $sz = z$) for all $s \in S$. An element $z \in S$ is a zero if it is a left and a right zero. We denote any zero of S by 0_S (or z_S). An element peS is a regular element of S if there exists teS such that $p = ptp$ and p is completely regular if it is regular and $pt = tp$. We say that $p \in S$ has an inverse if there exists $t \in S$ such that $p = ptp$ and $t = tpt$. Note that the inverse of element $p \in S$ need not be unique. If $p \in S$ has an inverse, then p is regular and vise versa. Since, if $p \in S$ is regular, there exists $s \in S$ such that $p = psp$. Let $t = sps$. Then

 $p = psp = (psp)sp = p(sps)p = ptp$, $t = sps = s(psp)s = (sps)p(sps) = tpt$.

So p has an inverse. We say that S is a regular (resp. completely regular) semigroup if each p ϵ S is regular (resp. completely regular). Also S is an inverse semigroup if each $p \in S$ has a unique inverse. The map $T : S \rightarrow S$ is called a left (resp. right) multiplier if

 $T(st) = T(s)t$ (resp. $T(st) = sT(t)$) (s, teS).

The map $T : S \rightarrow S$ is a multiplier if it is a left and right multiplier. Let S be a topological semigroup. The net $(e_{\alpha}) \subseteq S$ is a left (resp. right) approximate identity if $\lim_{\alpha} e_{\alpha} t = t$. (resp. $\lim_{\alpha} t e_{\alpha} = t$) (teS). The net $(e_{\alpha}) \subseteq S$ is an approximate identity if it is a left and a right approximate identity.

Let S be a discrete semigroup. We denote by $\ell^1(S)$ the Banach space of all complex function f: $S \to \mathbb{C}$ having the form

$$
f = \sum_{s \in S} f(s) \delta_s
$$
,

such that $\sum_{s \in S} |f(s)| = ||f||_1$ is finite, where δ_s is the point mass at $\{s\}$. For f, ge $\ell^1(S)$ we define the convolution product on $\ell^1(S)$ as fallow:

$$
f * g(s) = \sum_{t_1 t_2 = s} f(t_1)g(t_2)
$$
 (s $\in S$),

with this product $\ell^1(S)$ becomes a Banach algebra and is called the semigroup algebra on S.

Remark 1.1. If $f \in \ell^1(S)$ then $f = 0$ on S except at most on a countable subset of S. In other words, the set $A = \{s \in S : f(s) \neq 0\}$ is at most countable. Since, if $A_n =$ $\{s \in S : |f(s)| \geq \frac{1}{n}\}$ $\frac{1}{n}$, $A = \bigcup_{n \in \mathbb{N}} A_n$. Set $||f||_1 = M$ and $n \in \mathbb{N}$ is fixed. Then we have

$$
M = \sum_{s \in S} |f(s)| \ge \sum_{s \in A_n} |f(s)| \ge \sum_{s \in A_n} \frac{1}{n} = \frac{1}{n} |A_n| \,,
$$

where $|A_n|$ is the cardinality of A_n . So $|A_n| \leq nM$. Hence A_n is a finite subset of S and thus A is at most countable.

Semigroup

Let $T \in \text{Mul}_1(\mathbf{S})$. Then we define a new binary operation " \circ " on \mathbf{S} as follow :

 $s \circ t = sT(t)$ (s, teS).

The set S equipt with the new operation " \circ " is denoted by S_T and sometimes called "induced semigroup of S" . Now we have the following results.

Theorem 2.1. Let **S** be a Semigroup. Then (i) if $T \in \text{Mul}_1(\mathbf{S})$ then \mathbf{S}_T is a semigroup. The converse is true if S is left cancellative and T is surjective.

(ii) If S_T is left cancellative and T is surjective, then $T^{-1} \in \text{Mul}_1(S)$.

(iii) If S is a topological semigroup and S_T has a left approximate identity then $T^ Mul_1(S)$.

Proof. i) Let $T \in Mul_1(S)$ and take r,s,t $\in S$. Then

$$
r \circ (s \circ t) = r T(s \circ t) = r T(s T(t)) = r T(s) T(t) = (r T(s)) T(t)
$$

$$
= (r \circ s) \circ t
$$

So, S_T is a semigroup.

Conversely, suppose that S is left cancellative and take r,s,t ϵS . Since T is surjective, there exists $u \in S$ such that $T(u) = t$. Then

$$
rT(st) = rT(sT(u)) = r \circ (s \circ u) = (r \circ s) \circ u = (rT(s))T(u)
$$

$$
= r(T(s)t).
$$

By the left cancellativity of **S**, we have $T(st) = T(s)t$ $(r, s \in S)$. So, T is a left multiplier.

ii) We must prove that T is injective. To do this end, take r,s,u ϵS and let $T(r) = T(s)$. Then $u \circ r = uT(r) = uT(s) = u \circ s$. So $r = s$, since S_T is left cancellative. Hence T^{-} exists.

Now, we show that $T^{-1} \in \text{Mul}_1(S)$. Take r, seS. Then

$$
T^{-1}(rs) = T^{-1}[TT^{-1}(r)s] = T^{-1}[T(T^{-1}(r)s)]
$$

= (T^{-1}T)[T^{-1}(r)s] = T^{-1}(r)s.

iii) It is enough to show that T is injective. Take r, seS and suppose that $T(r) = T(s)$. Then

$$
r = \lim_{\alpha} e_{\alpha} \circ r = \lim_{\alpha} e_{\alpha} T(r) = \lim_{\alpha} e_{\alpha} T(s) = \lim_{\alpha} e_{\alpha} \circ s = s.
$$

There are many properties that induced from **S** to semigroup S_T . But sometimes they are different.

Theorem2.2. Let S be a Hausdorff topological semigroup and $T \in \text{Mul}_1(S)$. If S is commutative then so is S_T . The converse is true if $\bar{1}$

Proof. Suppose S is commutative and take $r, s \in S$. Then

$$
r \circ s = r T(s) = T(s)r = T(sr) = T(rs) = T(r) s = sT(r) = s \circ r
$$
.

So, S_T is commutative.

Conversely, Let S_T be commutative and take r, s ϵS . Then there exist nets (r_α) and (s_{β}) in **S** such that $\lim_{\alpha} T(r_{\alpha}) = r$ and 1

So, we have

 $rs = \lim_{\alpha} \lim_{\beta} T(r_{\alpha} \circ s_{\beta}) = \lim_{\alpha} \lim_{\beta} T(s_{\beta} \circ r_{\alpha}) = \lim_{\alpha} \lim_{\beta} T(s_{\beta}) T(r_{\alpha}) = s r.$

Thus S is commutative.

In the sequel, we investigate some relations between two semigroup S and S_T according to the role of the left multiplier T.

Theorem 2.3. Let S be a semigroup and $T \in \text{Mul}_1(S)$. Then

(i) If T is surjective and S_T is an inverse semigroup then S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

(ii) If S_T is an inverse semigroup and T is injective then $T(S)$ is an inverse subsemigroup of S.

(iii) If T is bijective then S_T is an inverse semigroup if and only if S is an inverse semigroup.

Proof. i) Suppose that S_T is an inverse semigroup and T is surjective. Define the map φ : $S_T \rightarrow S$ by $\varphi(s) = T(s)$. Take r, s ϵS , then

$$
\varphi(r \circ s) = T(r \circ s) = T(r)T(s) = \varphi(r)\varphi(s).
$$

So, φ is an epimorphism from S_T onto S, since T is surjective. By theorem 5.1.4 [7], S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

ii) Suppose that T is injective and S_T is an inverse semigroup. Evidently, $T(S)$ is a subsemigroup of S. We show that it is an inverse semigroup. Take $\mathcal{E}(\mathcal{S})$. There exists teS such that $s = T(t)$. Also, there exists a unique element $u \in S$ such that $t = t_0 u_0 t$, since S_T is an inverse semigroup. Therefore, $T(t) = T(t)T(u)T(t)$, or $s = s_0 T(u)$ os. Of course, $T(u)$ is unique because $u \in S$ is unique and T is injective. Hence $T(S)$ is an inverse subsemigroup of S .

 $\overline{37}$

iii) Suppose that T is bijective and let S_T be an inverse semigroup. Since T is injective and surjective, by (i) and (ii), $S = T(S)$ is an inverse semigroup.

Conversely, suppose that \boldsymbol{S} is an inverse semigroup. Since T is bijective, by theorem 2.1(ii), $T^{-1} \in Mul_l(\mathcal{S})$. So φ^{-1} : $\mathcal{S} \to \mathcal{S}_T$ defined by $\varphi^{-1}(s) = T^{-1}(s)$ is an epimorphism. Hence by (i) S_T is an inverse semigroup

We say that $T \in Mul_1(S)$ is an inner left multiplier if it has the form $T = L_s$ for some $s \in S$ where $L_s(t) = s t$ (*t* $\in S$).

If $T \in \mathcal{M}ul_1(\mathcal{S})$ is inner, then each ideal of S is permanent under T; that is $T(I) \subseteq I$ for all ideal **I** of S. It is easily to see that if S has an identity, then each $T \in Mul_1(S)$ is inner.

Let **S** be a semigroup. Then **S** is called semisimple if $I^2 = I$ for all ideal **I** of **S** (see [9], page 95 for more details).

Theorem 2.4. Let S be a semigroup whit an identity and $T \in Mul_1(S)$. If S_T is semisimple, then S is so. The converse is true if S_T is left cancellative and T is surjective.

Proof. Since S is unital there exists $\mu \in S$ such that $T = L_{\mu}$. Suppose that S_T is semisimple and \boldsymbol{I} is an ideal of \boldsymbol{S} . Then

$$
I\circ S=IT(S)\subseteq I S\subseteq I.
$$

Similarly, $S \circ I \subseteq I$. It follows that *I* is an ideal of S_T . By the hypothesis $(I_T)^2$ $I = I$. Now, take ref then there are *s*, tel such that

$$
r = s \circ t = sT(t) = s(\mu t) \in I^2.
$$

So we show that $I^2 = I$ and hence S is semisimple.

Conversely, assume that S_T is left cancellative and $T \in \text{Mul}_l(S)$ is surjective then by theorem 2.1(ii), $T^{-1} \in Mul_l(\mathcal{S})$. So, there exists $b \in \mathcal{S}$ such that $T^{-1} = L_b$. Suppose that $\bar{S} = S_{T^{-1}}$. Then we have.

$$
\mathbf{S} = \mathbf{S}_{TT^{-1}} = (\mathbf{S}_T)_{T^{-1}} = \mathbf{\breve{S}}_{T^{-1}}.
$$

By hypothesis and above the proof, $\bar{S} = S_{T^{-1}}$ is semisimple.

Semigroup Algebra $\ell^1(\mathcal{S}_T)$

We say that a discrete semigroup S is amenable if there exists a positive linear functional on $\ell^{\infty}(S)$ called a mean such that $m(1) = 1$ and $m(l_s f) = m(f)$, m $m(f)$ for each seS, where $l_s f(t) = f(st)$ and $r_s f(t) = f(ts)$ for all $t \in S$. The definition of amenable group is similar to semigroup case. Refer to $\lceil 12 \rceil$ for more details.

Let $\mathfrak A$ be a Banach algebra and let X be a Banach $\mathfrak A$ –bimodule. A derivation from $\mathfrak A$ to X is a linear map $D: \mathfrak{A} \longrightarrow X$ such that

$$
D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathfrak{A}).
$$

A derivation D is inner if there exists $x \in X$ such that

$$
D(a) = a \cdot x - x \cdot a \quad (a \in \mathfrak{A}).
$$

The Banch algebra $\mathfrak A$ is amenable if every bounded derivation $D: \mathfrak A \longrightarrow X^*$ is inner for all Banach $\mathfrak A$ -bimodule X. Where X^* is the dual space of X. We say that the Banch algebra $\mathfrak A$ is weakly amenable if any bounded derivation D from $\mathfrak A$ to $\mathfrak A^*$ is inner. Fore more details see $\lceil 12 \rceil$, $\lceil 16 \rceil$.

If S is a commutative semigroup, by theorem 5.8 of [8] $\ell^1(S)$ is called semisimple if and only if for all $x, y \in S$, $x^2 = y^2 = xy$ implies $x = y$.

Theorem 3.1. Let S be a commutative semigroup and let $T \in \text{Mul}_1(S)$ be injective. Then $\ell^1(\mathcal{S})$ is semisimple if and only if $\ell^1(\mathcal{S}_T)$ is semisimple.

Proof. Take $r, s \in S$. Then $r^2 = s^2 = rs$ if and only if $T(r^2) = T(s^2) = T(r)T(s)$ or equivalently $r_0 r = s_0 s = r_0 s$, because T is injective. So, by theorem 5.8 [8], $\ell^1(S)$ is semisimple if and only if $\ell^1(S_T)$ is semisimple.

Theorem 3.2. Let S be a discrete semigroup and $T \in \text{Mul}_l(S)$. Then (i) The left multiplier T has an extension $\tilde{T} \epsilon M u l_1(\ell^1(\mathcal{S}))$ with the norm decreasing.

(ii) The left multiplier T is injective if and only if so is \tilde{T} .

(iii) If T is injective then \tilde{T} is an isometry and also $\ell^1(\mathcal{S}_T)$ and $\ell^1(\ell)$ $r \text{ are}$ isomorphic.

Proof. (i) An arbitrary element $f \in \ell^1(\mathcal{S})$ is of the form $f : \mathcal{S} \to \mathbb{C}$ such that except at the most countable subset A of S . If A is a finite subset of S then $f = \sum_{k=1}^{n} f(x_k) \delta_{x_k}$ for some fixed $n \in \mathbb{N}$. So in general we have

$$
f = \sum_{x \in S} f(x) \delta_x = \sum_{x \in A} f(x) \delta_x = \sum_{k=1}^{\infty} f(x_k) \delta_{x_k}.
$$

Now, for each $n \in \mathbb{N}$, let $f_n = \sum_{k=1}^n f(x_k) \delta_{x_k}$ and define $\tilde{T} : \ell^1(\mathcal{S}) \to \ell^1(\mathcal{S})$ by

$$
\tilde{T}(\delta_x) = \delta_{T(x)} \qquad (x \in S),
$$

$$
\tilde{T}(f_n) = \sum_{k=1}^n f(x_k) \tilde{T}(\delta_{x_k}) = \tilde{f}_n.
$$

For each $m, n \in \mathbb{N}$ where $n \geq m$, we have

$$
\|\tilde{T}(f_n) - \tilde{T}(f_m)\|_1 = \|\tilde{f}_n - \tilde{f}_m\|_1 = \|\sum_{k=m}^{k=n} f(x_k) \ \tilde{T}(\delta_{x_k})\| = \|\sum_{k=m}^{k=n} f(x_k) \ \delta_{T(x_k)}\|
$$

$$
\leq \sum_{k=m}^{k=n} |f(x_k)| = \|f_n - f_m\|_1.
$$

So ${\{\tilde{T}(f_n)\}_n}$ is a Cauchy sequence and it is convergent. Now, we define $\tilde{T}(f) = \lim_{n \to \infty} \tilde{f}_n$ Then the definition is well defined. Hence

$$
\widetilde{T}(f) = \sum_{k=1}^{\infty} f(x_k) \widetilde{T}(\delta_{x_k}) = \widetilde{f},
$$

also

$$
\left\|\tilde{f}\right\|_{1} \le \sum_{x_k \in A} |f(x_k)| = \|f\|_{1} \text{ or } \left\|\tilde{T}(f)\right\|_{1} \le \|f\|_{1}
$$

It shows that \tilde{T} is norm decreasing.

In the following, we extend \tilde{T} by linearity. Let $f, g \in \ell^1(\mathcal{S})$. Then there are two at most countable sub set A, B of S such that

$$
f = \sum_{x \in A} f(x) \delta_x, \ \ g = \sum_{x \in B} g(x) \delta_x.
$$

Suppose that $D = A \cup B$. So we have $f + g = \sum_{x \in D} (f(x) + g(x)) \delta_x$.

Then, it follows that

$$
\tilde{T}(f+g) = \tilde{f+g} = \sum_{x \in D} (f(x) + g(x)) \tilde{T}(\delta_x) = \sum_{x \in A} f(x) \tilde{T}(\delta_x) + \sum_{x \in B} g(x) \tilde{T}(\delta_x)
$$

$$
= \tilde{f} + \tilde{g}.
$$

Also, if $\alpha \in \mathbb{C}$, we have

$$
\tilde{T}(\alpha f) = \tilde{\alpha f} = \sum_{x \in A} \alpha f(x) \tilde{T}(\delta_x) = \alpha \sum_{x \in A} f(s) \tilde{T}(\delta_x) = \alpha \tilde{T}(f).
$$

Therefore, \tilde{T} is a bounded linear isometry.

Now, we prove that $\tilde{T} \in Mul_l$ $\ell^1(\mathcal{S})$. Take x, y $\epsilon \mathcal{S}$. Then

$$
\tilde{T}(\delta_x * \delta_y) = \tilde{T}(\delta_{xy}) = \delta_{T(xy)} = \delta_{T(x)y} = \delta_{T(x)} * \delta_y = \tilde{T}(\delta_x) * \delta_y.
$$

Let $y \in S$ be fixed and f, $g \in \ell^1(S)$. Then

$$
\tilde{T}(f * \delta_y) = \tilde{T}(\sum_{x \in A} f(x) \delta_{xy}) = \sum_{x \in A} f(x) \tilde{T}(\delta_{xy})
$$

$$
= (\sum_{x \in A} \tilde{T} (\delta_x)) * \delta_y = \tilde{f} * \delta_y = \tilde{T}(f) * \delta_y
$$

In the general case, we have

$$
\tilde{T}(f * g) = \tilde{T}(\sum_{x \in A} f(x) (\sum_{y \in B} g(y)) \delta_{xy}) = \sum_{x \in A} f(x) \sum_{y \in B} g(y) \tilde{T}(\delta_x) * \delta_y
$$

= $\sum_{x \in A} f(x) \tilde{T}(\delta_x) * \sum_{y \in B} g(y) \delta_y = \tilde{T}(f) * g$.

This shows that \tilde{T} is a multiplier on $\ell^1(\mathcal{S})$.

(ii) Let T be injective. Take x, yeS and suppose that $\tilde{T}(\delta_x) = \tilde{T}(\delta_y)$. Then $\tilde{T}(\delta_{\chi}) = \tilde{T}(\delta_{\chi}) = \delta_{T(\chi)}$.

Therefore, $T(x) = T(y)$. Since T is injective, we have $x = y$. It follows that $\delta_x = \delta_y$, consequently \tilde{T} is injective.

Conversely, the same argument shows that the converse holds.

(iii) Let T be injective and $f \in \ell^1(\mathcal{S})$. Then there exists at most a countable subset such that

(Sci. Kharazmi University)

$$
f = \sum_{x \in A} f(x) \delta_x
$$

Since A and $T(A)$ have the same cardinal number, $\|\tilde{T}(f)\| = \|\sum_{x \in A} f(x) \delta_x\|$ $\sum_{x \in A} |f(x)| = ||f||_1$, so \tilde{T} is an isometry.

Now, we can define a new multiplication " $\lceil * \rceil$ " on $\ell^1(\mathcal{S})$ as follow

$$
f\overline{\mathbb{R}}\, g = f * \tilde{T}g \qquad (f, g \in \ell^1(\mathbf{S})).
$$

By a similar argument in theorem1.31 [10], $\ell^1(S)$ with the new product is a Banach algebra that is denoted it by $\ell^1(\mathcal{S})_{\tilde{T}}$. We define the map $\Psi: \ell^1(\mathcal{S}_T) \to \ell^1(\mathcal{S})_{\tilde{T}}$, by

$$
\Psi(\delta_x)=\delta_x \qquad (\text{ } x \in S \text{ }).
$$

Take $x, y \in S$. Then

$$
\Psi(\delta_x * \delta_y) = \Psi(\delta_{x \circ y}) = \delta_{xT(y)} = \delta_x * \delta_{T(y)}
$$

$$
= \delta_x * \tilde{T}(\delta_y) = \delta_x * \delta_y
$$

$$
= \Psi(\delta_x) * \Psi(\delta_y).
$$

So, in general case, we have

$$
\Psi(f * g) = \Psi(f) \times \Psi(g) \qquad (f, g \in \ell^1(\mathcal{S})).
$$

Thus, Ψ is an isomorphism. Therefore $\ell^1(\mathcal{S}_T)$ and $\ell^1(\mathcal{S})_{\tilde{T}}$ are isomorphic

Theorem 3.3. Let S be a semigroup and $T \in Mul_1(S)$ be bijective. Then $\ell^1(S)$ is amenable if and only if $\ell^1(\mathcal{S}_T)$ is amenable.

Proof. By theorem 3.2, we have $\ell^1(\mathcal{S}_T) \cong \ell^1(\mathcal{S})_{\tilde{T}}$. Suppose that $\ell^1(\mathcal{S}_T)$ is amenable and define $\varphi: \ell^1(\mathcal{S})_{\tilde{T}} \to \ell^1(\mathcal{S})$ by $\varphi(f) = \tilde{T}(f)$. Take x, yeS. Then

$$
\varphi(\delta_x \trianglerighteq \delta_y) = \tilde{T}(\delta_x \trianglerighteq \delta_y) = \tilde{T}(\delta_{xT(y)}) = \tilde{T}(\delta_x * \delta_{T(y)}) = \tilde{T}(\delta_x) * \delta_{T(y)}
$$

= $\tilde{T}(\delta_x) * \tilde{T}(\delta_y) = \varphi(\delta_x) * \varphi(\delta_y)$.

Now, by induction and continuity of \tilde{T} , we have

$$
\varphi(f \circledast g) = \varphi(f) * \varphi(g).
$$

If T is bijective, \tilde{T} is bijective. Therefore φ is an epimorphism of $\ell^1(\mathcal{S}_T)$ onto $\ell^1(\mathcal{S})$.

Hence, by proposition 2.3.1 [16] $\ell^1(S)$ is amenable.

Conversely, suppose that $\ell^1(\mathcal{S})$ is amenable. Since T is bijective, \tilde{T} is bijective. Therefore \tilde{T}^{-1} exists. Now define $\theta: \ell^1(\mathcal{S}) \to \ell^1(\mathcal{S}_T)$ $[\tilde{=} \ell^1(\mathcal{S})_{\tilde{T}}]$ by $\theta(f) = \tilde{T}^{-1}$ (Take $x, y \in S$. Then

$$
\begin{split} \theta\big(\delta_x * \delta_y\big) &= \tilde{T}^{-1}\left(\delta_{xy}\right) = \tilde{T}^{-1}\left(\delta_x\right)\tilde{T}\tilde{T}^{-1}\left(\delta_y\right) = \tilde{T}^{-1}\left(\delta_x\right)\tilde{T}\tilde{T}^{-1}\left(\delta_y\right) \\ &= \theta(\delta_x)\left[\tilde{T}\right]\theta\big(\delta_y\big) \,. \end{split}
$$

Similarly θ is an epimorphism from $\ell^1(\mathcal{S})$ onto $\ell^1(\mathcal{S}_T)$. By proposition 2.3.1 ℓ^1 (S_T) is amenable.

Note that, in general, it is not known when $\ell^1(\mathcal{S})$ is weakly amenable. For more detials see $[2]$.

Theorem3.4. Let **S** be a semigroup and $T \in Mul_1(S)$ be bijective. Then, if **S** is completely regular then $\ell^1(\mathcal{S}_T)$ is weakly amenable.

Proof. It is enough to prove that S_T is completely regular, then by theorem 3.6 [2], $\ell^1(\mathcal{S}_T)$ can be weakly amenable. Take seS. Then there exists $r \in \mathcal{S}$ such that T $T(s)T(r)T(s)$, $T(r)T(s) = T(s)T(r)$, since T is bijective and **S** = T(**S**) is completely regular. So we have $T(s) = T(s \circ r \circ s)$ and $T(r \circ s) = T(s \circ r)$. Hence $s = s \circ r \circ s$ and $r \circ s = s \circ r$ for some $r \in S$, since T is injective. Therefore S_T is completely regular.

Corollary.3.5. Suppose that **S** is a commutative completely regular semigroup and $T \in Mul_l(S)$ is injective. Then $\ell^1(T(S)_T)$ is weakly amenable.

Proof. [2, theorem 3.6] $\ell^1(S)$ is weakly amenable. Define $\varphi: S \to \ell^1(S)_T$ by $\varphi(s)=T^{-}$ $(s \in S)$.

We show that φ is a homomorphism . Take $s \in S$, then we have

$$
\varphi(rs) = T^{-1}(rs) = T^{-1}(r) s = T^{-1}(r) \circ (T^{-1}s).
$$

So φ is a homomorphism. Then by proposition 2.1[7], $\ell^1(T(\mathcal{S})_T)$ is weakly amenable. In the case that S is a group, it is easy to see that the amenability of S implies the amenability of $\ell^1(\mathcal{S}_T)$. Indeed, when S is a group, by theorem 2.1, \mathcal{S}_T is a semigroup and one can easily prove that S_T is also a group. On the other hand, Mul_l because S is a unital semigroup, so each $T \in \text{Mul}_l(S)$ is inner and of the form for some seS. Also $T^{-1} = L_{a^{-1}}$ exists, since S is a group. Then the map defined by $\theta(s) = T(s)$ is an isomorphism; that is $S \cong S_T$. Thus we have the following result:

Corollary 3.6. Let S be a cancellative regular discrete semigroup. Then $\ell^1(S)$ is amenable if and only if $\ell^1(\mathcal{S}_T)$ is amenable.

Proof. By [9, Exercise 2.6.11] S is a group. So the assertion holds by [15, theorem 2.1.8]

Examples

In this section we present some examples which either comments on our results or indicate necessary condition in our theorems.

4.1. There are semigroups **S** and $T \in \text{Mul}_1(S)$ such that the background semigroups **S** are not commutative but their induced semigroups S_T are commutative.

This example shows that the condition $\overline{T(S)} = S$, in theorem 2.2, can not be omitted.

Let S be the set $\{a, b, c, d, e\}$ with operation table given by

Clearly(S, .) is a non-commutative semigroup. Now, put $T = L_a$ where $L_a(x) = ax$ for all $x \in S$. One can get easily the operation table of S_T as fallow:

The operation table shows that the induced semigroup S_T is commutative and $T(S) \neq$

S. Also the other induced semigroup S_T is commutative for $T = L_d$ analogously.

Now we present some important theorems from $[14]$ that we need in the following examples:

Theorem 4. 2. Let S be a semigroup. Suppose that $\ell^1(S)$ is amenable. Then

(i) \boldsymbol{S} is amenable

(ii) \boldsymbol{S} is regular.

(iii) $E(S)$ is finite.

(iv) $\ell^1(\mathbf{S})$ has an identity.

Proof. (i) That is lemma 3 in $\overline{5}$.

⁽ii) and (iii) See theorem $2 \text{ in } 6$.

(iv) That is corollary 10.6 in $[4]$.

Theorem 4.3. Let S be a finite semigroup. Then the following statements are equivalent:

- (i) $\ell^1(S)$ is amenable.
- (ii) **S** is regular and $\ell^1(\mathcal{S})$ is nuital.
- (ii)) **S** is regular and $\ell^1(\mathbf{S})$ is semisimple.

Proof. Refer to [3].

4.4. There are semigroups **S** and $T \in Mul_1(S)$ such that **S** and $\ell^1(S)$ are amenable but S_T is not regular and also, $\ell^1(S_T)$ is not amenable.

This example shows that two semigroup algebras $\ell^1(\mathcal{S})$ and $\ell^1(\mathcal{S}_T)$ can be different in some properties. Also, it notifies that the bijectivity of T in the theorem 3.3 is essential. Put $S = \{x_0, x_1, x_2, ..., x_n\}$ with the operation $x_i x_j = x_{Max\{i,j\}}$ $(0 \leq i, j \leq n,$ $n \geq 2$).

Then **S** is a semigroup. Since

$$
Max\{i, Max\{j, k\}\} = Max\{Max\{i, j\}, k\} = Max\{i, j, k\}.
$$

We denote it by S_v . This semigroup is commutative. So by (0.18) in [12], it is amenable. S_v is a unital semigroup and has a zero; indeed, $e_s = x_0$ and $o_s = x_n$. Also, it is a regular semigroup and $Mul(S_v) \cong S_v$ because S_v has an identity.

Evidently, S_v is regular since each $s \in S_v$ is idempotent. The semigroup algebra $\ell^1(\mathcal{S}_v)$ is a unital algebra because \mathcal{S}_v has an identity. So by theorem 4.3 (ii) $\ell^1(\mathcal{S}_v)$ is amenable.

Now, take $T = L_{x_k}$ for a fixed $x_k \in S$ where $k \ge 1$. By theorem 2.2, $(S_v)_T$ is commutative so is amenable. We show that T is neither injective and nor surjective. Take $x_i \in S_\vee$, then $Tx_i = x_k x_i = x_{max\{k,i\}}$. So

$$
T(\mathbf{S}_{\vee}) = \{x_k, x_{k+1}, \dots, x_n\} \neq \mathbf{S}_{\vee}.
$$

Hence, T is not surjective.

Again, take distinct elements x_i, x_j in S_{\vee} for some $i, j < k$ such that $T(x_i) = T(x_i)$. Then we have $x_{max\{k,i\}} = x_{max\{k,i\}}$ but $x_i \neq x_j$. So T is not injective.

We prove that $(S_v)_T$ is not regular. If $(S_v)_T$ is regular, then for $x_{k-1} \in S_v$ there exists an element $x_i \in S_{\vee}$ such that

$$
x_{k-1} = x_{k-1} \, \, \text{or} \, \, x_j \, \, \, \text{or} \, \, x_{k-1} = x_{Max\{k,j\}} \, .
$$

That implies that $max\{k, j\} = k - 1$; which is impossible. Consequently, by theorem 4.2 (ii) or 4.3 (ii), $\ell^1((S_v)_T)$ is not amenable.

Also, the inequality $S_{\vee} \circ S_{\vee} = \{x_k, x_{k+1}, ..., x_n\} \neq S_{\vee}$ shows that $\ell^1((S_{\vee})_T)$ is not weakly amenable. In the next example we show that in the theorem 3.2 (iii) the condition "injectivity of " can not be omitted.

4.5 There are a semigroup S and $T \in Mul_1(S)$ such that $T \in Mul_1(S)$ is not injecyive and the corresponding $\tilde{T} \in Mul_l(\ell^1(\mathcal{S}_T))$ is not an isometry.

Suppose that S_v is a semigroup as in example 4.4 and $T = L_{xv}$ for some fixed $1 < k < n$. If $f \in \ell^1(\mathcal{S}_{\vee})$ then $f = \sum_{i=0}^n f(x_i) \delta_{x_i}$ and also $\tilde{T}(f) = \sum_{i=0}^n f(x_i) \delta_{T(x_i)}$. But $T(x_i) = \begin{cases} x_i \\ x_i \end{cases}$ x_k $0 \le i \le k$,

so

$$
\tilde{T}(f) = \left(\sum_{i=0}^k f(x_i)\right) \delta_{x_k} + \sum_{i=k+1}^n f(x_i) \delta_{T(x_i)}.
$$

Hence

$$
\|\tilde{T}(f)\| = \left| \sum_{i=0}^{k} f(x_i) \right| + \sum_{i=k+1}^{n} |f(x_i)|
$$

$$
\leq \sum_{i=0}^{k} |f(x_i)| + \sum_{i=k+1}^{n} |f(x_i)| = ||f||_1,
$$

It shows that \tilde{T} is not an isometry.

4.6. There are semigroups **S** and $T \in \text{Mul}_1(S)$ such that $\ell^1(S)$ is semisimple. But $\ell^1(\mathcal{S}_T)$ is not semisimple. This example remind that, in theorem 3.1 the multiplier T must be injective.

Let S be a set $\{x_0, x_1, ..., x_n\}$ where $n \in \mathbb{N}$ and $n \geq 3$ is fixed. by operation given by $xy = x_{min} \{i, j\}$, S is a commutative semigroup. Since

 $min\{i, min\{j, k\}\} = min\{min\{i, j\}, k\} = min\{i, j, k\}$ (*i*, *j*, *k* \in **N**).

We denote it briefly by S_{λ} For each $x, y \in S$ the equality $x^2 = y^2 = xy$ implies $x = y$. So by Theorem 5.8 [8] $\ell^1(\mathcal{S}_y)$ is semisimple.

Now, let $T = L_{x_k}$ for a fixed $1 \leq k < n - 1$. It is easy to see that $T(x_k) = T(x_n)$ but $x_k \neq x_n$. So the multiplier T is not injective.

We show that neither \boldsymbol{S}_{\wedge} nor $\left\{\ell^1(\boldsymbol{S}_{\wedge}\right)_T$ is semisimple.

Each ideal of S is of the form

$$
I_m = \{x_0, x_1, ..., x_m\} \quad (m \le n).
$$

We claim that \mathcal{S}_T is not semisimple. Since for each $m \epsilon N$ we have

$$
I_{m} \circ I_{m} = \begin{cases} I_{m} & m \leq k \\ I_{k} & m > k \end{cases}
$$

On the other hand, for each $x_i, x_i \in S$ where $i \neq j$ and $i, j > k$, we have $x_i \circ j$ $x_j \circ x_j = x_i \circ x_j = x_k$, while $x_i \neq x_j$. Thus, Theorem 5.8 [8] shows that $\ell^1(\mathbf{S}_{\lambda})_{T}$ is not semisimple .

 $\overline{}$

Acknowledgment

The authors express their thanks to Professor A. R. Medghalchi for his valuable comments. Also we thank him for some corrections of this paper.

Reference

- 1. Birtel F. T., "Banach algebras of multipliers", Duke Math. J. 28 (1961) 203-211.
- 2. Blackmore T. D., "Weak amenability of discrete semigroup algebras", Semigroup Forum 55 (1997) 169-205.
- 3. Esslamzadeh G. H., "Ideal and representations of certain semigroup algebras", Semigroup Forum 69(2004) 51-62.
- 4. Dales H. G., Lau A. T.-M., Strauss D., "Banach algebras on semigroups and on their compactifications", Memoirs American Math. Soc. 205 (2010) 1-197.
- 5. Duncan J., Namioka I., "Amenability of inverse semigroup and their semigroup algebras", Proc, Royal. Edinburgh. Section A 80 (1978) 309-321.
- 6. Duncan J., Paterson A. L. T., "Amenability for discrete convolution semigroup algebras", Math. Scand. 66 (1990) 141-146.
- 7. Gronbaek N., "A characterization of weak amenability", Studia Math. 97 (1987) 149-162.
- 8. Hewitt E., Zuckerman H. S., "The ℓ^1 -algebra of a commutative semigroup", Trans. Amer. Math. Soc, 83 (1956) 70-97.
- 9. Howie J. M., "Fundamentals of Semigroup Theory", Claredon Press Oxford (2003).
- 10. Laali J., "The multipliers related products in banach alegebras", Quaestiones Mathematicae, 37 (2014) 1-17.
- 11. Larsen R., "An Introduction to the Theory of Multipliers", Springer-verlag, New York (1971).
- 12. Paterson A. L. T., "Amenability", American Mathematical Society (1988).
- 13. Medghalchi A. R., "Hypergroups, weighted hypergroups and modification by multipliers", Ph.D Thesis, University of Sheffild (1982).
- 14. Mewomo O. T., "Notions of amenability on semigroup algebras", J. Semigroup Theory Appl. 2013:8. ISSN 2051-2937 (2013) 1-18.
- 15. Mohammadi S. M., Laali J., "The Relationship between two involutive semigroups S and S_T is defined by a left multiplier T. Journal of Function Space", Article ID 851237 (2014).
- 16. Runde, "Lectures On Amenability", Springer-Verlag Berlin (2002).