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1 Introduction

The controlled harmonic oscillator, which is known to describe many important oscillating
phenomena in nonlinear engineering systems [24], received considerable attention in the past
decade.
The classical Duffing’s equation was first introduced to study electronics and was published
by Stokes in [26]. It is the simplest oscillator displaying catastrophic jumps of amplitude and
phase when the frequency of the forcing term is taken as a gradually changing parameter. The
Duffing equation has wide applications in signal processing [29], the propagation of extremely
short electromagnetic pulses in a nonlinear medium [15, 16], brain modeling [30], fuzzy modeling
and the adaptive control of uncertain chaotic systems [6, 22].

Vlassenbroeck and Van Dooren [3] introduced a direct method for the controlled Duffing
oscillator. “In the study of Vlassenbroeck et al. the state and control variables, the system
dynamics, and the boundary conditions have been expanded in Chebyshev series of order with
unknown coefficient. A pseudospectral collocation method for solving the nonlinear controlled
Duffing oscillator was presented in [21]. This approach is based on the idea of relating Legendre-
Gauss-Lobatto collocation and points to the structure of orthogonal polynomials. Elnagar and
Khamayseh [5] presented an alternative computational method for solving the controlled Duffing
oscillator. Their approach drew upon the power of well-developed nonlinear programming
techniques and computer codes to determine the optimal solutions of nonlinear systems. El-
Kady and Elbarbary [4] used Chebyshev polynomials for solving controlled Duffing oscillator.
In [4], the control and state variables are approximated by Chebyshev series of different orders.
Marzban and Razzaghi [17] introduced an alternative computational method for solving the
controlled Duffing oscillator. Rad et al. [20] presented a new numerical method which is
applied to investigate the nonlinear controlled Duffing oscillator. This method is based on the
radial basis functions (RBFs) to approximate the solution of the optimal control problem by
using the collocation method.

Recently, scientists and engineers have become highly eager to find the analytic solution to
nonlinear problems; for this purpose, many new techniques and methods have been developed.
Traditional perturbation methods have their own limitations for example, the presence of a very
large or very small parameter inside the problem is essential, so that the solution of the problem
may be expressed as a series expansion in terms of that small parameter. Choosing the small
parameter is not an easy task and requires special skills. A proper and good choice of a small
parameter will make results more accurate, while, on the other, hand a wrong choice may lead
to inaccurate results. The homotopy perturbation method (HPM), first proposed by He [8] has
successfully been applied to solve many types of linear and nonlinear functional equations. This
method, which is a combination of homotopy in topology and classic perturbation techniques,
provides us with a convenient way to obtain analytic or approximate solutions for a wide
variety of problems arising in different fields (see e.g.,[1, 12, 23]). The other method variational
iteration method (VIM) techniques in various types of problems, and many new methods have
been introduced into the literature. This method was introduced by the Chinese mathematician
He [9] and [10] first, by modifying the general Lagrange multiplier method. The main idea in
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the VIM is to construct an iterative sequence of functions, to be converted to an exact solution.
Since the method works without discretization, linearization, transformation, or perturbation
of the problem, it is not affected by round of error (see e.g., [18, 19, 25, 27, 28]).

In this paper, our aim is to develop the HPM and VIM methods for solving the controlled
harmonic oscillator. We present a comparative study with these two methods. The study out-
lines the significant features of the HPM and VIM methods. By applying necessary optimality
conditions, we obtain iterative formulas for the HPM and VIM. By using the finite-step iter-
ation of algorithm, we can obtain a suboptimal control law. The convergence of the HPM is
studied and to illustrate the effectiveness of these methods, some test problems are investigated.
In a word, the HPM and VIM show that the techniques are reliable, powerful and promising
methods for controlled harmonic oscillator with retarded damping.

The structure of this paper is arranged as follows: Section 2 is devoted to Pontryagin’s
maximum principle used for solving the controlled harmonic oscillator. Section 3 is dedicated
to the proposed design approach for solving a close-loop optimal control problem based on the
HPM and convergence of the method is demonstrated. Section 4 is devoted to the suboptimal
control strategy and algorithm for the proposed method. In Section 5 the numerical examples
are simulated to show the reasonableness of our theory and demonstrate the performance of
our network. Finally, we end this paper with conclusions in Section 6.

2 The Controlled Linear Oscillator

Consider the optimum control of a linear oscillator governed by the differential equation:ẍ(t) + aẋ(t) + bẋ(t− τ) + cx(t) = u(t), t0 ⩽ t ⩽ tf ,

x(t0) = x0, ẋ(t0) = ẋ0,
(1)

where x ∈ Rn and u ∈ Rn are respectively the state vector and the control vector, x0 ∈ Rn is
the initial state vector, c is the stiffness parameter, and a, b are the viscous damping coefficients.
Note that an artificially produced damping term bẋ(t− τ) is added to help control or stabilize
a system with insufficient natural damping aẋ(t).
The objective is to find optimal control law u∗(t) which minimizes the following quadratic cost
functional:

J =
1

2
xT (tf )Qfx(tf ) +

1

2

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt, (2)

where, matrixQf ∈ Rn×n is symmetric positive semi-definite, matrixQ(t) ∈ Rn×n is symmetric
positive semi-definite and piecewise continuous for t0 ≤ t ≤ tf , and matrix R(t) ∈ Rm×m is
symmetric positive definite with appropriate dimensions.

Equation (1) is equivalent to the dynamic state equations:
ẋ1(t) = x2(t)

ẋ2(t) = −cx1(t)− ax2(t)− bx2(t− τ) + u(t)

x1(t0) = x0, x2(t0) = ẋ0,

(3)
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the problem is to find control vector u(t) which minimizes equation (2) subject to equation (3).
The Hamiltonian function for the problem is

H(x, u, λ, t) =
1

2
xT (t)Q(t)x(t) +

1

2
uT (t)R(t)u(t) + λT (t)[Ax(t) +A1x(t− τ) +Bu(t)],

where

A =

(
0 1

−c −a

)
, A1 =

(
0 0

0 −b

)
, B =

(
0

1

)
.

According to the Pontryagin’s maximum principle of optimal control problems with time-delay
(1), the necessary conditions of optimality can be written as follows [13]:

ẋ(t) = Ax(t) +A1x(t− τ)− Sλ(t) t0 ⩽ t ⩽ tf

λ̇(t) =

−Qx(t)−ATλ(t)−AT
1 λ(t+ τ) t0 ⩽ t < tf − τ

−Qx(t)−ATλ(t) tf − τ ⩽ t ⩽ tf

x0(t) = x(t0) t0 − τ ≤ t ⩽ t0

λ(tf ) = Qfx(tf ),

(4)

where S = BR−1BT , x(t − τ) is the time-delay term and λ(t + τ) is the time-advance term;
furthermore, λ(t) ∈ PC1([t0, tf ],Rn) is the co-state vector. In addition, the optimal control
law is given by:

u∗(t) = −R−1BTλ(t) t0 ⩽ t ⩽ tf . (5)

Note that, equation (4) forms a linear two-point boundary value problem (TPBVP) with time-
varying coefficient involving both delay and advance terms. The exact solution to this problem
is, in general, extremely difficult, if not impossible. In recent decades, some new numerical
and analytic approximate methods have been proposed for solving such a difficult problem in
the context of delay ordinary differential equations. To overcome this difficulty, an iterative
approach, based on the HPM, will be introduced in the next section.

3 He’s HPM and Optimal Control Design Strategy

The homotopy perturbation method is a combination of the classical perturbation technique
and homotopy concept as used in topology. To explain the basic of the homotopy perturbation
method for solving nonlinear differential equations, the following nonlinear differential equation
is considered:

A(u)− f(r) = 0 r ∈ Ω, (6)

subject to the boundary condition

B(u,
∂u

∂n
) = 0 r ∈ Γ, (7)

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

S. M. Mirhosseini-Alizamini/ COAM, 2(1), Spring-Summer 2017 81

where A is an integral differential operator, B is a boundary operator, f(r) is a known analytical
function, Γ is the boundary of domain Ω, and ∂

∂n denotes differentiation along the normal drawn
outwards from Ω.

The operator A can, generally speaking, be divided into two parts, a linear part L and a
nonlinear part N . Therefore, (6) can be written as follows:

L(u) +N (u)− f(r) = 0. (8)

By the homotopy technique, He constructed a homotopy v(r, p) : Ω× [0, 1]; r ∈ Ω, p ∈ [0, 1]

which satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (9)

which is equivalent to

H(v, p) = L(v)− Lu0 + pLu0 + p[N (v)− f(r)] = 0, (10)

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial guess approximation of (6),
which satisfies the boundary conditions. It follows from (9) that

H(v, 0) = L(v)− L(u0) = 0,

H(v, 1) = A(v)− f(r) = 0.

Thus, the process of changing p from zero to unity is just like that of v(r, p) from u0(r)

to u(r). In topology, this is called deformation, and L(v) − L(u0) and A(v) − f(r) are called
homotopic. Herein, the embedding parameter p as a small parameter is used and is assumed
that the solution of equation (9) or (10) is as a power series in ρ:

v =
∞∑
k=0

pkvk = v0 + pv1 + p2v2 + · · · . (11)

Setting p→ 1, the approximate solution of equation (6) is obtained:

u = lim
p→1

v =
∞∑
k=0

vk. (12)

The convergence of series (12) has been proved in [8].

Theorem 1. Suppose that N (v) is a nonlinear function, and v =
∑∞

k=0 p
kvk, then we have

∂n

∂pn
N (v)p=0 =

∂n

∂pn
N (

∞∑
k=0

pkvk)p=0 =
∂n

∂pn
N (

n∑
k=0

pkvk)p=0.

Proof. Since

v =

∞∑
k=0

pkvk =

n∑
k=0

pkvk +

∞∑
k=n+1

pkvk,

we have the following result
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∂n

∂pn
N (v)p=0 =

∂n

∂pn
N (

∞∑
k=0

pkvk)p=0

=
∂n

∂pn
N
( n∑

k=0

pkvk +

∞∑
k=n+1

pkvk

)
p=0

=
∂n

∂pn
N (

∞∑
k=0

pkvk).

This ends the proof.

Theorem 2. The approximate solution of (6) obtained by the HPM can be expressed in He’s
polynomials:

u(r) = f(r) +H0(v0) +H1(v0, v1) + · · ·+Hn(v0, v1, · · · , vn),

where He’s polynomials are defined as follows:

Hj(v0, v1, · · · , vj) = −L−1
( 1

j!

∂j

∂pj
N (

j∑
k=0

pkvk)
)
, j = 0, 1, 2, · · ·n.

Proof. For more details, See Ghorbani [7].

In the following, to perform this methodology for solving nonlinear TPBVP (4), we con-
struct x̃(t, p) : [t0, tf ]× [0, 1] → Rn and λ̃(t, p) : [t0, tf ]× [0, 1] → Rn, which satisfy:

H(x̃(t, p), λ̃(t, p), p) =

(
H1(x̃(t, p), λ̃(t, p), p)

H2(x̃(t, p), λ̃(t, p), p)

)

=

(
L1(x̃(t, p), λ̃(t, p))− L1(x0(t), λ0(t)) + pL1(x0(t), λ0(t)) + pN1(x̃(t, p), λ̃(t, p))

L2(x̃(t, p), λ̃(t, p))− L2(x0(t), λ0(t)) + pL2(x0(t), λ0(t)) + pN2(x̃(t, p), λ̃(t, p))

)
= 0, (13)

where p ∈ [0, 1] is the homotopy parameter and x0(t), λ0(t) is an initial approximation for the
solution of nonlinear TPBVP (4). In addition, the linear and nonlinear operators in (13), i.e.,
L1,L2,N1 and N2 are defined as follows:



L1(x̃(t, p), λ̃(t, p)) =
∂x̃(t,p)

∂t −Ax(t, p) + Sλ(t, p),

L2(x̃(t, p), λ̃(t, p)) =
∂λ̃(t,p)

∂t +Qx̃(t, p) +AT λ̃(t, p),

N1(x̃(t, p), λ̃(t, p)) = −A1x̃(t− τ, p),

N2(x̃(t, p), λ̃(t, p)) =

A1λ̃(t+ τ, p), t0 ≤ t < tf − τ,

0, tf − τ ≤ t ≤ tf .

(14)

In addition, the initial approximations, x0(t) and λ0(t), are chosen to be the solution of the
following linear time-invariant TPBVP:

L1(x0(t), λ0(t)) = 0,

L2(x0(t), λ0(t)) = 0,

x0(t) = x(t0), λ0(t) = Qfx0(tf ).

(15)
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From (13) we obtain

H(x̃(t, 0), λ̃(t, 0), 0) =

(
L1(x̃(t, 0), λ̃(t, 0))− L1(x0(t), λ0(t))

L2(x̃(t, 0), λ̃(t, 0))− L2(x0(t), λ0(t))

)
= 0, (16)

H(x̃(t, 1), λ̃(t, 1), 1) =

(
L1(x̃(t, 1), λ̃(t, 1)) +N1(x̃(t, 1), λ̃(t, 1))

L2(x̃(t, 1), λ̃(t, 1)) +N2(x̃(t, 1), λ̃(t, 1))

)
= 0. (17)

Equations (16) and (17) implicitly state that, when p increases from zero to one, the trivial
problem (16) is continuously deformed to problem (17).

According to the HPM, the homotopy parameter p is used to expand solutions x̃(t, p) and
λ̃(t, p) in the form:x̃(t, p) = x̃0(t) + px̃1(t) + p2x̃2(t) + · · ·+ =

∑∞
i=0 p

ix̃i(t),

λ̃(t, p) = λ̃0(t) + pλ̃1(t) + p2λ̃2(t) + · · ·+ =
∑∞

i=0 p
iλ̃i(t),

(18)

where x̃i(t) = 1
i!

∂x̃(t,p)
∂pi |p=0 and λ̃i(t) = 1

i!
∂λ̃(t,p)
∂pi |p=0.

Setting p = 1 in (18), we getx(t) = limp→1 x̃(t, p) = x̃0(t) + x̃1(t) + x̃2(t) + · · ·+ =
∑∞

i=0 x̃i(t),

λ(t) = limp→1 λ̃(t, p) = λ̃0(t) + λ̃1(t) + λ̃2(t) + · · ·+ =
∑∞

i=0 λ̃i(t).
(19)

By substituting x̃(t, p) and λ̃(t, p) from (18) into (13), rearranging with respect to the powers
of p, and then equating the coefficients of the same powers of p, x̃(i)(t) and λ̃(i)(t) for i ≥ 0

can be easily obtained in the ith step only by solving the nonhomogeneous linear time-invariant
TPBVP. In addition, in each step, nonhomogeneous terms are calculated using the information
obtained from previous steps. Hence, solving the presented sequence is a recursive process.

Finally, according to previous discussions, the following theorem can be stated:

Theorem 3. Consider system (1) with quadratic cost functioal (2). Then, the optimal trajec-
tory and the optimal control law for t ∈ [t0, tf ] are determined as follows:x∗(t) =

∑∞
i=0 x̃i(t),

u∗(t) = −R−1BT
∑∞

i=0 λ̃i(t),
(20)

where x̃i(t) and λ̃i(t) for i ≥ 0 are obtained only by solving recursively the presented sequence
of TPBVP in (14).

Proof. It is straightforward by using Theorem 2 and equations (13)-(19).

4 Suboptimal Control Design Strategy

In this section we explain how to evaluate the precision of the suboptimal manner. We may find
the suboptimal control law in practical applications by replacing infinite with a finite positive
integer N in (20). Thus, the N th order suboptimal trajectory-control pair is obtained as follows:

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

84 Numerical Solution of the Controlled Harmonic Oscillator .../ COAM, 2(1), Spring-Summer 2017

xN (t) =
∑N

i=0 x̃i(t),

uN (t) = −R−1BT
∑N

i=0 λ̃i(t).
(21)

The integer N th in (21) is generally determined according to a concrete control precision.
For example, every time x̃i(t) and λ̃i(t) are obtained from the presented linear TPBVP se-
quences, we let N = i and calculate xN (t) and uN (t) from (21). Then, the following quadratic
performance index can be calculated:

JN =
1

2
xT
N (tf )QfxN (tf ) +

1

2

∫ tf

t0

(
xT
N (t)Q(t)xN (t) + uT

N (t)R(t)uN (t)
)
dt, (22)

where uN (t) has been obtained from (21) and xN (t) is the corresponding state trajectory
obtained from applying uN (t) in (1).

For the accuracy analysis, the following criterion is considered. The suboptimal control
law has desirable accuracy; if for given positive constants ϵ > 0, the following condition holds
jointly: ∣∣∣∣JN − JN−1

JN

∣∣∣∣ < ϵ, (23)

If the tolerance error bound is chosen small enough, the N th order suboptimal control law
will be very close to the optimal control law u∗(t); thus, the value of quadratic performance
index in (22) and its optimal value J∗ will be almost identical, according to Theorem 2, and
the boundary state conditions will be satisfied tightly.

Now, in order to maintain the accuracy of solutions, we present an algorithm of the proposed
method with low computational complexity.

Algorithm: Suboptimal control law of system (1):

1. Obtain x0(t) and λ0(t) from (13). Set x̃0(t) = x0(t) and λ̃0(t) = λ0(t). Let i = 1.

2. Calculate the ith order terms x̃i(t) and λ̃i(t) from (13).

3. Let i = N and calculate xN (t) and uN (t) from (21).

4. Calculate JN according to (22). If
∣∣∣∣JN − JN−1

JN

∣∣∣∣ < ϵ, then stop and output uN (t), go to
step 5; else, replace i by i+ 1 and go to step 2.

5. Stop the algorithm; xN (t) and uN (t) are accurate enough.

5 Illustrative Examples

The following various examples are given to illustrate the simplicity and efficiency of the pro-
posed method. The codes are developed using symbolic computation software MATLAB and
the calculations are implemented on a machine with Intel core 2 Due processor 2.50 Ghz and 4
GB RAM.
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Example 1. Consider the optimal control problem of a harmonic oscillator with retarded
damping as in [2]

J = 5x21(t) +
1

2

∫ 2

0

u2dt, (24)

subject to: ẍ(t) + ẋ(t− 1) + x(t) = u(t),

x(0) = 10, ẋ(0) = 0,
(25)

where 0 ≤ t ≤ 2. Equation (25) is equivalent to
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t)− x2(t− 1) + u(t),

x1(0) = 10, x2(0) = 0.

(26)

The problem is to find the control vector u(t) which minimizes equation (24) subject to equation
(26). The exact solution for this problem is given by [2]:

u∗(t) =

δ sin(2− t) + (
δ

2
)(1− t) sin(t− 1) 0 ⩽ t < 1,

δ sin(2− t) 1 ⩽ t ⩽ 2.

where δ = 2.5599, and the optimal cost functional is J∗ = 3.3991. Implementing the algorithm
described in section 4 with the tolerance error bounds ϵ = 3 × 10−5, the desired suboptimal
control is obtained for N = 7 iterations. From Table 1, it is observed that,

∣∣∣∣J7 − J6
J7

∣∣∣∣ =

2.941 × 10−5 < ϵ, and a minimum value of J7 = 3.3991 is obtained. Note that dash in tables
1 and 3 indicates that the error’s value can not be calculated at the first step. The error
of proposed method can be calculated for the later steps. In Table 2, a comparison is made
between the value of J obtained by the present method with N = 7, together with the value of
J presented in [2] by using averaging approximations, eight basis functions of linear Legendre
multi-wavelets in [14] and hybrid function approximation method in [11]. The numerical results
for the optimal state trajectories and optimal control are displayed in Figures 1-3.

Table 1: Simulation results of Example 1

N JN

∣∣∣∣JN − JN−1

JN

∣∣∣∣
5 3.3971 -
6 3.3990 6.472×10−4

7 3.3991 2.941×10−5

Example 2. Consider the optimal control problem of a harmonic oscillator with retarded
damping as in [2]:
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Table 2: The cost functional values for Example 1

Method Cost functional values
Banks et al. [2] 3.2587

Kellat [14] 3.43254
Haddadi et al. [11] 3.21663
Present method 3.3991

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 1
(t

)

0

1

2

3

4

5

6

7

8

9

10

proposed method
VIM

Figure 1: The suboptimal state, when N = 7 for Example 1

J =
1

2
(x21(t) + x22(t)) +

1

2

∫ 2

0

u2dt, (27)

subject to: ẍ(t) + ẋ(t) + x(t− 1) = u(t),

x(0) = 1, ẋ(0) = 0,
(28)

where 0 ≤ t ≤ 2. equation (28) equivalent to
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t− 1)− x2(t) + u(t),

x1(0) = 1, x2(0) = 0.

(29)

The problem is to find the control vector u(t) which minimizes equation (27) subject to
equation(29). The exact solution for this problem is given by [2]:
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t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 2
(t

)

-8

-7

-6

-5

-4

-3

-2

-1

0

proposed method
VIM

Figure 2: The suboptimal state, when N = 7 for Example 1
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Figure 3: The suboptimal control, when N = 7 for Example 1

u∗(t) =

(µ− δ)et−2 + [2µ− 3δ − (µ− δ)t]et−1 + δ(t+ 2)− µ 0 ⩽ t < 1,

(µ− δ)et−2 + δ 1 ⩽ t ⩽ 2,

where µ = 0.5226194, δ = −0.0259256, and the optimal cost functional is J∗ = 0.197478.
Implementing the algorithm described in section 4 with the tolerance error bounds ϵ = 2×10−5,
the desired suboptimal control is obtained for N = 8 iterations. From Table 3, it is observed
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Figure 4: The suboptimal control, when N = 8 for Example 2

that
∣∣∣∣J8 − J7

J8

∣∣∣∣ = 1.012× 10−5 < 2× 10−5, and a minimum value J8 = 0.197473 is obtained. A
comparison is made between the value of J obtained by the present method and N = 8, with
the value J = 0.1934 presented in [2] by using averaging approximations. The numerical results
for the approximate solution of u(t) by using the HPM and VIM and the exact solution are
graphically the same as shown Figure 4.

Table 3: Simulation results of Example 2

N JN

∣∣∣∣JN − JN−1

JN

∣∣∣∣
6 0.197452 -
7 0.197471 9.621×10−5

8 0.197473 1.012×10−5

6 Conclusions

In the present work, a technique was developed for obtain the optimal solution of the controlled
harmonic oscillator. We described the method and used it in some test examples in order to
show its applicability and validity in comparison with other methods and exact solutions. We
achieved satisfactory approximations with a few number of iterations, revealing the efficiency of
the method. Moreover, since this method does not need the discretization of the variables, there
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is no computation round off errors and one is not faced with the necessity of large computer
memory and time.
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٩٨ ٩١ تا ٧٧ صص (٢٠١٧ (بهار-تابستان جلد١ ،٢ شماره کاربردی، ریاضیات در سازی بهینه و کنترل

هموتوپی اختلال روش از استفاده با شده کنترل هارمونیک نوسانگر عددی حل
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چکیده

زمینه در مهمی نقش که است، بهینه کنترل مسائل از مهمی دسته ی دمپینگ، با شده کنترل هارمونیک نوسانگر مسأله
می شود. ارائه تحلیلی روش مسأله، این حل برای مقاله، این در می کند. ایفا غیرخطی مهندسی سیستم های در نوسانی پدیده
یک منظور، این برای است. ساده و آسان حل فرایند است. شده ریزی پایه هموتوپی اختلال روش اساس بر رویکرد این
الگوریتم از متناهی تکرارهای کمک به چنین، هم می شود. پیشنهاد کم، محاسبات پیچیدگی با کنترل طراحی الگوریتم
مسأله دقیق جواب با آمده دست به نتایج نهایت، در می آید. دست به مسأله برای بهینه زیر کنترل قانون یک پیشنهادی،

است. آشکار نتایج بالای دقت وضوح، به که شده، مقایسه قبلی آثار از حاصله نتایج سایر و هارمونیک نوسانگر

کلیدی کلمات

. هموتوپی اختلال روش دمپینگ، هارمونیک، نوسانگر بهینه، زیر کنترل
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