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Abstract 

In this paper, we will use a modified  variational iteration method (MVIM) for solving 

an inverse heat conduction problem (IHCP). The approximation of the temperature and the 

heat flux at 0x   are considered. This method is based on the use of Lagrange multipliers 

for the identification of optimal values of parameters in a functional in Euclidian space. 

Applying this technique, a rapid convergent sequence to the exact solution is produced. 

Moreover, this method does not require any discretization, linearization or small 

perturbation, thus it can be considered as an efficient method to solve this problem. To 

show the strength  and capability of this method, some examples are given. 

 

Keywords: IHCP, Unstable, Ill-posed, MVIM, BFM, FSM, FDM, SFDM. 

 

Introduction 

Inverse heat conduction problems have many applications in various branches of 

science and engineering. In remote sensing, oil exploration, nondestructive evaluation 

of material and determination of the earth's interior structure. One of the applications 

may be the determination of the surface heat flux histories of reentering heat shield [1]. 

Inverse problems are in nature 'unstable' because the unknown solutions and 

parameters have to be  determined from indirect observable data which contain 

measurement error. 

The major difficulty in establishing any numerical algorithm for approximating the 

solution is the ill-posedness of the problem and the ill-conditioning of the resulting 

discretized matrix.  
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A number of  techniques have been proposed for solving the inverse problems, such 

as the boundary element method (BEM) [2], the method of fundamental solutions [3,4], 

genetic algorithm [5], regularization method [6] and etc [7-15]. In this study, we use a 

modified VIM to construct a solution to an IHCP. The VIM was first suggested by Ji-

Huan He [16-23]. This method is based on the use of Lagrange multipliers for the 

identification of optimal values of parameters in a functional. This method constructs a 

rapidly convergent sequence to the exact solution. Moreover, VIM does not require any 

discretization, linearization or small perturbation. This method is effectively, 

convenience and accurate. Thus, it has been extensively applied to various kinds of 

linear and nonlinear problems [24-28].  

This paper is organized as follows: In Section 2, description of the problem is 

presented. Numerical procedure is introduced in Section 3. In Section 4, some examples 

are given. A conclusion of paper is considered in Section 5. 

 

Description of the problem 

In this section, we consider the following IHCP, in the dimensionless form: 

( , ) ( , ) ( , ); 0 1, 0 ,t xx finT x t T x t h x t x t t                                       (1) 

( ,0) ( ); 0 1,T x x x                                                           (2) 

(0, ) ( ); 0 ,finT t p t t t                                                          (3) 

(1, ) ( ); 0 ,finT t q t t t                                                          (4) 

 and the over specified condition: 

1 1( , ) ( ); 0 1, 0 ,finT x t g t x t t                                                 (5) 

where h  is known heat source, ( )x  is continuous known function, ( )q t  and ( )g t  are 

infinitely differentiable known functions, 1 (0,1)x   is the interior location of a 

thermocouple recording the temperature measurement (5) and fint  represent the final 

time of interest for the time evolution of the problem, while the temperature 

(0, ) ( )T t p t  and heat flux (0, )xT t  are unknown which remain to be determined from 

some interior temperature measurements. 

The problem (1)-(5) may be divided into two separate problems, as shown in Figure 

1. 
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Figure 1. Inverse heat conduction problem (1)-(5) 

The first problem is: 

1( , ) ( , ) ( , ); 1, 0 ,t xx finT x t T x t h x t x x t t                                        (6) 

1( ,0) ( ); 1,T x x x x                                                         (7) 

1( , ) ( ); 0 ,finT x t g t t t                                                         (8) 

(1, ) ( ); 0 .finT t q t t t                                                           (9) 

This problem may be analyzed as a direct problem for the portion of the body from 

1x x  to 1x   with known boundary conditions. There is a unique stable solution to the 

direct problem (6)-(9) and may be found in [29]. The second problem is the following 

IHCP: 

1( , ) ( , ) ( , ); 0 , 0 ,t xx finT x t T x t h x t x x t t                                         (10) 

1( , ) ( ); 0 ,finT x t g t t t                                                             (11) 

1( , ) ( ); 0 .x finT x t k t t t                                                              (12) 

The heat flux at 1 1( . . ( , ) ( ))xx x i e T x t k t   can be obtained from the solution of 

the direct problem (6)-(9) [30, 31]. The problem (10)-(12) is called Cauchy problem. 

The Cauchy problem is ill-posed. The solution of the problem (10) through (12) exists 

and is unique but not always stable [29].  

In the next section, the above IHCP will be considered, the heat in the body and heat 

flux at the boundary 0x   will be obtained by solving this problem numerically. 

 

Numerical procedures 

Consider the general differential equation: 

( ) ( ) ( ); ,LT x NT x x a x b   
 

where L  and N are linear and nonlinear operators, respectively, and   is an 

inhomogeneous term. According to VIM, we construct a correction functional as 

follows: 
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1( ) ( ) ( )( ( ) ( )) ,
x

n n n n
a

T x T x s LT NT s s ds       

where 
 
is a Lagrange multiplier, which can be identified optimally via the variational 

theory, nT
 
is a restricted variation, i.e. 0nT   [16, 25]. Now, we need to determine the 

Lagrangian multiplier  . Then by using the determined Lagrangian multiplier and an 

initial value 
0 ( )T x  [11, 18-20, 25, 32-33], the successive approximations 1( ), 0,nT x n   

of the solution ( )T x  will be readily obtained as follows: 

1( ) ( ) ( )( ( ) ( )) .
x

n n n n
a

T x T x s LT NT s s ds       

Now, we solve the problem (10)-(12) with MVIM. For equation (10), the correction 

functional can be expressed as follows: 

1
1( , ) ( , ) ( )( ( , ) ( , ) ( , )) ,

ss t

x

n n n n
x

T x t T x t s T s t T s t h s t ds      

where nT  is a restricted variation and  is the Lagrange multiplier. 

To find the optimal value of ,
 
we have: 

1
1( , ) ( , ) ( )( ( , ) ( , ) ( , )) 0.

ss t

x

n n n n
x

T x t T x t s T s t T s t h s t ds          

After some calculation, we obtain the following stationary conditions: 

( ) 0, 1 ( ) 0, ( ) 0.s x x      
 

So, we have: 

( ) .s s x  
 

Therefore, we obtain the following iteration formula: 

1
1( , ) ( , ) ( )( ( , ) ( , ) ( , )) ,

ss t

x

n n n n
x

T x t T x t s x T s t T s t h s t ds                              (13) 

where 0T  may be selected as any function that just satisfies, at least, the initial or 

boundary conditions [18, 32-36] but according to Adomian's decomposition method 

(ADM) in x direction which is equivalent to the VIM in x direction [38], we assume 

0( , ) 0LT x t    or 0 1( )T B x x C   , where B
 
and C  can be determined from the 

boundary conditions, for simplicity, as the initial approximation [18]. 

So, taking 0 1( , ) ( ) ( ) ( )T x t g t x x k t    as an initial value, we can find the n -order 

approximate solution ( , )nT x t  of (10). 

For the convergence of the sequence obtained via the MVIM and its rate, we recall 

Banach's fixed point theorem: 

Theorem: [37] Let X  be a Banach space and: 

: ,A X X  
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is a nonlinear map, and suppose that: 

[ ] [ ] ; , ,A T A T T T T T X                                               (14) 

for some constant 1.   Then A  has a unique fixed point. Furthermore, the sequence: 

1 [ ],n nT A T                                                                      (15) 

with an arbitrary choice of 
0 ,T X  converges to the fixed point of A and: 

2

1 0

1

.
k

j

k l

j l

T T T T 


 

                                                             (16) 

According to the above theorem, for the linear map: 

1

[ ] ( , ) ( )( ( , ) ( , ) ( , )) ,
x

ss t
x

A T T x t s T s t T s t h s t ds                                    (17) 

a sufficient condition for the convergence of MVIM is strictly contraction of .A  

Furthermore, sequence (15) converges to the foxed point of ,A  which is also the 

solution of the linear differential equation (10). In the above theorem, the rate of 

convergence depends on   and therefore, in the MVIM, the rate of convergence 

depends on .  

Numerical results and discussion 

 In this section, we are going to demonstrate some numerical results for the temperature 

(0, ) ( )T t p t and heat flux (0, )xT t  in the inverse problem (1)-(5).  All the computations 

are performed on the PC (pentium(R) 4 CPU 3.20 GHz). 

Example 1. Let us consider the following one-dimensional inverse parabolic problem 

[3]: 

( , ) ( , ); 0 1, 0 1,t xxT x t T x t x t      

( ,0) cos( ); 0 1,T x x x    

(0, ) ( ); 0 1,T t p t t    

(1, ) exp( )cos(1); 0 1,T t t t     

(0.2, ) exp( )cos(0.2); 0 1.T t t t     

The exact solution of this problem is: 

( , ) exp( )cos( ), ( , ) exp( )sin( ).xT x t t x T x t t x    
    

 

We begin with the initial approximation 

0 exp( )cos(0.2) ( 0.2)exp( )sin(0.2).T t x t       

Then we obtain: 
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1 0 0 0
0.2

2 3

0

2 3

( )( )

( 0.2) ( 0.2)
exp( )[ cos(0.2) sin(0.2)]

2! 3!

( 0.2) ( 0.2)
exp( )[(1 )cos(0.2) (( 0.2) )sin(0.2)]

2! 3!

ss t

x

T T s x T T ds

x x
T t

x x
t x

   

 
    

 
     



 

In the same way, we compute: 
2 4

2

3 5

( 0.2) ( 0.2)
exp( )[(1 )cos(0.2)

2! 4!

( 0.2) ( 0.2)
(( 0.2) )sin(0.2)],

3! 5!

x x
T t

x x
x

 
   

 
   

 

2 2

3 2 1
1

( 0.2) ( 0.2)
exp( )[(1 ( 1) )cos(0.2)

2! (2 )!

( 0.2) ( 0.2)
(( 0.2) ( 1) )sin(0.2)].

3! (2 1)!

n
n

n

n
n

x x
T t

n

x x
x

n




 
     

 
     



 

According to the Theorem for linear map ,A  a sufficient condition for convergence of 

the MVIM is strictly contraction of .A  
Therefore, we have 

0|| || || exp( )(cos(0.2) ( 0.2)sin(0.2) cos( )) ||,T T t x x     
 

2 3

1

0 1
0

0

( 0.2) ( 0.2)
|| || exp( )[(1 )cos(0.2) (( 0.2) )sin(0.2) cos( )]

2! 3!

1 .

x x
T T t x x

T T
T T

T T

 
       


  


 

Since, for all [0,0.2 ) (0.2 ,1], 0.01,x        we have 

0 1

0

1 0.0564 1,
T T

T T



   


 

therefore,

 

1 0|| || ,T T T T  

 

2 4

2

3 5

1 2
1

1

( 0.2) ( 0.2)
|| || || exp( )[(1 )cos(0.2)

2! 4!

( 0.2) ( 0.2)
(( 0.2) )sin(0.2) cos( )] ||

3! 5!

1 ,

x x
T T t

x x
x x

T T
T T

T T
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But, [0,0.2 ) (0.2 ,1], 0.01,x         

1 2

1

1 0.0218 ,
T T

T T



  


 

Thus, 
2

2 0|| || .T T T T  

 

2 4 6

3

3 5 7

2 3
2

2

( 0.2) ( 0.2) ( 0.2)
|| || || exp( )[(1 )cos(0.2)

2! 4! 6!

( 0.2) ( 0.2) ( 0.2)
(( 0.2) )sin(0.2) cos( )] ||

3! 5! 7!

1 .

x x x
T T t

x x x
x x

T T
T T

T T

  
     

  
     


  

  

Since, for all [0,0.2 ) (0.2 ,1], 0.01,x        we have 

2 3

2

1 0.0115< ,
T T

T T



 


 

thus, 
3

3 0

0

|| || ,

|| || .n

n

T T T T

T T T T





  

  

 
Therefore, 0lim || || lim 0,n

n
n n

T T T T
 

   

 

that is  

( , ) lim ( , ) exp( )cos( ),n
n

T x t T x t t x


  

 

which is the exact solution.

 

Tables 1 and 2 and Figures 1 and 2 show the comparison between exact and 

approximate solutions of (0, )T t  and (0, )xT t  resulted from MVIM, base function 

method [3] (BFM) , fundamental solution method presented in [3, 4] (FSM), finite 

difference method (FDM) and semi finite difference method (SFDM) developed in [3, 

39, 40].  In comparison with the methods in Refs. 3, 4, 39 and 40, the numerical results 

show that the MVIM is more accurate. In all tables n  presents the iteration number in 

MVIM. 

Table1. The comparison between exact and MVIM, BFM [3], FSM [3, 4], FDM [3,40] and 

SFDM [3, 41] solutions for (0, )T t . 

t       Exact            MVIM           MVIM        BFM[3]           FSM[3,4]     FDM[3,40] SFDM[3,41] 

-          -                     n=2                 n=4               -                         -                        -                    - 

0.1  0.904837418  0.904837497  0.904837418  0.904837418  0.904839370  0.9033859   0.9228582 

0.3  0.740818220  0.740818285  0.740818220  0.740818220  0.740818689  0.7396719   0.7555724 

0.5  0.606530659  0.606530712  0.606530659  0.606530659  0.606530801  0.6055922   0.6186104 

0.7  0.496585303  0.496585347  0.496585303  0.496585303  0.496585292  0.4958169   0.5064753 
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0.9  0.406569659  0.406569695  0.406569659  0.406569659  0.406569906  0.4059406   0.4146669 

Table2. The comparison between exact and MVIM, BFM [3], FSM [4], FDM [3, 40] and 

SFDM [3, 41] solutions  for (0, ).xT t  

t       Exact            MVIM           MVIM        BFM[3]           FSM[3,4]     FDM[3,40] SFDM[3,41] 

-          -                     n=2                 n=4               -                         -                        -                    - 

0.1        0            -2.37E-06       -1.25E-12      2.19 E-10       -9.31E-06       7.56E-03      -1.64E-02 

0.3        0            -1.94E-06      -1.02E-12       1.79E-10        -2.11E-06       5.78E-3        -1.34E-02 

0.5        0            -1.59E-06       -8.41E-13      1.47E-10        -1.03E-06       4.73E-3        -1.10E-02 

0.7        0            -1.30E-06       -6.89E-13      1.20E-10        +2.41E-07      3.87E-10      - 9.02E-10        

0.9        0            -1.06E-06       -5.64E-13      9.86E-11        -1.09E-06       3.17E-03      -7.38E-03        

 

 

Figure2. The comparison between exact and MVIM, BFM [3], FSM [3, 4], FDM [3,40] and 

SFDM [3, 41] solutions for (0, )T t  

 

 

Figure3. The comparison between exact and MVIM, BFM [3], FSM [4], FDM [3, 40] and 

SFDM [3, 41] solutions for (0, )xT t   

Example2. Now, consider the problem [3]: 

( , ) ( , ); 0 1, 0 1,t xxT x t T x t x t      

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

t

T
(0

,t
)

 

 

Exact

BFM

SFDM

FSM

FDM

MVIM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t

T
x
(0

,t
)

 

 

Exact

BFM

SFDM

FSM

FDM

MVIM
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41
( ,0) 2(sin(2 ) cos(2 )) ; 0 1,

4
T x x x x x      

(0, ) ( ); 0 1,T t p t t    

2 1
(1, ) 2exp( 4 )(sin(2) cos(2) 3( ); 0 1,

12
T t t t t t         

2 0.0016
(0.2, ) 2exp( 4 )(sin(0.4) cos(0.4)) 3( 0.04 ); 0 1.

12
T t t t t t         

The exact solution of this problem is: 

2 2 4

3

1
( , ) 2exp( 4 )(sin(2 ) cos(2 )) 3( ),

12

1
( , ) 2exp( 4 )(2cos(2 ) 2sin(2 )) 3(2 ).

3
x

T x t t x x t tx x

T x t t x x tx x

     

    
    

 

We find 
0.008

(0.2, ) 2exp( 4 )(2cos(0.4) 2sin(0.4)) 3(0.4 ).
3

xT t t t    
 
   

Now beginning with 0 (0.2) ( 0.2) (0.2, ),xT T x T t    we obtain: 

1 0 0 0
0.2

2

3

2 2 3 2

( )( )

(2 0.4)
2exp( 4 )[(sin(0.4) cos(0.4))(1 )

2!

(2 0.4)
(cos(0.4) sin(0.4))((2 0.4) )]

3!

3 3 0.2 0.06 0.008 0.0004.

ss t

x

T T s x T T ds

x
t

x
x

t tx x x x

   


   


   

     



 

In the same way, we compute: 
2 4

2

3 5

2 2 4

(2 0.4) (2 0.4)
2exp( 4 )[(sin(0.4) os(0.4))(1 )

2! 4!

(2 0.4) (2 0.4)
(cos(0.4) sin(0.4))((2 0.4) )]

3! 5!

1
3( ),

12

x x
T t c

x x
x

t tx x

 
    

 
    

  

 

2 2

3 2 1
1

2 2 4

(2 0.4) (2 0.4)
2exp( 4 )[(sin(0.4) os(0.4))(1 ( 1) )

2! (2 )!

(2 0.4) (2 0.4)
(cos(0.4) sin(0.4))((2 0.4) ( 1) )]

3! (2 1)!

1
3( ).

12

n
n

n

n
n

x x
T t c

n

x x
x

n

t tx x




 
      

 
      



  

 

To show the convergence of ,A consider T u v   where  
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2exp( 4 )(sin(2 ) cos(2 ))u t x x    and 2 2 41
3( )

12
v t tx x   . Then

 

 

0 0 0

2 2 2 4

|| || || ||

|| 2exp( 4 ) (sin 0.4 cos0.4) (2 0.4)(cos0.4 sin 0.4) (sin 2 cos 2 )

0.0016 0.008 1
3( 0.04 ) 3( 0.2)(0.4 ) 3( ) ||

12 3 12

2exp( 4 ) (sin 0.4 cos0.4) (2 0.4)(cos0.4 sin 0.4) (s

T T u v u v

t x x x

t t x t t tx x

t x

    

       

        

       

2 2 2 4

0 0

in 2 cos 2 )

0.0016 0.008 1
3( 0.04 ) 3( 0.2)(0.4 ) 3( )

12 3 12

|| || || ||,

x x

t t x t t tx x

u u v v



        

   

 

1 1 1

2

3

2 2 2 4

|| || || ||

(2 0.4)
|| 2exp( 4 )[(sin 0.4 cos0.4)(1 )

2!

(2 0.4)
(cos0.4 sin 0.4)((2 0.4) ) (sin 2 cos 2 )]

3!

0.0016 0.008 1
3( 0.04 ) 3( 0.2)(0.4 ) 3( ) ||

12 3 12

|| 2exp( 4 )[(sin 0.4

T T u v u v

x
t

x
x x x

t t x t t tx x

t

    


   


     

        

  
2

3

2 2 3 2 2 2 4

1 1

0 1 0 1
0 0

0 0

(2 0.4)
cos0.4)(1 )

2!

(2 0.4)
(cos0.4 sin 0.4)((2 0.4) ) (sin 2 cos 2 )] ||

3!

1
|| 3 3 0.2 0.06 0.008 0.0004 3( ) ||

12

1 || || 1 .

x

x
x x x

t tx x x x t tx x

u u v v

u u v v
u u v v

u u v v





     

        

   

 
     

 

 

Since, for all [0,0.2 ) (0.2 ,1], 0.011,x        we have: 

0 1
1

0

1 0.2233 1,
u u

u u



   


                           0 1

2

0

1 0.4211 1,
v v

v v



   


 

therefore,

 

 1 0 0|| || ,T T u u v v    
 

where 1 2max{ , }.    
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2 4

2

3 5

1 2
1

1

(2 0.4) (2 0.4)
|| || || 2exp( 4 )[(sin 0.4 cos0.4)(1 )

2! 4!

(2 0.4) (2 0.4)
(cos0.4 sin 0.4)((2 0.4) ) (sin 2 cos 2 )] ||

3! 5!

1 .

x x
T T t

x x
x x x

u u
u u

u u

 
     

 
      


  



But, [0,0.2 ) (0.2 ,1], 0.011,x         

1 2

1

1 0.0857 .
u u

u u



  


 

Thus,  2

2 0 0|| || .T T u u v v    

 

2 4 6

3

3 5 7

2 3
2

2

(2 0.4) (2 0.4) (2 0.4)
|| || || 2exp( 4 )[(sin 0.4 cos0.4)(1 )

2! 4! 6!

(2 0.4) (2 0.4) (2 0.4)
(cos0.4 sin 0.4)((2 0.4) )

3! 5! 7!

(sin 2 cos 2 )] ||

1 .

x x x
T T t

x x x
x

x x

T T
T T

T T

  
      

  
     

 


  


 

Since, for all [0,0.2 ) (0.2 ,1], 0.011,x        we have 

2 3

2

1 0.0456< ,
T T

T T



 


 

thus, 

 

 

3

3 0 0

0 0

|| || ,

|| || .n

n

T T u u v v

T T u u v v





    

    

 Therefore,  0 0lim || || lim 0,n

n
n n

T T u u v v
 

     

 

that is  

2 2 41
( , ) lim ( , ) 2exp( 4 )(sin(2 ) cos(2 )) 3( ),

12
n

n
T x t T x t t x x t tx x


      

 

which is the exact solution.

 

Tables 3 and 4 and Figures 3 and 4 show the comparison between exact and 

approximate solutions of (0, )T t  and (0, )xT t  resulted from MVIM, BFM [3], FSM [3, 

4], FDM [3, 40] and SFDM [3, 41]. In comparison with the methods in [3, 4, 40, 41] the 

numerical results show that the MVIM is more accurate. 
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Table 3. The comparison between exact and MVIM, BFM [3], FSM [3,4], FDM [3,40]  and 

SFDM [3,41] solutions  for (0, )T t . 

t       Exact            MVIM           MVIM        BFM[3]           FSM[3,4]     FDM[3,40]  SFDM[3,41] 

-          -                     n=3                 n=5               -                         -                        -                    - 

0.1  1.3706400     1.3706400      1.3706400    1.3120944        1.4189298     1.3706442    1.3857342 

0.3  0.8723884     0.8723884      0.8723884    0.8422776        0.8980560     0.8723989   0.8802165 

0.5  1.0206705     1.0206705      1.0206705    1.0021023        1.0432764     1.0206703   1.0243216    

0.7  1.5916201     1.5916201      1.5916201    1.5782382        1.6225598     1.5916133   1.5932585 

0.9  2.4846474     2.4846474      2.4846474    2.4735959        2.5316474     2.4846480   2.4855032  

Table 4. The comparison between exact and MVIM, BFM [3], FSM [3, 4], FDM [3, 40] 

and SFDM [3, 41] solutions for (0, )xT t  

t       Exact            MVIM           MVIM        BFM[3]           FSM[3,4]     FDM[3,40]  SFDM[3,41] 

-          -                     n=3                 n=5               -                         -                        -                    - 

0.1  2.6812801    2.6812813      2.6812801   2.6811416        2.6047118     2.6811416      2.6047118 

0.3  1.2047768    1.2047773      1.2047768   1.2047477         1.1675152     1.2047477     1.1675152 

0.5  0.5413411    0.5413413      0.5413411   0.5413436         0.5240925     0.5413436     0.5240925  

0.7  0.2432402    0.2432403      0.2432402   0.2432393         0.2354243     0.2432393     0.2354243  

0.9   0.1092948   0.1092949      0.1092948   0.1092749         0.1053256     0.1092749     0.1053256  

 

 

Figure 4. The comparison between exact and MVIM, BFM [3], FSM [3,4], FDM [3,40]  

and SFDM [3,41] solutions  for (0, )T t  

Example 3. In this example let us consider the following IHCP: 

( , ) ( , ) exp( ); 0 1, 0 1,t xxT x t T x t x t x t        

2( ,0) ; 0 1,T x x x x     

(0, ) ( ); 0 1,T t p t t    

(1, ) 2 exp( ) 1; 0 1,T t t t t       

(0.2, ) 2 0.5exp( ) 0.25cos(0.5); 0 1.T t t t t       
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Figure 5. The comparison between exact and MVIM, BFM [3], FSM [3, 4], FDM [3, 40] 

and SFDM [3, 41] solutions  for (0, ).xT t  

The exact solution of this problem is: 
2( , ) 2 exp( ) , ( , ) exp( ) 2 .xT x t t x t x T x t t x      

    
 

Consider 0 (0.5, ) ( 0.5) (0.5, ),xT T t x T t  
 

where (0.5, ) exp( ) 1.xT t t  
 

Then we 

obtain: 

1
1 0 0 0

2 2

0

( )( )

( 0.5) 2 exp( ) .

ss t

x

x
T T s x T T ds

T x t x t x

   

      


 

which is the exact solution. 

 

Conclusion 

In this paper, a modified variational iteration method was successfully applied to 

solve the inverse heat conduction problem. This method solves the problem without any 

discretization of variables. Thus, it is not affected by rounding errors in the 

computational process. Application of MVIM is easy and straightforward.  

Using the MVIM, a function series is obtained which converges to the exact solution 

of the discussed problem. In comparison with the methods in [3, 4, 40, 41], the 

numerical results show that the MVIM is more accurate. 
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