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Abstract. Linear semi-infinite programming problem is an im-
portant class of optimization problems which deals with infinite
constraints. In this paper, to solve this problem, we combine a
discretization method and a neural network method. By a sim-
ple discretization of the infinite constraints,we convert the lin-
ear semi-infinite programming problem into linear programming
problem. Then, we use a recurrent neural network model, with a
simple structure based on a dynamical system to solve this prob-
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examples are solved to evaluate the effectiveness of the presented
model.
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1 Introduction

A linear semi-infinite program (LSIP) is an optimization problem with finitely variables
x = (x1, x2, · · · , xn) ∈ Rn on a feasible set described by infinitely many constraints:

P : max
x

z = cTx

s.t Ax ≤ b,

K (t)x ≤ u (t) ,

x ≥ 0, t ∈ T,

where T is an arbitrary infinite set, the vector c ∈ Rn, b ∈ Rp and the matrix A ∈ Rp×n

are arbitrary. K(t) is a q×n matrix in variable t and u(t) is a q× 1 vector in variable t.
By F we denote the feasible set of P , whereas v := sup{cTx|x ∈ F} is the optimal value,
and S := {x ∈ F |cT x = v} is the optimal set or the set of minimizers of the problem.
We say that P is feasible or consistent if F = ∅, and set v = +∞ when F = ∅.

There are many applications of SIP in different fields such as Chebyshev and reverse
approximation [6], robotics [18], mathematical physics [10], engineering designs [6], op-
timal control [18], transportation problems [10], fuzzy sets [10], cooperative games [10],
robust optimization [16], statistics, economics [14], etc.

Various numerical procedures have been presented over decades for solving semi-
infinite programming problems. Ferris and Philpott ([5]) proposed an interior point algo-
rithm for SIP. Anderson and Levis ([3]) proposed an extension of the simplex algorithm
for LSIP. Hettich and Kortanek ([9]) proposed a discretization method to solve SIP. Also
Reemtsen and Gorner ([13]) extends the numerical methods in Hettich and Kortanek ([9]).
Lars Abbe ([1]), built a method based on a stable approach for nonlinear SIP like penalty
methods. Reemtsen and Gorner’s survey ([13]) reviews the most recent advances and uses
of SQP, including a trust region variation. One of the most recently published interior
point methods appears in Stein and Still ([14]). Since the computing time required for
solving SIP and other optimization problems depends on the dimension and the structure
of the problem, the conventional numerical methods are usually less effective in real-time
applications such as robotics. One promising approach to handle online applications is to
employ recurrent neural networks based on circuit implementation. The essence of neural
optimization lies in its dynamic nature for optimization and the availability of electronic
implementation. Unlike other parallel algorithms, neural networks can be implemented
physically by designated hardware.

Tank and Hopfield ([15]) first proposed a neural network for linear programming that
was mapped onto a closed-loop circuit. Their work has inspired many researchers to
develop other neural networks for solving different classes of optimization problems such
as linear, nonlinear, quadratic programming, convex and pseudo-convex optimization,
complementarity and variational inequality problems ([2, 4, 11, 19, 20] and the references
therein). As mentioned above, in many real-world optimization problems, one has to
deal with linear semi-infinite programming problems. The objective of this paper is
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to use recurrent neural networks for solving LSIP. Malek and Yari ([11]) proposed an
effective recurrent neural network model to solve linear programming problems. Here,
using discretization method, we reduce the LSIP into a linear programming problem.
Then, using a recurrent neural network model based on the model proposed by Malek
and Yari, we solve the reduced problem. simulation results show that this method is
globally convergent and the speed of convergence is high. This paper is organized as
follows: In Section 2, the discretization method to solve SIP is discussed. In Section 3,
the linear semi-infinite programming and the discretized form of it will be described. In
Section 4, a recurrent neural network model, based on Malek and Yari model ([11]) is
proposed. In Section 5, some numerical examples of the proposed method are discussed
to evaluate the effectiveness of the proposed neural network.

2 Preliminaries

This section deals with some definitions and notions about ordinary discretization method
and dual of LSIP. consider the problem of approximating the feasible set

F = {x|Ax ≤ b, K(t)x ≤ u(t), t ∈ T}

of our linear semi-infinite problem P by imposingonly finitely many constraints. The
simplest way is through ordinary discretization. Choose T ⊂ T , where |T | < ∞, and
replace F by

F (T ) = {x|Ax ≤ b, K(t)x ≤ u (t) , t ∈ T}

and consider the approximation problem

P (T ) : max
x

z = cTx

s.t Ax ≤ b,

K (t)x ≤ u (t) ,

t ∈ T , x ≥ 0,

typically T is termed a grid.

Definition 1 (See [8]). Let T = {t1, t2, . . . , tr} be a grid of T . Denote by k(T ) its convex
hull. Next determine r continuous functions φ1, φ2, . . . , φr such that

(i) each t ∈ (T ) has representation t =
∑r

j=1 φj(t)tj ,

(ii)
∑r

j=1 φj (t) = 1,

(iii) φj (t) ≥ 0, j = 1, 2, . . . , r,

(iv) for each t ∈ (T ) at most k + 1, φj (t) are strictly positive.
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Let now, a function φ be defined on T . Define Lφ through

(Lφ)(t) =
r∑

j=1

φj (t),

then L will be called the positive linear interpolator induced by T and φ1, φ2, . . . , φr.

Theorem 1 (See [8]). Let T be a compact set. Then, there is a finite subset T ⊂ T , T =

{t1, t2, . . . , tr} such that P is computationally equivalent to the task: Minimize the linear
form cTx over all vectors x ∈ Rnsubject to the constraints

Ax ≤ b, LK(t)x ≤ Lu(t), t ∈ T,

where L is defined as in definition 1.

As a consequence of Theorem 1, an LSIP could be replaced by a linear programming
problem.

Associated with P , different dual problems can be defined. For instance the so called
Haar dual can be defined in the following manner:

D : min
y
w = bT y +

∑
t∈T

u(t)λ(t)

s.t AT y +K(t)
T
λ(t) ≥ c,

y ≥ 0,

λ(t) ≥ 0, t ∈ T,

where we allow only for a finite number of the dual variables, λ(t), t ∈ T to take positive
values. By vD we denote the optimal value of D. Choose T = {t1, t2, . . . , tr} ⊂ T and
replace the problem P by P (T ) :

P
(
T
)
: max

x
z = cTx

s.t Ax ≤ b,

K (ti)x ≤ u (t) ,

i = 1, 2, . . . , r , x ≥ 0,

Now, we have a finite linear programming problem with p+ rq constraints. The dual
problem corresponding to P is given by

D : min
x
w = bT y +

∑
t∈T

u(t)λ(t)

s.t AT y +K(ti)
T
λ(ti) ≥ c,

y ≥ 0,

λ (ti) ≥ 0, i = 1, 2, . . . , r.
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2.1 A recurrent neural network model

Let us to suppose that in P

X=x, C=c, A=



A

K (t1)

K (t2)
...

K (tr)

 ,

B=



A

u (t1)

u (t2)
...

u(tr)

 , Y=



A

λ (t1)

λ (t2)
...

λ(tr)

 . (1)

So, instead of P and D, we have the following problems:

P : max
X

z = CTX

s.t AX ≤ B,

X ≥ 0,

The dual problem D of P is

D : min
Y

w = BTY

s.t ATY ≥ C,

Y ≥ 0,

recurrent neural network model proposed by Malek and Yari (See [11]), based on a non-
linear dynamical system for solving linear programming problem. Here, we describe this
dynamical system, using an economic problem.

A company produces n different type of products P1, P2, ..., Pn.The value of producing
Pi is about Ci. These products are made from m different type of resources R1, R2, ...,
Rm of limited supply. The amount of the resource Rj is about Bj . Let Xi show the
amount of product Pi where 1 ≤ i ≤ n. The LP problem is to maximize the value of
products CTX, under the resources AX ≤ B, where B=(B1 , B2, ..., Bn), X=(X1,
X2, ..., Xn), C=(C1, C2, ..., Cm), A = (aij), aij is the amount of resource Rj needed
to produce the product Pi and is the amount of resources needed to make one unit of
each product. Let Yj show the price of resource Rj where 1 ≤ j ≤ m. The strategy
of the producer is The rate of increasing in the amount of each product is proportional
with profitability of that product (dX/dt= value minus cost= C−ATY). Similarly, the
resource owner’s strategy is:
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The price of a resource is based on the supply and demand law (demand minus
supply= AX−B). Rate of changes in price of resource each resource is proportional to
demand for it (dY/dt = AX−B).

To solve the problem P , let us to describe the dynamics of this problem by the
following dynamical system: 

Ẋ (s) = C−ATY (s)

Ẏ (s)=AX (s)−B

(2)

where X (s) ≥ 0, Y (s) ≥ 0, s ≥ 0 and (X (s), Y (s))T is a state vector. Consider a
recurrent neural network with two layers, that in which, each primal neuron plays the
role of producer of a given type of products and each dual neuron plays the role of a
resource owner selling a resource. Based on dynamical system (2), Malek and Yari in [11]
proposed the following recurrent neural network to solve P :

dX
ds = C−AT

(
Y + η1

dY
ds

)
dY
ds =A

(
X+ η2

dX
ds

)
−B

(3)

where X=X (s) ≥ 0 and Y=Y (s) ≥ 0 and η1 and η2 are some learning rates. The term
η1

dY
ds signifies the fact that the producer not only use the current resource : prices in their

cost calculation, but also take into account the trend of this prices. Like the producers,
the resource owners base their decisions not only on the current demands AX, but also
on the trend of this demands AdX

ds .

Theorem 2. If the recurrent neural network whose dynamics is described by the differ-
ential equations (2) in (3) converges to a stable state, then the convergence will be the
optimal solutions for FLP problem and is DFLP problem.

Proof. Let Xi be the i-th element of X, and Yi be the i-th element of Y. Instead of the
first equation of (3), we can write the following two equations:

[
dX
ds

]
i
= −

[
AT

(
Y + η1

dY
ds

)]
i
+ [C]i, Xi > 0

[
dX
ds

]
i
=max

{[
C−AT

(
Y + η1

dY
ds

)]
i
, 0
}
, Xi = 0.

(4)

Since Xi ≥ 0, the second equation of (4) is required. Instead of the second equation of
(3), we can write the following two equations:

[
dY
ds

]
j
= −[B]j+

[
A
(
X+ η2

dX
ds

)]
j
, Yj > 0

[
dY
ds

]
j
=max

{[
A
(
X+ η2

dX
ds

)
−B

]
j
, 0
}
, Yj = 0.

(5)

Since Yj ≥ 0, the second equation of (5) is required. Suppose that X∗ and Y∗ are
stable states for X and Y, i.e., limt→∈fty X = X∗ and lims→∈fty Y = Y∗. Because of
convergence of these states,
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dX∗

ds
=
dY∗

ds
= 0.

Therefore, we have 
[
ATY∗]

i
=[C]i, X

∗
i > 0

max
{[

C−ATY∗
]
i
, 0
}
= 0 , X∗

i = 0

(6)

and 
[AX∗]j = [B]j, Y

∗
j > 0

max
{
[AX∗−B]j , 0

}
= 0, Y∗

j = 0

(7)

or 
[C]i=

[
ATY∗]

i
, X∗

i > 0

[C]i ≤
[
ATY∗]

i
, X∗

i = 0

(8)

and 
[AX∗]j = [B]j, Y∗

j > 0

[AX∗]j ≤ [B]j, Y∗
j = 0.

(9)

Thus,

C ≤ ATY∗,AX∗ ≤ B.

Therefore, X∗ and Y∗ are the feasible solution for the problems P and D. Further-
more, from (8) we have

CTX∗=Y∗TAX∗, (10)

and from (9) we have

BTY∗=X∗TATY∗. (11)

From the equations (10) and (11),

BTY∗=X∗TATY∗=Y∗TAX∗=CTX∗.

According to complementary slackness theorem, we can conclude that X∗ and Y∗are
the optimal solutions for the problems P and D.
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3 Numerical Examples

In this section some illustrative examples are solved to demonstrate the effectiveness of
the proposed recurrent neural network model. The software MATLAB is used to make
this simulations.

Example 1. Consider the following linear semi-infinite programming problem:

P : max z = −2x1 − x2

s.t : − tx1 + (t− 1)x2 ≤ t2 − t,

t ∈ [0, 1] , x ≥ 0.

This problem has an optimal solution z = 0.666. The numerical results obtained for
different discretization and 500 iterations are given in Table 1. In this table, m is the
number of constraints which we put instead of an infinite constraint in our discretization.

Figure 1 displays the behavior of the proposed model, when it is applied for this
example. according to Figure 1, it is obvious that after some iterations z and w tends the
optimal value 0.666. By attention to Table 1, It is clear that by refinance of discretization,
we receive a better approximation.

Table 1: Optimal value of the LSIP in Example 1 for 500 iterations.

m = 11 m = 101 m = 1001 m = 10001

z 0.6512 0.6629 0.6659 0.6665
w 0.6564 0.6642 0.6668 0.6665

|z − w| 0.0130 0.0011 0.0009 0.0000

Figure 1: Optimal value of the LSIP in Example 1

Example 2. Consider the following linear semi-infinite programming problem:
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P : max z = x1 +
1

2
x2 +

(
1

2
+
ε

3

)
x3

s.t : x1 + tx2 +
(
t+ εt2

)
x3 ≤ et,

t ∈ [0, 1] , xi ≥ 0, i = 1, 2, 3 .

This problem has an optimal solution v = (1/2)(1 + e), when ε = 0, and has an
optimal solution v = (1/4)(3e3 + e), when ε ̸= 0. The numerical results obtained for
different discretizations, 10000 iterations and ε = 1 are given in Table 2.

Table 2: Optimal value of the LSIP in Example 1 for 500 iterations.

z w x1 x2 x3

m = 6 1.7260 1.7256 1.0182 0.0000 0.8494
m = 11 1.7264 1.7265 1.0181 0.0000 0.8500
m = 16 1.7263 1.7264 1.0177 0.0000 0.8504

In this table, m is the number of constraints which we put instead of an infinite
constraint in our discretization. Figure 2 displays the behavior of the proposed model,
when it is applied for this example. according to Figure 2, we see that after a great
number of iterations, z and w tends to the optimal value

v = (
1

4
)

(
3exp

(
1

3
+ e

) )
1.7263.

Figure 2: Optimal solution of the LSIP in Example 2 for ε = 1, m = 16 and 10000 iterations.

By attention to Table 2, it is clear that by refinance of discretization or more iterations,
we receive a better approximation. Figure 3 illustrates optimal value ofthe LSIP in
Example 2 for ε = 1, m = 100 and 1000 iterations. Figure 4 illustrates optimal solution
of the LSIP in Example 2 for ε = 0, m =100 and 1000 iterations.

Example 3 (Stein & Still, 2003). Let 1 euro be invested in a portfolio comprised of N
shares. At the end of a given period the return per 1 Euro invested in share i is ti > 0.

Our goal is to determine the amount xi to be invested in share i, i = 1, 2, . . . , N , so
as to maximize the end-of-period portfolio value z = tTx.
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Figure 3: Optimal value of the LSIP in Example 2 for ε = 1, m = 100 and 1000 iterations.

Figure 4: Optimal solution of the LSIP in Example 2 for ε = 0, m = 100 and 20000 iterations.

If the vector t was certain, the solution of this optimization problem would be evident.
In this case we could invest all the money into the share with maximal value ti. A more
realistic assumption is that t varies in some nonempty compact set T ⊂ RN . Upon moving
the objective function to the constraints set, we obtain the following linear semi infinite
optimization problem with n = N + 1 and m = N :

P : max z = xN+1

s.t :
N∑
i=1

xi = 1,

xN+1 − tTx ≤ 0

t ∈ T, x ≥ 0,

Because of our assumption that the problem must be in standard form, instead of
equality constraint

∑N
i=1 xi = 1, we put two inequalities

∑N
i=1 xi ≤ 1 and −

∑N
i=1 xi ≤

−1. Suppose that T has the form

T =

{
t ∈ RN |

N∑
i=1

(ti − ti)
2

σ2
i

≤ θ2

}
,
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where ti is some ”nominal” value of ti, σi is a scaling parameter, i = 1, 2, . . . , N and θ
measures the risk a version of the decision maker. With the particular choices

ti = 1.15 + i.
0.05

N
N, i = 1, 2, . . . , N,

σi =
0.05

N

√
2N (N + 1) i,

i = 1, 2, . . . , N, θ = 1.5,

one can show that the optimal policy is to invest equally in all shares, i.e., xi =

1/N with optimal value 1.15. If we apply the method for N = 4,m = 11 and 40000
iterations, we attain the optimal value w = 1.15000, z = 1.15000 and xi = 0.250000,
i = 1, 2, . . . , 10, which is illustrated in Figure 5. If we apply the method for N = 10,
m = 11 and 40000 iterations we attain the optimal value w = 1.1500054, z = 1.149997

and xi = 0.099999, which is illustrated in Figure 6. Table 3 shows the behavior of the
proposed model, when it is applied for this problem with N = 4, 10, 20, 50, 100 and 150.

Figure 5: Optimal solution of the portfolio problem in Example 3 for N = 4, m = 11 and 20000
iterations.

Figure 6: Optimal solution of the portfolio problem in Example 3 for N = 10, m = 11 and
40000 iterations.
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Table 3: Optimal solution for the portfolio problem in Example 3

N Opt. value Approx. opt.
value

xi m Iterations CPU time

4 1.15 1.1507 0.2501 11 20000 3.1668
10 1.15 1.1501 0.1000 11 20000 8.2369
20 1.15 1.1504 0.0500 21 16000 4.3524
50 1.15 1.1519 0.02000 11 16000 4.4148
100 1.15 1.1501 0.0100 6 20000 8.3929
150 1.15 1.1500 0.0067 4 20000 8.1413
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مسئله حل برای دینامیکی، سیستم یک اساس بر ساده ساختار یک با بازگشتی عصبی شبکه مدل یک از سپس
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