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Abstract

Here we concern ourselves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic
wave packet. The self-induced transparency, sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton
solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations
and changes the character of the solutions from highly predictable soliton solutions 1o unpredictable chaotic solutions. When
viscosity is weak, equations related to the Lorenz attractor equations obtain, while for strong viscosity the Ginzburg-Landos

equation obtain.
Keywords: sine-Gordon equation, soliton, baroclinic instability

1. Introduction

One of the major concerns of the meteordogist is the
degree of predictability of atmospheric motions. The
classic remarks made by Lorenz [1], in the now-
celebrated paper in which deterministic equations were
first shown to exhibit aperiodic and consequently
predictable behaviour, that it may be impossible to
_predict the weather accurately beyond a few days, only
too truly reflect the current state of affairs.

We shall not be concerned, in this article, with direct
modeling of atmospheric predictability. Instead we shall
concentrate on the phenomena occurring in simple
models exposing the essential physical behaviour, and
we shall demonstrate that under certain conditions,
coherent persistent behaviour is possible.

Cyclones, anticyclones and their associated frontal
system are a prominent feature of the mid-latitude,
westerlies of the Earth’s lower atmosphere. Their
importance as weather bearing systems and more
generally their role in the general circulation of the
atmosphere is well-known if not yet well understood.
Their occurrence and rigidly changing behaviour is

strongly influenced by the existence of large scale “Long
waves”, which_are remarkable for their persistence and
coherence over longer periods of time. Both phenomena’
owe their existence to the availability of potential energy
associated with the baroclinicity of the fluid, i. e. the
non-coincidence of surfaces of constant gravitational
potential and constant denmsity, which is a possible
equilibrium in a rotating system. Such an equilibrium is
unstable and wave-like perturbations can develop at the
expense of the potential energy if the trajectories of fluid
particles are contained within the geopotentials and
isopynals. This process is known as sloping convection
or baroclinic instability and the consequent waves as
baroclinic waves. Mathematical models are almost
invariably infinite channel models; the simplest are the
heterogeneous model due to Eady [2], and the two-layer
model due to Phillips [3]. The basic state for the Eady
model is one of linear vertical shear; for the two-layer
model the zonal velocity is constant in each layer. Over
the past couple of decades a number of authors have
studied various aspects of the weakly nonlinear
behaviour of wave-like perturbations to the basic states
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of both models, when the amplitude is permitted to vary
slowly in both time and/or space.

The motivation for considering baroclinic wave-
packet behaviour lay partly in the experiments of Hide et
al. [4] and other experiments who had long observed a
motivation of the baroclinic wave and a recurrence
property of the data. They interpreted the motivation in
terms of a triad interaction between the dominant wave,
its side-bands and the long wave. Subsequent numerical
integrations performed by Farnell and James [5] led to
support this conjecture and a wave-packet model was
thought to be an alternative and possibly better way of
viewing log-wave modulation. The material of this paper
draws heavily upon the main results appearing in Gibbon
et. al. [6], Moroz [7] and Moroz and Brindley [8].
Section 2 contains descriptions of both the continuously
stratified and the two-layer models as well as the linear
stability theory of both. In Section 3 we indicate the
nonlinear theory and show how the completely
integrable equations arise. Finally in Section 4 there is a
comparison of theoretical and experimental results.

2. The Models

The model equations, known as the quasi-geostrophic

potential vorticity equations, are obtained from the

Navier-Stokes equations, the equation of continuity of

mass and other subsidiary relations, under certain

assumptions as listed below.

) Inviscid incompressible fluid(s).

(i) Stable density stratification.

(iiiy The Boussinesq approximation i.e. density
variations are only taken into account in the
boundary term in the Navier-Stokes equations.

(iv)  Infinite rectangular channel model: infinite in
the x-éxtent and bounded laterally by vertical
frictionless walls and above and below the rigid
wall.

) For the layered model we make the Rossby §-
plane approximation and allow horizontal
variations of the Coriolis parameter with cross
channel coordinate, y, which is one way of
modelling the Earth’s sphericity in certain
coordinates.

(vi)  For the continuously stratified model we permit
the lid and base of the channel to have a lateral
slope, the slope being no longer than the slope
of the isotherms.

(vii) The systems rotate rapidly about a vertical axis
with angular speed £2 so that the dominant
balance is between the Coriolis force 202xu and
the pressure gradient V,, dimensional analysis
shows that acceleration and advection are an
order of magnitude smaller than these two
forces. .

(viii) The basic state satisfies the thermal wind
relation: vertical shear horizontal density
gradient.

(ix)  The motion is nearly two dimensional in the
horizontal plane.

The derivation of the quasi-geostrophic equations is
straightforward and will not be given here. The
details can be found elsewhere [9]; here we merely
quote the results. For a continuity stratified model we
have to solve

0 2
subject to

1
\yx=00ny=i—2- (V)]
nmlf .>dx'—00n —+l @)
x—® ) ny' y —2
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and y is the non-dimensional pressure field. In
the following we assume S,=-S,. For a two-layer
model, we have

[E + J(x,y) (Wi’)}[vz\vi + ("’ I)MF(\W - W2)+ BY]

ot
=0, i=1,2 o)

subject to

Here we have introduced the non-dimensional parameters:

V=0 on y=0, 1 %
hm—l—f v dx'=0ony=0,1 (3%
x30 Jy X y

B Burger Number (Stratification parameter),
5i(i=1,2) Non-dimensional boundary slopes (Dispersion parameter),
F Internal rotational Froude number (Stratification parameter),
B . P-effect ‘ (Dispersion parameter).

We seck wave-like perturbations to a simple zonal
flow. Replacing y by — yz -+ for the continuous
model

v = (Pcosh2qz + Qsinh 2qz)e**~

. 1 )
sinmm| y +—
2
and replacing
yiby —wy + y; for two layer model.
1 .
ho ( Jem(m) sinsuy 5"
Y

and linearize the resulting equations, we obtain
characteristic relations: '

H; = 4q*c* + 2S,q(tanh q + cothq)c + S?
—(1+g%)+q(tanhq + cothq)

4q® =B(k*> +m’n?)

and

H, =a’ (a2 + ZF):2 - c[az(a2 + ZFXul +u,)
- 2[3(a2 + F)]+ a’ (a2 + ?.F)l'xlu2 +p?

+Fa’u? -B(u, +u, )(a2 + F)
(6%

for the two-layer model, where

a’ =k? +m’n?

The dispersion relations are found by solving

=0- for c. The condition for marginal stability kc;=0
yields surfaces which separate stable and unstable
regions for parameter space. These surfaces often
have a local form dominated by one particular
parameter. For the continuity-stratified model, S; is
the relevant stability parameter and the condition for
marginal stability is

= 4[q(tanhq +cothq)— (1 +q° )]

0
? (tanhq - cothq)’
for the two layer model it is u;=u;~u, and
212
2 4B°F ™

e = e =2

The validity of a wave packet analysis rests on
the existence of suitable behaviour in the linear
problem. For small departures of order A of the
stability parameter, A, from criticability, a band of
wave numbers of width A" is unstable. Moroz and
Brindley [8] have shown that the stationary point in
the “Eady” model occurs for S,=1 and at that point
we have a coalescence of two modes with identical
phase speeds, (¢c=-1/2) but different group speeds.
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3. Nonlinear theory

The results from linear theory suggest that we
introduce new variables X; and T;, scaled
respectively on the bandwidth and growth rate of the
most unstable wave i.e.

1
(X, T) = A2 (x.) ®)

We also require the variables

(%, T,) = A (x,1)

and assume that the amplitude A(X;, T;) of the wave
is a strongly varying function of space and time. The
solution my then be developed as an expansion in a
small parameter, related to the departure from neutral
stability. This method has been formalized by Newell
[10] and Weissman [11], and the result is a system of
evolution equations which must be satisfied by the
wave amplitude at each order of the expansion. The
coefficients- of the linear terms in these equations are
identifiable as derivatives of the characteristic
function, H, with respect to its various arguments, the
nonlinear terms are specified by the particular
problem under consideration.
For the inviscid baroclinic wave models we have

HA=0 ®

~HA; +HA, =0 (10)

i(-H AL +HA, )+
1
E(HGUATlTI - ZHGkAX1T1 + HkkAX,Xl)

=H,A-N(A) -
(an

- A number of special cases arise as follows:

i- Marginally unstable wave packets with B or S,
of O(1)

For an inviscid model, H,~0 everywhere on the
neutral wave but H,=0 only at the critical point [11].
The slow scales X, and T, are not required and the

amplitude evolves according to the second order
equation

A2
—€—+C 1——6—)(—6—+Cg2—?——)A_=c A-NAB
oT ®aXA\oT oX

) ) )
(6T+ el ax)]Al (E Cor ax)

2
A
where © is the constant of the linear growth rate, N
is a positive constant, B(X;, T;) is asecond order
correction to the basic state and

-H_, +H: -H_H
(:gl,2 = k kk

H

o

(12)

are the group speeds.
Gibbon et al. [6] have shown that the transformation

S=41-12 R =42A (13)

and the change of variable

§=_\/ﬁ(x__c.8_lrr_)

Co~Cor (14)
e e
C,-C

results in the self-induced transparency equations

R, =RS as)
1, 2

S, =——IR

LR

with, S = +L,R —> Oas|é| - 0.

If we assume, in addition that A is real and write

R =¢,,S = tcosd (16)
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then we obtain the sine-Gordon equation
by, = isin ¢ an

ii-p (or S;) =0

In the absence of sloping endwalls or §, we no longer
consider a bandwidth of waves centred at the critical
point since this corresponds to k=0. Instead we
choose a bandwidth centred about k;=O(1) which
means that k-k,=O(A) and the appropriate slow time
and space scales are now T, and X,. We still have
H,=0 and obtain the nonlinear Schrodinger equation
with the rules of space and time reversed.

. 1
H A +>HoAgy = HA - N,|A A @8)

iii- Neutral Waves
For neutral waves neither H, nor Hjy vanishes and

replacing -—Q— by ii again gives a
oT, H, X,
nonlinear Schrodinger equation.
iv- Marginally unstable wave packets in the
inviscid limit
There are basic differences between the linear
stability properties for a model in which viscosity is
initially set equal to zero and those for a model in
which viscosity is retained and then allowed to
approach zero. These differences are apparent only
when the dispersive effects are present. It is now no
longer the case that H,=0 and H,=0 on the stability
boundary and the analysis produces an equation of
nonlinear Schrodinger type.

4. Comparison with experiments
The quasi-geostrophic models of baroclinic
instability behave remarkably like the nonlinear optic
problem of the iteration of a rapidly oscillating
electric carrier wave with a two-level atomic motion,
leading to self induced transparency, where in the
viscous limits the NLS, SIT and sine-Gordon
equations all appear. It is possible to compare the
mechanisms operating in the two systems.

The baroclinic model can also be considered as a
system with two energy levels, namely the state of

fully developed baroclinic waves and the state of
purely zonal flow, as determined by the function
S(€,7) which is a measure of the available potential
energy of the system. The two extreme states
correspond to a maximum (or upper state, when
S=+1) or a minimum (or lower state, when S=-1) of
available potential energy. The supercritical
A2
condition, ¢ > 0 and the upper state is zonal flow
and the lower state being fully-developed waves; the
A2
situation is reversed for & < 0. As in the SIT case
A2

the solution is associated with ¢ > O is unstable,
the asymptotic state being one of maximum available
potential energy and we conclude that only the
subcritical case is of importance in an infinite
domain.

Such results may well be appropriate for the
oceans where typical wavelengths of disturbances are
0(50-100) km in a general circulation of 1000 km
and it is therefore a good approximation to permit a
continuous spectrum of waves to be excited. For
laboratory experiments and the atmosphere, typical
wavelengths are of an order of magnitude larger and
spatially periodic boundary conditions are more
appropriate. Exact analytic solutions are known for
the sine-Gordon equation in a periodic domain and
they take the form of Jacobi elliptic functions. For a
finite  Josephson transmission  line  three
fundamentally distinct types of solution exist: the
plasma, breather and fluxon oscillation. They present
respectively an oscillation about zero mean, a bound
state oscillation of a vortex- anti-vortex pair repeated
reflection. at the ends of the transmission line ofa
fluxon which emerges alternatively as fluxon or
antifluxon after reflection. Laboratory experiments
have long recognized a tendency for the regular
region. of baroclinic waves to persist for a
considerable ranges of parameter values and this
coherent behaviour is due largely to nonlinear effects
rather than viscosity. Such behaviour is certainly
consistent with soliton solutions described here.

1t is customary when discussing the consequences
of introducing friction to exactly integrable equations
to treat friction as an inhomogeneity and simply add
an additional constant term. For the baroclinic wave
models described above this is not a mathematically
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consistent approach, and depending on the amount of
friction present and the relative magnitudes of all the
non-dimensional parameters present in the problem,
dramatically different evaluation equations can arise;
an indication of this was apparent in the case (iv)
above.

The addition of small fiction effects in the
baroclinic wave models give rise to the equations
related to the Lorenz. Strange Attractor equations,
modified by the presence of a spatial derivative,
Alexander [12]; exactly the same behaviour occurs in
the nonlinear optics problem [13]. When strong

Table 1. Summary of wave packet behaviour

friction is present, .an equation arises which
resembles the nonlinear Schrodinger equation but
which has complex coefficients, usually called the
Ginzburg-Landau equation [8]. Both of these
equations are known to possess chaotic solutions and
their occurrence in this context provides a very
interesting field of study in view of the recent interest
in the appearance of a periodic solutions when
exactly integrable equations are perturbed [14]. We
summarize the evolution equations in Table 1.

SP | orsPi=0 orSt}=0(a) or S'}=0(1)
. ,
=0 Behaviour unknown: SIT sine-Gordon soliton solutions for infinite
(Equation are NLS with usual space and time | domain doubly periodic, Jacobi elliptic
dependencies interchanged) solutions for bounded domain.
(NLS) Soliton solutions for infinite domain
FPU recurrence in bounded domains.
r=0(A) Spatial Lorenz equation under investigation
r=0(1) Behaviour under investigation equations related | Periodic and aperiodic solutions according to
to NLS. Some complex coefficients. parameter values TDGL equation

In summary then the baroclinic wave models
provide an excellent example of a new area of
physics in which solitons can arise, showing how
viscosity alters the form of the exactly integrable
equations occurring for an inviscid model. Moreover,
the natural development of the (NLS) into the
Ginzburg-Landau equation as viscosity is incoherent,

implying a change from predictable to unpredictable

behaviour, suggests a new way of approaching
soliton perturbation problems and a new direction of
interest in the study of Hamiltonian systems under
perturbation, an area of considerable interest and
excitement in dynamical systems theory. ‘
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