Amenability and Weak Amenability of the Semigroup Algebra $\ell^1(S_T)$

^{*}Mohammadi S.M.; Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Laali J.; Department of Mathematics, Faculty of Mathematical Science and Computer, Kharazmi University

Received: 18 Nov 2013 Revised: 10 Nov 2014

Abstract

Let **S** be a semigroup with a left multiplier T on **S**. A new product on **S** is defined by T related to **S** and T such that **S** and the new semigroup S_T have the same underlying set as **S**. It is shown that if T is injective then $\ell^1(S_T) \cong \ell^1(S)_{\tilde{T}}$ where, \tilde{T} is the extension of T on $\ell^1(S)$. Also, we show that if T is bijective, then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is so. Moreover, if **S** completely regular, then $\ell^1(S_T)$ is weakly amenable.

Mathematics Subject Classification: 43A20, 43A22, 43A07. 2010 **Keywords:** Semigroup,Semigroup algebra, Multiplier, Amenability, Weak amenability.

Introduction

Let S be a semigroup and T be a left multiplier on S. We present a general method of defining a new product on S which makes S a semigroup. Let S_T denote S with the new product. These two semigroups are sometims different and we try to find conditions on S and T such that the semigroups S and S_T have the same properties. This idea has started by Birtel in [1] for Banach algebras and continued by Larsen in [11]. Recently, this notion developed by some authors, for more details see [1], [10], [11], [12] and [15]. One of the best result in this work expresses that $L^1(G)_T$ is Arens regular if and only if G is a compact group [10]. We continue this direction on the regularity of S and S_T and the amenability of their semigroup algebras.

The term of semigroup will be a non-empty set S endowed with an associative binary operation on S, defined by $(s, t) \rightarrow st$. If S is also a Hausdorff topological space and the binary operation is jointly continuous, then S is called a topological semigroup.

^{*}Corresponding author: s11mohamadi@iausr.ac.ir

Let $p \in S$. Then p is an idempotent if $p^2 = p$. The set of all idempotents of S is denoted by E(S).

An element e is a left (right) identity if es = s (resp. se = s) for all $s \in S$. An element $e \in S$ is an identity if it is a left and a right identity. An element z is a left (resp. right) zero if zs = z (resp. sz = z) for all $s \in S$. An element $z \in S$ is a zero if it is a left and a right zero. We denote any zero of S by 0_S (or z_S). An element $p \in S$ is a regular element of S if there exists $t \in S$ such that p = ptp and p is completely regular if it is regular and pt = tp. We say that $p \in S$ has an inverse if there exists $t \in S$ such that p = ptp and t = tpt. Note that the inverse of element $p \in S$ need not be unique. If $p \in S$ has an inverse, then p is regular and vise versa. Since, if $p \in S$ is regular, there exists $s \in S$ such that p = psp. Let t = sps. Then

p = psp = (psp)sp = p(sps)p = ptp, t = sps = s(psp)s = (sps)p(sps) = tpt.

So p has an inverse. We say that S is a regular (resp. completely regular) semigroup if each $p \in S$ is regular (resp. completely regular). Also S is an inverse semigroup if each $p \in S$ has a unique inverse. The map $T : S \rightarrow S$ is called a left (resp. right) multiplier if

T(st) = T(s)t (resp. T(st) = sT(t)) (s, t \in S).

The map $T: S \to S$ is a multiplier if it is a left and right multiplier.Let S be a topological semigroup. The net $(e_{\alpha}) \subseteq S$ is a left (resp. right) approximate identity if $\lim_{\alpha} e_{\alpha}t = t$. (resp. $\lim_{\alpha} t e_{\alpha} = t$) (t \in S). The net $(e_{\alpha}) \subseteq S$ is an approximate identity if it is a left and a right approximate identity.

Let S be a discrete semigroup. We denote by $\ell^1(S)$ the Banach space of all complex function f: S $\rightarrow \mathbb{C}$ having the form

$$f = \sum_{s \in S} f(s) \delta_s$$
,

such that $\sum_{s \in S} |f(s)| = ||f||_1$ is finite, where δ_s is the point mass at $\{s\}$. For f, $g \in \ell^1(S)$ we define the convolution product on $\ell^1(S)$ as fallow:

$$f * g(s) = \sum_{t_1 t_2 = s} f(t_1)g(t_2) \qquad (s \in S),$$

with this product $\ell^1(S)$ becomes a Banach algebra and is called the semigroup algebra on S.

Remark 1.1. If $f \in \ell^1(S)$ then f = 0 on S except at most on a countable subset of S. In other words, the set $A = \{s \in S : f(s) \neq 0\}$ is at most countable. Since, if $A_n = \{s \in S : |f(s)| \ge \frac{1}{n}\}$, $A = \bigcup_{n \in N} A_n$. Set $||f||_1 = M$ and $n \in N$ is fixed. Then we have

$$M = \sum_{s \in S} |f(s)| \ge \sum_{s \in A_n} |f(s)| \ge \sum_{s \in A_n} \frac{1}{n} = \frac{1}{n} |A_n|,$$

where $|A_n|$ is the cardinality of A_n . So $|A_n| \le nM$. Hence A_n is a finite subset of S and thus A is at most countable.

Semigroup S_T

Let $T \in Mul_1(S)$. Then we define a new binary operation " \circ " on **S** as follow :

 $s \circ t = s T(t) (s, t \in \mathbf{S}).$

The set S equipt with the new operation " \circ " is denoted by S_T and sometimes called "induced semigroup of S". Now we have the following results.

Theorem 2.1. Let **S** be a Semigroup. Then (i) if $T \in Mul_1(S)$ then S_T is a semigroup. The converse is true if **S** is left cancellative and T is surjective.

(ii) If \mathbf{S}_{T} is left cancellative and T is surjective, then $T^{-1} \in Mul_{l}(\mathbf{S})$.

(iii) If **S** is a topological semigroup and \mathbf{S}_T has a left approximate identity then $T^{-1} \in Mul_1(\mathbf{S})$.

Proof. i) Let $T \in Mul_1(S)$ and take r,s,t $\in S$. Then

$$r \circ (s \circ t) = r T(s \circ t) = r T(s T(t)) = r T(s)T(t) = (r T(s)) T(t)$$
$$= (r \circ s) \circ t$$

So, \mathbf{S}_{T} is a semigroup.

Conversely, suppose that **S** is left cancellative and take r,s,t \in **S**. Since T is surjective, there exists $u \in S$ such that T(u) = t. Then

$$rT(st) = rT(sT(u)) = r \circ (s \circ u) = (r \circ s) \circ u = (rT(s))T(u)$$
$$= r(T(s)t).$$

By the left cancellativity of **S**, we have T(st) = T(s)t (r, $s \in S$). So, T is a left multiplier.

ii) We must prove that T is injective. To do this end, take $r,s,u\in S$ and let T(r) = T(s). Then $u \circ r = uT(r) = uT(s) = u \circ s$. So r = s, since S_T is left cancellative. Hence T^{-1} exists.

Now, we show that $T^{-1} \in Mul_l(\mathbf{S})$. Take $r, s \in \mathbf{S}$. Then

$$T^{-1}(rs) = T^{-1}[TT^{-1}(r)s] = T^{-1}[T(T^{-1}(r)s)]$$

= $(T^{-1}T)[T^{-1}(r)s] = T^{-1}(r)s$.

iii) It is enough to show that T is injective. Take $r, s \in S$ and suppose that T(r) = T(s). Then

$$r = \lim_{\alpha} e_{\alpha} \circ r = \lim_{\alpha} e_{\alpha} T(r) = \lim_{\alpha} e_{\alpha} T(s) = \lim_{\alpha} e_{\alpha} \circ s = s$$

There are many properties that induced from **S** to semigroup S_T . But sometimes they are different.

Theorem2.2. Let **S** be a Hausdorff topological semigroup and $T \in Mul_1(S)$. If **S** is commutative then so is S_T . The converse is true if $\overline{T(S)} = S$.

Proof. Suppose **S** is commutative and take $r, s \in S$. Then

$$\mathbf{r} \circ \mathbf{s} = \mathbf{r} \operatorname{T}(\mathbf{s}) = \operatorname{T}(\mathbf{s})\mathbf{r} = \operatorname{T}(\mathbf{s}\mathbf{r}) = \operatorname{T}(\mathbf{r})\mathbf{s} = \operatorname{s}(\mathbf{r})\mathbf{r} = \mathbf{s} \circ \mathbf{r}.$$

So, \mathbf{S}_{T} is commutative.

Conversely, Let $\mathbf{S}_{\mathbf{T}}$ be commutative and take $r, s \in \mathbf{S}$. Then there exist nets (r_{α}) and (s_{β}) in \mathbf{S} such that $\lim_{\alpha} T(r_{\alpha}) = r$ and $\lim_{\beta} T(s_{\beta}) = s$.

So, we have

 $rs = \lim_{\alpha} \lim_{\beta} \mathbf{T}(r_{\alpha} \circ s_{\beta}) = \lim_{\alpha} \lim_{\beta} \mathbf{T}(s_{\beta} \circ r_{\alpha}) = \lim_{\alpha} \lim_{\beta} \mathbf{T}(s_{\beta}) \mathbf{T}(r_{\alpha}) = s r.$

Thus **S** is commutative .

In the sequel, we investigate some relations between two semigroup S and S_T according to the role of the left multiplier T.

Theorem 2.3. Let **S** be a semigroup and $T \in Mul_1(S)$. Then

(i) If T is surjective and S_T is an inverse semigroup then S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

(ii) If S_T is an inverse semigroup and T is injective then T(S) is an inverse subsemigroup of S.

(iii) If T is bijective then S_T is an inverse semigroup if and only if S is an inverse semigroup.

Proof. i) Suppose that \mathbf{S}_T is an inverse semigroup and T is surjective. Define the map $\varphi: \mathbf{S}_T \to \mathbf{S}$ by $\varphi(s) = T(s)$. Take r, $s \in \mathbf{S}$, then

 $\varphi(r \circ s) = T(r \circ s) = T(r)T(s) = \varphi(r)\varphi(s).$

So, φ is an epimorphism from S_T onto S, since T is surjective. By theorem 5.1.4[7], S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

ii) Suppose that T is injective and S_T is an inverse semigroup. Evidently, T(S) is a subsemigroup of S. We show that it is an inverse semigroup. Take $s \in T(S)$. There exists $t \in S$ such that s = T(t). Also, there exists a unique element $u \in S$ such that $t = t_0 u_0 t$, since S_T is an inverse semigroup. Therefore, T(t) = T(t)T(u)T(t), or $s = s_0 T(u)_0 s$. Of course, T(u) is unique because $u \in S$ is unique and T is injective. Hence T(S) is an inverse subsemigroup of S.

iii) Suppose that T is bijective and let S_T be an inverse semigroup. Since T is injective and surjective, by (i) and (ii), S = T(S) is an inverse semigroup.

Conversely, suppose that **S** is an inverse semigroup. Since *T* is bijective, by theorem 2.1(ii), $T^{-1} \epsilon Mul_l(S)$. So φ^{-1} : $S \to S_T$ defined by $\varphi^{-1}(s) = T^{-1}(s)$ is an epimorphism. Hence by (i) S_T is an inverse semigroup

We say that $T \in Mul_l(S)$ is an inner left multiplier if it has the form $T = L_s$ for some $s \in S$ where $L_s(t) = s t$ $(t \in S)$.

If $T \in Mul_l(S)$ is inner, then each ideal of S is permanent under T; that is $T(I) \subseteq I$ for all ideal I of S. It is easily to see that if S has an identity, then each $T \in Mul_l(S)$ is inner.

Let S be a semigroup. Then S is called semisimple if $I^2 = I$ for all ideal I of S (see [9], page 95 for more details).

Theorem 2.4. Let S be a semigroup whit an identity and $T \in Mul_l(S)$. If S_T is semisimple, then S is so. The converse is true if S_T is left cancellative and T is surjective.

Proof. Since **S** is unital there exists $\mu \in S$ such that $T = L_{\mu}$. Suppose that S_T is semisimple and **I** is an ideal of **S**. Then

$$I \circ S = I T(S) \subseteq I S \subseteq I$$
.

Similarly, $S \circ I \subseteq I$. It follows that I is an ideal of S_T . By the hypothesis $(I_T)^2 = I \circ I = I$. Now, take $r \in I$ then there are $s, t \in I$ such that

$$r = s \circ t = sT(t) = s(\mu t) \in I^2.$$

So we show that $I^2 = I$ and hence **S** is semisimple.

Conversely, assume that S_T is left cancellative and $T \in Mul_l(S)$ is surjective then by theorem 2.1(ii), $T^{-1} \in Mul_l(S)$. So, there exists $b \in S$ such that $T^{-1} = L_b$. Suppose that $\breve{S} = S_{T^{-1}}$. Then we have.

$$\boldsymbol{S} = \boldsymbol{S}_{TT^{-1}} = (\boldsymbol{S}_T)_{T^{-1}} = \boldsymbol{\breve{S}}_{T^{-1}}.$$

By hypothesis and above the proof, $\mathbf{\breve{S}} = \mathbf{S}_{T^{-1}}$ is semisimple.

Semigroup Algebra $\ell^1(S_T)$

We say that a discrete semigroup S is amenable if there exists a positive linear functional on $\ell^{\infty}(S)$ called a mean such that m(1) = 1 and $m(l_s f) = m(f)$, $m(r_s f) = m(f)$ for each $s \in S$, where $l_s f(t) = f(st)$ and $r_s f(t) = f(ts)$ for all $t \in S$. The definition of amenable group is similar to semigroup case. Refer to [12] for more details.

Let \mathfrak{A} be a Banach algebra and let *X* be a Banach \mathfrak{A} –bimodule. A derivation from \mathfrak{A} to *X* is a linear map $D: \mathfrak{A} \longrightarrow X$ such that

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathfrak{A}).$$

A derivation *D* is inner if there exists $x \in X$ such that

$$D(a) = a \cdot x - x \cdot a \qquad (a \in \mathfrak{A}).$$

The Banch algebra \mathfrak{A} is amenable if every bounded derivation $D: \mathfrak{A} \longrightarrow X^*$ is inner for all Banach \mathfrak{A} –bimodule X. Where X^* is the dual space of X. We say that the Banch algebra \mathfrak{A} is weakly amenable if any bounded derivation D from \mathfrak{A} to \mathfrak{A}^* is inner. Fore more details see [12], [16].

If **S** is a commutative semigroup, by theorem 5.8 of [8] $\ell^1(S)$ is called semisimple if and only if for all $x, y \in S$, $x^2 = y^2 = xy$ implies x = y.

Theorem 3.1. Let **S** be a commutative semigroup and let $T \in Mul_l(S)$ be injective. Then $\ell^1(S)$ is semisimple if and only if $\ell^1(S_T)$ is semisimple.

Proof. Take $r, s \in S$. Then $r^2 = s^2 = rs$ if and only if $T(r^2) = T(s^2) = T(r)T(s)$ or equivalently $r_0 r = s_0 s = r_0 s$, because T is injective. So, by theorem 5.8 [8], $\ell^1(S)$ is semisimple if and only if $\ell^1(S_T)$ is semisimple.

Theorem 3.2. Let **S** be a discrete semigroup and $T \in Mul_l(S)$. Then

(i) The left multiplier T has an extension $\tilde{T} \in Mul_l(\ell^1(S))$ with the norm decreasing.

(ii) The left multiplier T is injective if and only if so is \tilde{T} .

(iii) If T is injective then \tilde{T} is an isometry and also $\ell^1(S_T)$ and $(\ell^1(S))_T$ are isomorphic.

Proof. (i) An arbitrary element $f \in \ell^1(S)$ is of the form $f: S \to \mathbb{C}$ such that f(x) = 0 except at the most countable subset A of S. If A is a finite subset of S then $f = \sum_{k=1}^n f(x_k) \, \delta_{x_k}$ for some fixed $n \in \mathbb{N}$. So in general we have

$$f = \sum_{x \in S} f(x)\delta_x = \sum_{x \in A} f(x)\delta_x = \sum_{k=1} f(x_k) \delta_{x_k}.$$

Now, for each $n \in \mathbb{N}$, let $f_n = \sum_{k=1}^n f(x_k) \delta_{x_k}$ and define $\tilde{T}: \ell^1(S) \longrightarrow \ell^1(S)$ by

$$\widetilde{T}(\delta_x) = \delta_{T(x)} \quad (x \in \mathbf{S}) ,$$

$$\widetilde{T}(f_n) = \sum_{k=1}^n f(x_k) \widetilde{T}(\delta_{x_k}) = \check{f}_n .$$

For each $m, n \in \mathbb{N}$ where $n \ge m$, we have

$$\begin{aligned} \left\| \tilde{T}(f_n) - \tilde{T}(f_m) \right\|_1 &= \left\| \tilde{f}_n - \tilde{f}_m \right\|_1 = \left\| \sum_{k=m}^{k=n} f(x_k) \ \tilde{T}(\delta_{x_k}) \right\| = \left\| \sum_{k=m}^{k=n} f(x_k) \ \delta_{T(x_k)} \right\| \\ &\leq \sum_{k=m}^{k=n} |f(x_k)| = \|f_n - f_m\|_1. \end{aligned}$$

So $\{\tilde{T}(f_n)\}_n$ is a Cauchy sequence and it is convergent. Now, we define $\tilde{T}(f) = \lim_n \tilde{f_n}$. Then the definition is well defined. Hence

$$\widetilde{T}(f) = \sum_{k=1}^{\infty} f(x_k) \, \widetilde{T}(\delta_{x_k}) = \widetilde{f} \, ,$$

also

$$\|\tilde{f}\|_{1} \leq \sum_{x_{k} \in A} |f(x_{k})| = \|f\|_{1} \text{ or } \|\tilde{T}(f)\|_{1} \leq \|f\|_{1}$$

It shows that \tilde{T} is norm decreasing.

In the following, we extend \tilde{T} by linearity. Let $f, g \in \ell^1(S)$. Then there are two at most countable sub set A, B of **S** such that

$$f = \sum_{x \in A} f(x) \delta_x$$
, $g = \sum_{x \in B} g(x) \delta_x$.

Suppose that $D = A \cup B$. So we have $f + g = \sum_{x \in D} (f(x) + g(x))\delta_x$.

Then, it follows that

$$\widetilde{T}(f+g) = \widetilde{f+g} = \sum_{x \in D} (f(x) + g(x)) \widetilde{T}(\delta_x) = \sum_{x \in A} f(x) \widetilde{T}(\delta_x) + \sum_{x \in B} g(x) \widetilde{T}(\delta_x)$$

= $\widetilde{f} + \widetilde{g}$.

Also, if $\alpha \in \mathbb{C}$, we have

$$\widetilde{T}(\alpha f) = \widetilde{\alpha f} = \sum_{x \in A} \alpha f(x) \widetilde{T}(\delta_x) = \alpha \sum_{x \in A} f(x) \widetilde{T}(\delta_x) = \alpha \widetilde{T}(f).$$

Therefore, \tilde{T} is a bounded linear isometry.

Now, we prove that $\tilde{T} \in Mul_l (\ell^1(S))$. Take *x*, $y \in S$. Then

$$\tilde{T}(\delta_x * \delta_y) = \tilde{T}(\delta_{xy}) = \delta_{T(xy)} = \delta_{T(x)y} = \delta_{T(x)} * \delta_y = \tilde{T}(\delta_x) * \delta_y.$$

Let $y \in S$ be fixed and $f, g \in \ell^1(S)$. Then

$$\widetilde{T}(f * \delta_y) = \widetilde{T}(\sum_{x \in A} f(x) \,\delta_{xy}) = \sum_{x \in A} f(x)\widetilde{T}(\delta_{xy}) \\ = \left(\sum_{x \in A} \widetilde{T}(\delta_x)\right) * \delta_y = \widetilde{f} * \delta_y = \widetilde{T}(f) * \delta_y$$

In the general case, we have

$$\begin{split} \tilde{T}(f*g) &= \tilde{T}(\sum_{x \in A} f(x) \left(\sum_{y \in B} g(y)\right) \delta_{xy}) = \sum_{x \in A} f(x) \sum_{y \in B} g(y) \tilde{T}(\delta_x) * \delta_y \\ &= \sum_{x \in A} f(x) \tilde{T}(\delta_x) * \sum_{y \in B} g(y) \delta_y = \tilde{T}(f) * g \end{split}$$

This shows that \tilde{T} is a multiplier on $\ell^1(S)$.

(ii) Let *T* be injective. Take $x, y \in S$ and suppose that $\tilde{T}(\delta_x) = \tilde{T}(\delta_y)$. Then $\delta_{T(x)} = \tilde{T}(\delta_x) = \tilde{T}(\delta_y) = \delta_{T(y)}$.

Therefore, T(x) = T(y). Since T is injective, we have x = y. It follows that $\delta_x = \delta_y$, consequently \tilde{T} is injective.

Conversely, the same argument shows that the converse holds.

(iii) Let *T* be injective and $f \in \ell^1(S)$. Then there exists at most a countable subset $A \subseteq S$ such that

Mathematical Researches (Sci. Kharazmi University)

$$f = \sum_{x \in A} f(x) \delta_x$$

Since A and T(A) have the same cardinal number, $\|\tilde{T}(f)\| = \|\sum_{x \in A} f(x) \delta_x\| = \sum_{x \in A} |f(x)| = \|f\|_1$, so \tilde{T} is an isometry.

Now, we can define a new multiplication "[*]" on $\ell^1(S)$ as follow

$$f * g = f * \tilde{T}g \quad (f, g \in \ell^1(S)).$$

By a similar argument in theorem 1.31 [10], $\ell^1(S)$ with the new product is a Banach algebra that is denoted it by $\ell^1(S)_{\tilde{T}}$. We define the map $\Psi: \ell^1(S_T) \to \ell^1(S)_{\tilde{T}}$, by

$$\Psi(\delta_x) = \delta_x \qquad (x \in \mathbf{S}).$$

Take $x, y \in S$. Then

$$\Psi(\delta_{x} * \delta_{y}) = \Psi(\delta_{x \circ y}) = \delta_{xT(y)} = \delta_{x} * \delta_{T(y)}$$
$$= \delta_{x} * \tilde{T}(\delta_{y}) = \delta_{x} \textcircled{*} \delta_{y}$$
$$= \Psi(\delta_{x}) \textcircled{*} \Psi(\delta_{y}).$$

So, in general case, we have

$$\Psi(f * g) = \Psi(f) * \Psi(g) \qquad (f, g \in \ell^1(\mathbf{S}))$$

Thus, Ψ is an isomorphism. Therefore $\ell^1(S_T)$ and $\ell^1(S)_{\tilde{T}}$ are isomorphic

Theorem 3.3. Let **S** be a semigroup and $T \in Mul_l(S)$ be bijective. Then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is amenable.

Proof. By theorem 3.2, we have $\ell^1(S_T) \cong \ell^1(S)_{\tilde{T}}$. Suppose that $\ell^1(S_T)$ is amenable and define $\varphi: \ell^1(S)_{\tilde{T}} \longrightarrow \ell^1(S)$ by $\varphi(f) = \tilde{T}(f)$. Take $x, y \in S$. Then

$$\varphi(\delta_x \underbrace{*} \delta_y) = \tilde{T}(\delta_x \underbrace{*} \delta_y) = \tilde{T}(\delta_{xT(y)}) = \tilde{T}(\delta_x * \delta_{T(y)}) = \tilde{T}(\delta_x) * \delta_{T(y)}$$
$$= \tilde{T}(\delta_x) * \tilde{T}(\delta_y) = \varphi(\delta_x) * \varphi(\delta_y) .$$

Now, by induction and continuity of \tilde{T} , we have

$$\varphi(f * g) = \varphi(f) * \varphi(g) .$$

If T is bijective, \tilde{T} is bijective. Therefore φ is an epimorphism of $\ell^1(S_T)$ onto $\ell^1(S)$.

Hence, by proposition 2.3.1 **[16]** $\ell^1(S)$ is amenable.

Conversely, suppose that $\ell^1(S)$ is amenable. Since T is bijective, \tilde{T} is bijective. Therefore \tilde{T}^{-1} exists. Now define $\theta: \ell^1(S) \to \ell^1(S_T) [\cong \ell^1(S)_{\tilde{T}}]$ by $\theta(f) = \tilde{T}^{-1}(f)$. Take $x, y \in S$. Then

$$\theta(\delta_x * \delta_y) = \tilde{T}^{-1}(\delta_{xy}) = \tilde{T}^{-1}(\delta_x)\tilde{T}\tilde{T}^{-1}(\delta_y) = \tilde{T}^{-1}(\delta_x) \stackrel{\text{\tiny{(x)}}}{=} \tilde{T}^{-1}(\delta_y)$$
$$= \theta(\delta_x) \stackrel{\text{\tiny{(x)}}}{=} \theta(\delta_y).$$

Similarly θ is an epimorphism from $\ell^1(S)$ onto $\ell^1(S_T)$. By proposition 2.3.1 [16] $\ell^1(S_T)$ is amenable.

Note that, in general, it is not known when $\ell^1(S)$ is weakly amenable. For more detials see [2].

Theorem3.4. Let **S** be a semigroup and $T \in Mul_l(S)$ be bijective. Then, if **S** is completely regular then $\ell^1(S_T)$ is weakly amenable.

Proof. It is enough to prove that S_T is completely regular, then by theorem 3.6 [2], $\ell^1(S_T)$ can be weakly amenable. Take $s \in S$. Then there exists $r \in S$ such that T(s) = T(s)T(r)T(s), T(r)T(s) = T(s)T(r), since T is bijective and S = T(S) is completely regular. So we have $T(s) = T(s \circ r \circ s)$ and $T(r \circ s) = T(s \circ r)$. Hence $s = s \circ r \circ s$ and $r \circ s = s \circ r$ for some $r \in S$, since T is injective. Therefore S_T is completely regular.

Corollary.3.5. Suppose that **S** is a commutative completely regular semigroup and $T \in Mul_l(S)$ is injective. Then $\ell^1(T(S)_T)$ is weakly amenable.

Proof. [2, theorem 3.6] $\ell^1(S)$ is weakly amenable. Define $\varphi: S \to \ell^1(S)_T$ by

$$\varphi(s) = T^{-1}(s) \qquad (s \in \mathbf{S}).$$

We show that φ is a homomorphism . Take $s \in S$, then we have

$$\varphi(rs) = T^{-1}(rs) = T^{-1}(r)s = T^{-1}(r) \circ (T^{-1}s).$$

So φ is a homomorphism. Then by proposition 2.1[7], $\ell^1(T(S)_T)$ is weakly amenable. In the case that S is a group, it is easy to see that the amenability of S implies the amenability of $\ell^1(S_T)$. Indeed, when S is a group, by theorem 2.1, S_T is a semigroup and one can easily prove that S_T is also a group. On the other hand, $Mul_l(S) \cong S$ because S is a unital semigroup, so each $T \in Mul_l(S)$ is inner and of the form $T = L_s$ for some $s \in S$. Also $T^{-1} = L_{a^{-1}}$ exists, since S is a group. Then the map $\theta: S_T \to S$ defined by $\theta(s) = T(s)$ is an isomorphism; that is $S \cong S_T$. Thus we have the following result:

Corollary 3.6. Let **S** be a cancellative regular discrete semigroup. Then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is amenable.

Proof. By [9, Exercise 2.6.11] *S* is a group. So the assertion holds by [15, theorem 2.1.8]

Examples

In this section we present some examples which either comments on our results or indicate necessary condition in our theorems.

4.1. There are semigroups S and $T \in Mul_l(S)$ such that the background semigroups S are not commutative but their induced semigroups S_T are commutative.

This example shows that the condition $\overline{T(S)} = S$, in theorem 2.2, can not be omitted.

Let S be the set {a, b, c, d, e} with operation table given by

	а	b	с	d	e
a	а	а	а	d	d
b		b			
b				d	d
c		с		d	d
d	d	d	d	а	а
e	d	e	e	а	а

Clearly($S_{r,.}$) is a non-commutative semigroup. Now, put $T = L_a$ where $L_a(x) = ax$ for all $x \in S$. One can get easily the operation table of S_T as fallow:

o	а	b	с	d	e
а	а	а	а	d	d
b	а	а	а	d	d
c	а	а	a	d	d
d	d	d	d	a	a
e	d	d	d	а	а

The operation table shows that the induced semigroup S_T is commutative and $T(S) \neq T(S)$

S. Also the other induced semigroup S_T is commutative for $T = L_d$ analogously.

Now we present some important theorems from [14] that we need in the following examples:

Theorem 4. 2. Let **S** be a semigroup. Suppose that $\ell^1(S)$ is amenable. Then

(i) **S** is amenable

(ii) **S** is regular.

(iii) E(S) is finite.

(iv) $\ell^1(S)$ has an identity.

Proof. (i) That is lemma 3 in **[5**].

(ii) and (iii) See theorem 2 in[6].

(iv) That is corollary 10.6 in [4].

Theorem 4.3. Let S be a finite semigroup. Then the following statements are equivalent:

- (i) $\ell^1(S)$ is amenable.
- (ii) **S** is regular and $\ell^1(S)$ is nuital.
- (ii)) **S** is regular and $\ell^1(S)$ is semisimple.

Proof. Refer to [3].

4.4. There are semigroups S and $T \in Mul_l(S)$ such that S and $\ell^1(S)$ are amenable but S_T is not regular and also, $\ell^1(S_T)$ is not amenable.

This example shows that two semigroup algebras $\ell^1(S)$ and $\ell^1(S_T)$ can be different in some properties. Also, it notifies that the bijectivity of *T* in the theorem 3.3 is essential. Put $\mathbf{S} = \{x_0, x_1, x_2, ..., x_n\}$ with the operation $x_i x_j = x_{Max\{i,j\}}$ $(0 \le i, j \le n, n \ge 2)$.

Then **S** is a semigroup. Since

$$Max\{i, Max\{j, k\}\} = Max\{Max\{i, j\}, k\} = Max\{i, j, k\}.$$

We denote it by S_{v} . This semigroup is commutative. So by (0.18) in [12], it is amenable. S_{v} is a unital semigroup and has a zero; indeed, $e_{s} = x_{0}$ and $o_{s} = x_{n}$. Also, it is a regular semigroup and $Mul(S_{v}) \cong S_{v}$ because S_{v} has an identity.

Evidently, S_{\vee} is regular since each $s \in S_{\vee}$ is idempotent. The semigroup algebra $\ell^{1}(S_{\vee})$ is a unital algebra because S_{\vee} has an identity. So by theorem 4.3 (ii) $\ell^{1}(S_{\vee})$ is amenable.

Now, take $T = L_{x_k}$ for a fixed $x_k \in S$ where $k \ge 1$. By theorem 2.2, $(S_v)_T$ is commutative so is amenable. We show that *T* is neither injective and nor surjective. Take $x_i \in S_v$, then $Tx_i = x_k x_i = x_{max\{k,i\}}$. So

$$T(\boldsymbol{S}_{\vee}) = \{x_k, x_{k+1}, \dots, x_n\} \neq \boldsymbol{S}_{\vee}.$$

Hence, T is not surjective.

Again, take distinct elements x_i, x_j in S_{\vee} for some i, j < k such that $T(x_i) = T(x_j)$. Then we have $x_{max\{k,i\}} = x_{max\{k,j\}}$ but $x_i \neq x_j$. So *T* is not injective.

We prove that $(S_V)_T$ is not regular. If $(S_V)_T$ is regular, then for $x_{k-1} \in S_V$ there exists an element $x_i \in S_V$ such that

$$x_{k-1} = x_{k-1 \ 0} \ x_{j \ 0} \ x_{k-1} = x_{Max\{k,j\}} \ .$$

That implies that $max\{k, j\} = k - 1$; which is impossible. Consequently, by theorem 4.2 (ii) or 4.3 (ii), $\ell^1((S_v)_T)$ is not amenable.

Also, the inequality $S_{v} \circ S_{v} = \{x_{k}, x_{k+1}, ..., x_{n}\} \neq S_{v}$ shows that $\ell^{1}((S_{v})_{T})$ is not weakly amenable. In the next example we show that in the theorem 3.2 (iii) the condition "injectivity of " can not be omitted.

4.5 There are a semigroup S and $T \in Mul_l(S)$ such that $T \in Mul_l(S)$ is not injective and the corresponding $\tilde{T} \in Mul_l(\ell^1(S_T))$ is not an isometry.

Suppose that S_{\vee} is a semigroup as in example 4.4 and $T = L_{x_k}$ for some fixed 1 < k < n. If $f \in \ell^1(S_{\vee})$ then $f = \sum_{i=0}^n f(x_i) \delta_{x_i}$ and also $\tilde{T}(f) = \sum_{i=0}^n f(x_i) \delta_{T(x_i)}$. But $T(x_i) = \begin{cases} x_i & k < i \le n \\ x_k & 0 \le i \le k \end{cases}$,

S0

$$\widetilde{T}(f) = \left(\sum_{i=0}^{k} f(x_i)\right) \delta_{x_k} + \sum_{i=k+1}^{n} f(x_i) \delta_{T(x_i)}$$

Hence

$$\|\tilde{T}(f)\| = \left|\sum_{i=0}^{k} f(x_i)\right| + \sum_{i=k+1}^{n} |f(x_i)|$$

$$\leq \sum_{i=0}^{k} |f(x_i)| + \sum_{i=k+1}^{n} |f(x_i)| = \|f\|_1,$$

It shows that \tilde{T} is not an isometry.

4.6. There are semigroups S and $T \in Mul_l(S)$ such that $\ell^1(S)$ is semisimple. But $\ell^1(S_T)$ is not semisimple. This example remind that, in theorem 3.1 the multiplier T must be injective.

Let **S** be a set { $x_0, x_1, ..., x_n$ } where $n \in \mathbb{N}$ and $n \ge 3$ is fixed. by operation given by $xy = x_{min \{i, i\}}$, **S** is a commutative semigroup. Since

 $min\{i, min\{j, k\}\} = min\{min\{i, j\}, k\} = min\{i, j, k\}$ (*i*, *j*, *k* \in **N**).

We denote it briefly by S_{Λ} For each $x, y \in S$ the equality $x^2 = y^2 = xy$ implies x = y. So by Theorem 5.8 [8] $\ell^1(S_{\Lambda})$ is semisimple.

Now, let $T = L_{x_k}$ for a fixed $1 \le k < n - 1$. It is easy to see that $T(x_k) = T(x_n)$ but $x_k \ne x_n$. So the multiplier T is not injective.

We show that neither \boldsymbol{S}_{\wedge} nor $\ell^1(\boldsymbol{S}_{\wedge})_{T}$ is semisimple.

Each ideal of **S** is of the form

$$I_m = \{x_0, x_1, \dots, x_m\}$$
 $(m \le n)$

We claim that S_T is not semisimple. Since for each $m \in N$ we have

$$\boldsymbol{I}_m \circ \boldsymbol{I}_m = \begin{cases} \boldsymbol{I}_m & m \le k \\ \boldsymbol{I}_k & m > k \end{cases}$$

On the other hand, for each $x_i, x_j \in \mathbf{S}$ where $i \neq j$ and i, j > k, we have $x_i \circ x_i = x_j \circ x_j = x_i \circ x_j = x_k$, while $x_i \neq x_j$. Thus, Theorem 5.8 [8] shows that $\ell^1(\mathbf{S}_A)_T$ is not semisimple.

Acknowledgment

The authors express their thanks to Professor A. R. Medghalchi for his valuable comments. Also we thank him for some corrections of this paper.

Reference

- 1. Birtel F. T., "Banach algebras of multipliers", Duke Math. J. 28 (1961) 203-211.
- Blackmore T. D., "Weak amenability of discrete semigroup algebras", Semigroup Forum 55 (1997) 169-205.
- Esslamzadeh G. H., "Ideal and representations of certain semigroup algebras", Semigroup Forum 69(2004) 51-62.
- Dales H. G., Lau A. T.-M., Strauss D., "Banach algebras on semigroups and on their compactifications", Memoirs American Math. Soc. 205 (2010) 1-197.
- Duncan J., Namioka I., "Amenability of inverse semigroup and their semigroup algebras", Proc, Royal. Edinburgh. Section A 80 (1978) 309-321.
- Duncan J., Paterson A. L. T., "Amenability for discrete convolution semigroup algebras", Math. Scand. 66 (1990) 141-146.
- 7. Gronbaek N., "A characterization of weak amenability", Studia Math. 97 (1987) 149-162.
- Hewitt E., Zuckerman H. S., "The ℓ¹ −algebra of a commutative semigroup", Trans. Amer. Math. Soc, 83 (1956) 70-97.
- 9. Howie J. M., "Fundamentals of Semigroup Theory", Claredon Press Oxford (2003).
- Laali J., "The multipliers related products in banach alegebras", Quaestiones Mathematicae, 37 (2014) 1-17.
- 11. Larsen R., "An Introduction to the Theory of Multipliers", Springer-verlag, New York (1971).
- 12. Paterson A. L. T., "Amenability", American Mathematical Society (1988).

- Medghalchi A. R., "Hypergroups, weighted hypergroups and modification by multipliers", Ph.D Thesis, University of Sheffild (1982).
- Mewomo O. T., "Notions of amenability on semigroup algebras", J. Semigroup Theory Appl. 2013:8. ISSN 2051-2937 (2013) 1-18.
- 15. Mohammadi S. M., Laali J., "The Relationship between two involutive semigroups S and S_T is defined by a left multiplier T. Journal of Function Space", Article ID 851237 (2014).
- 16. Runde, "Lectures On Amenability", Springer-Verlag Berlin (2002).

46