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Abstract 
The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly 
correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation) to 
investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET)2 X conductors. These compounds are 
described by the so-called dimer Hubbard model, with various values of the on-site repulsion U and diagonal hopping amplitude t'. At 
strong coupling, our zero-temperature calculations show a transition from Néel antiferromagnetism to a spin-liquid phase with no long 
range order, at around t' ~ 0.9. At lower values of U, we find d-wave superconductivity. Taking into account the point group symmetries 
of the lattice, we find a transition between 22 yxd

−
and dxy pairing symmetries, the latter happening for smaller values of U.
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1. Introduction  
Low-dimensional systems of strongly correlated 
interacting electrons, such as cuprate and organic 
compounds, have been vastly studied in recent 
experimental and theoretical researches. Variation of 
doping or chemical pressure is often the cause of an 
antiferromagnetic-superconducting phase transition in 
these compounds. A subject of great interest has been the 
proximity of antiferromagnetism (AF) and 
unconventional superconductivity (SC) and the possible 
existence of other exotic phases in the κ -family of 
organic superconductors. The general chemical formula 
for this family of organic compounds is κ -(BEDT-
TTF)2X, where BEDT-TTF is an abbreviation for 
bisethylenedithio-tetrathiafulvalene, and the anion X can 
be one of X=Cu(NCS)2, Cu[N(CN)2]Br,  Cu2 (CN)3,
I3,etc [1,2]. These are basically quasi-bidimensional 
systems, in which holes are constrained to move mostly 
in the layer of BEDT-TTF molecules, as shown in  
Figure 1. The layer of anions plays the role of a barrier 
to the hole motion. Understanding the electronic 
properties and the microscopic phase transition in these 
materials is a great theoretical challenge [3-5,16].   
 For instance, the compound κ -(BEDT-TTF)2
Cu[N(CN)2]Cl (shortly written as κ -Cl) shows a 
transition between antiferromagnetism and 
superconductivity under pressure, with a macroscopic 

coexistence of the two phases in some range of 
pressure [7,8]. On the other hand, in κ-(BEDT-TTF)2
Cu2 (CN)3 (or κ–Cu2CN3), a higher level of magnetic 
frustration leads to a Mott transition upon decreasing 
pressure without magnetic ordering [9,10].  
 The focus of this paper are the zero-temperature 
ordered phases (AF and d-wave SC) of this family of 
compounds as described by the dimer Hubbard model 
(defined below). The method used is variational cluster 
perturbation theory (VCPT), also called the variational 
cluster approximation (VCA) [11,12]. This method is 
based on the self-energy functional approach proposed 
by Potthoff [13], and has been capable of reproducing 
the AF and dSC phases of high-temperature 
superconductors [14,15]. It is based on a dynamic 
variational principle, i.e., involving the frequency-
dependent one-body Green function of the system. As 
such, it provides not only order parameters, but also 
dynamic information like the spectral function.  
 
2. Properties of the κκκκ -(BEDT-TTF) 2 X family 
2.1. Lattice structure 
The structure of κ-(BEDT-TTF)2 X consists of lattice of 
pairs (dimers) of aligned molecules (1). A schematic 
view of the b c− plane is shown on the left panel of 
figure 2. The BEDT-TTF layers and the anion layers 
alternate along the a -axis. The presence of the  
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Figure 1. (color online) Crystal structure of κ-(BEDT-TTF)2
X. Each two-dimensional layer of BEDT-TTF molecules is 
sandwiched between two X anion layers. (Reprinted from 
ref.[6], Copyright 2001, with permission from Elsevier.) 
 
monovalent anion X introduces a hole (charge carrier) 
into each dimer, making the antibonding molecular 
orbital of the dimer half filled. A relatively large overlap 
of the orbitals between the dimers and the very small 
overlap between the BEDT-TTF layers, causes the 
carriers to move preferentially within the BEDT-TTF 
layers, resulting in a quasi two-dimensional character. 
The holes can hop through the triangular lattice of 
dimers to their nearest (NN) and next-nearest (NNN) 
neighbor, via two inter-dimer transfer integrals, t and 
t ′ , of the order of 50 meV, as shown in figure 2. These 
hopping integrals are affected by chemical or hydrostatic 
pressure. 
The relative value of the hopping integrals t and t ′ ,
which depends on the anion type, determines the degree 
of magnetic frustration in the system. The case 0t′ =
would correspond to a square lattice, whereas the case 
t t′ = corresponds to an isotropic triangular lattice. 
Values of the hopping integrals for four members of the 
family are given in Table 1. 
 
2.2. Phase diagram 
The family κ-BEDT-TTF2X has a very rich phase 
diagram as a function of pressure, temperature and 
anion. The resistivity profiles of a few BEDT salts are 
shown in Figure 3. Note that κ-Cu(NCS)2 and κ-Br are 
metals (their resistivity decreases with temperature) that 
turn into superconductors (critical temperatures are 
indicated in Table I). On the other hand, κ-Cl is an 
insulator at ambient pressure. So is κ-Cu2CN3 (not 
shown on figure 3). But these two insulating compounds  

Figure 2. (color ongline) (a) The lattice structure of κ -
(BEDT-TTF)2 X in the b-c plane. (b) The lattice structure of 
the dimers of aligned BEDT-TTF molecules. t and t'  represent 
the hopping integrals to nearest and next-nearest neighbor site, 
respectively. The dashed square represents a 4-site cluster used 
in the VCA. 

differ in that κ-Cl becomes an antiferromagnetic 
insulator at low temperature [8], whereas κ-Cu2CN3
shows no sign of magnetic ordering and is believed to be 
a spin liquid [10,25].  
 Figure 4 shows a schematic phase diagram for some 
of these salts, based on the behavior of the resistivity. 
Chemical pressure can be set by substitution of anion 
molecules and modification of donor molecules. Applied 
pressure is simply superimposed to this chemical 
pressure. Overall, pressure is assumed to be roughly 
proportional to the inverse screened Coulomb repulsion 
within a dimer, so that the higher the pressure, the lower 
the effects of correlations. The paramagnetic insulating 
(PI), antiferromagnetic (AF) insulating, unconventional 
superconducting (SC), and metallic (M) phases are 
clearly realized in the phase diagram. The positions of 
the various compounds are determined by their ambient-
pressure ground-state properties. However, the 
schematic phase diagram does not take the level of 
frustration into account, and thus does not describe the 
complete family, in particular κ-Cu2CN3. By replacing 
pressure by doping, the diagram looks quite similar to 
that of the cuprates.  
 Among the compounds appearing in figure 4, κ-Cl is 
an antiferromagnetic Mott insulator with a 
commensurate order at ambient pressure. The Néel 
temperature is around 25K and the spin moment is 
greater than 0.4 Bµ per dimer. By applying a pressure of 
about 30 MPa, it becomes a superconductor with a 
critical temperature of roughly 12.8K. This is a pressure-
induced first-order Mott transition. The other salts 
appearing in the diagram behave like pressurized κ -Cl, 
with superconducting ground states. The SC transition 
temperature cT for various members of the organic 
conductors decreases by decreasing the effective 
correlation (increasing pressure). The position of the 
finite-temperature metal-to-insulator transition depends 
on the ratio t t′/ [18,19].  
 Table 1 shows the values of the hopping integrals  
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Table 1. Critical temperature (Tc) and pressure (Pc) of κ-(BEDT-TTF)2X compounds. 

anion Tc Pc t t′/ U/ t Ref. 

κ -Cu(NCS)2 10.4 0 0.84 6.8 [21] 
κ -Br 11.6 0 0.68 7.2 [22] 
κ -Cl 12.8 0.3 0.75 7.5 [23] 

κ -Cu2CN3 2.8 1.5 1.06 8.2 [24] 

Figure 3. Resistivity profile of κ -(BEDT-TTF)2X. (Reprinted 
from ref. [16], Copyright 1997, with permission from Elsevier.)  

t t ′/ , the SC critical temperature T c and critical Mott 
transition pressure Pc, for a few well-known κ organic 
materials [20].  
 
2.3. Pairing symmetry 
The nature of the superconducting pairing in κ-(BEDT-
TTF)2X is still the object of a controversy among 
experimental and theoretical physicists. C-NMR 
measurements on κ-(BEDT-TTF)2-Br show a 3T
behavior of 11 T/ and a Knight shift down to 0.14 cT ,
which suggests an unconventional pairing with a very 
anisotropic gap [26]. By contrast, a fully gapped order 
parameter on the same salt is suggested by high-
resolution specific heat measurements, because of the 
exponential vanishing of the electronic specific heat with 

cT T/ [27,28]. In another experiment, the temperature 
dependence of the Knight shift ( )sk T below the SC- cT
suggested that the electron pair is in the spin-singlet-
state; suitable candidate for this are s- and d-wave 
symmetries [29].  
 Scanning tunneling spectroscopy (STM) 
measurements on ET-Cu(CNS)2 show an anisotropy of 
the SC-gap both within the b c− plane and 
perpendicular to it. It was concluded that the observed 
tunneling spectra on the plane are explained by a d -
wave gap with nodes along the direction 4π/ from bk

Figure 4. (color online) Generic phase diagram of κ -(BEDT-
TTF)2 X organic materials. The chemical or hydrostatic pressure is 
proportional to the inverse Coulomb interaction U . The 
abbreviations AF, SC, and PI stand for the antiferromagnetic, 
superconducting, and paramagnetic-insulator phases, respectively. 

and ck axes. These results strongly indicate that the SC 
pair wave function in the salt has the xyd -wave 
symmetry[30] (with the convention for axes that we 
introduce below). Directional thermal conductivity 
measurements on κ-(BEDT-TTF)2-Cu(CNS)2 showed a 
fourfold symmetry, with nodes at 45 o from the bk and 

ck axes, again corresponding to a xyd -wave 
symmetry[31]. On the other hand, ac susceptibility 
measurements on ET-Br lead to a mixture of s- and d-
wave order parameters[32].  
 
3. The dimer-Hubbard model 
The minimum model required to study the magnetic and 
superconducting properties of layered organic materials 
is the single-band dimer-Hubbard model [33-35]. The 
Hamiltonian for this model can be written as  
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† †
r r r r rr r

rr [rr ] r r
,H t c c t c c U n n nσ σ σ σ σ

σ σ σ
µ′ ′ ↑ ↓

′ ′, , ,

′= + + −∑ ∑ ∑ ∑  

(1) 
where rc σ ( †

rc σ ) creates an electron (hole) at dimer site 
r on a square lattice with spin projection σ , and 

rn σ = †
r rc cσ σ is the hole number operator. rr′ ( [ ]rr′ )

indicates nearest- (next-nearest)-neighbor bonds. Here, 
the axes of the square lattice ( x and y ) correspond to 
nearest-neighbor bonds and are rotated by 4π/ with 
respect to the b and c axes (see Figure 5).  
 In this model kinetic energy term tends to delocalize 
the electrons (or holes) and favors a metallic state. On 
the other hand, the on-site Coulomb interaction tends to 
localize the electrons in order to avoid doubly occupied 
sites and thereby favors an insulating state at half filling. 
Chemical or hydrostatic pressure induces a small change 
in the inter-dimer distance, which affects the hopping 
integral from dimer to dimer but not the intra-dimer 
Coulomb repulsion. Thus, the ratio t U/ can be 
assimilated to pressure. The values of t ′ for the 
compounds κ -Br, κ -Cl, κ -Cu(NCS)2 and κ -Cu2CN3
are thought to be roughly 0 5 0 65. − . , 0 75. , 0 75 0 85. − .
and 1 respectively [35,10].  
 The dimer Hubbard model, and Hubbard-type models 
in general, have been treated with several theoretical 
methods. Many of these methods, such as slave-boson 
descriptions, are applied at the mean-field level are thus 
ignore even short-range fluctuations, which may play an 
important role. Because the kinetic and potential 
energies are most often of the same order of magnitude, 
perturbation theory is not practical; on the other hand, 
numerical methods have taken an increasingly important 
place. Plain exact diagonalizations are limited to small 
system sizes. Quantum Monte-Carlo is very useful but 
must be extrapolated to zero temperature and suffers 
from the fermion sign problem in the frustrated case 
[36]. Dynamical mean-field theory (DMFT) is another 
approximation which effectively assumes the limit of 
infinite spatial dimension ( D = ∞ ) [37-39]. Different 
techniques are employed to solve the model within 
DMFT to study the Mott transition such as iterative 
perturbation theory [39-41], exact diagonalizations [42-
45], renormalization group methods [46-48], and 
quantum Monte-carlo [49-52]. 

 
4. The variational cluster approximation 
Over recent years, a few methods have been proposed 
that take into account short-range correlations exactly 
while describing the propagation of electrons over the 
infinite lattice. These methods are collectively called 
quantum cluster methods: they all involve the exact 
solution of the model on a finite cluster of sites, and the 
embedding of this cluster into an infinite lattice. They 
are the Dynamical Cluster Approximation (DCA) 

Figure 5. (color online) Left: the Fermi surface in the 
Brillouin zone of the dimer model, and (blue) the corresponding 
folded zone associated with a large unit cell containing two 
dimers (i.e. four molecules). The sign of the 2 2x y

d
−

SC gap 

function is indicated by the alternating dashed and full lines. 
Middle: the folded Fermi surface in the reduced Brillouin zone, 
also rotated by 4π/ (i.e. along the b and c axes). Right: same, 
this time indicating the signs of the xyd SC gap function.  

 
[56, 57], the Cluster Dynamical Mean Field Theory 
(CDMFT) [58], the Cluster Perturbation Theory (CPT) 
[54] and, more recently, the Variational Cluster 
Approximation (VCA), also called the Variational CPT 
(V-CPT) [11,12].  
 The first step of quantum cluster methods is to tile 
the infinite lattice of the model with identical clusters, 
i.e., to define a superlattice of clusters. The various 
cluster methods differ in the way they try to connect the 
properties (such as the one-particle Green function) 
calculated exactly with one cluster, to the corresponding 
property of the infinite system. Cluster Perturbation 
Theory is conceptually the simplest of these methods. It 
amounts to calculating the exact self-energy of the 
cluster and applying this self-energy to the whole lattice, 
with a proper periodization of the Green function [54, 
55]. CPT includes short-range correlations on the scale 
of the cluster size and is also exact in both the strong and 
weak-coupling limits. However, it does not contain a 
procedure to study broken-symmetry phases (long-range 
order).  
 The VCA is an extension of CPT based on the self-
energy functional approach (SFA) [13], and enables us 
to overcome this problem. This approach provides a 
general variational principle to use dynamical 
information from an exactly solvable “reference system” 
(here, and individual cluster) to describe the system on 
the infinite lattice.  
 The SFA defines a functional t[ ]Ω Σ of the self-
energy, which is stationary at the physical self-energy: 

t [ ] 0δ δΩ Σ / Σ = . The value of the functional at the 
stationary point is the physical grand potential of the 
system. This functional can be calculated exactly, but 
only for a finite-dimensional space of self-energies, by 
defining a so-called reference Hamiltonian H ′ , which 
has the same interaction part as the original Hamiltonian 
under study, but differs from it by its one-body part, in  
such a way that it can be solved exactly (numerically). In 
the case of the VCA, the reference Hamiltonian is that of 
a single cluster. In terms of the exactly computed Green 
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function G ′ of the reference system (the cluster) and the 
non-interacting Green function 0G of the full 
Hamiltonian H , the functional tΩ reduces to a 
function of the one-body parameters of the reference 
Hamiltonian, which has the expression:  

( )1 1
t 0 0

K
(t ) lndet 1 ( )

2C
d G G Gω
π

− −′ ′ ′Ω = Ω − + −∑∫ , (2) 

where ′Ω is the exact grand potential of the cluster. The 
variational principle is then applied by varying the one-
body part of the cluster Hamiltonian (by varying a few 
parameters such as symmetry breaking Weiss fields) 
until the function t (t )′Ω is stationary. At this stationary 
point, the self-energy of the cluster is taken as the self-
energy of the whole lattice, like in CPT. The value of the 
function Ω at this point is an approximation to the 
physical grand potential. We stress the nature of the 
approximation made here: the functional used is exact, 
but the space of self-energies used is restricted to the 
exact self-energies of a reference Hamiltonian, which is 
spanned by a finite number of judiciously chosen 
parameters. We refer to Refs [11,12] for a more detailed 
explanation.  
 

5. Results and discussion  
We now present the results of VCA calculations at zero 
temperature for the dimer Hubbard model (1) on two 
type of clusters: four-site ( 2 2× ) and eight-site ( 2 4× )
[17]. In order to allow for broken symmetry states, we 
have added Weiss fields to the cluster Hamiltonian 
(reference system). These symmetry-breaking terms 
have the following form: 

( 1) ,i
AFH M e nσ

σ
′ ⋅= −∑ Q r

r
r

(3) 

( ) ,SCH c c H c′
′ ′↑ ↓

′,
= ∆ + . .∑ rr r r

r r
 (4) 

where ( )π π= ,Q is the Néel wave vector. A nonzero 
value of M would induce Néel antiferromagnetism. The 

2 2x yd − state is probed by letting ′∆ = ∆rr  if ′ = ±r r x

and ′∆ = −∆rr  if ′ = ±r r y . On the other hand, a xyd
state is probed by setting  

1, + + , − −∆ = ∆ = ∆r r x y r r x y  , (5) 

2, + − , − +∆ = ∆ = −∆r r x y r r x y  .        (6) 
These Weiss fields allow for the physics of long-range to 
seep through the cluster self-energy, but they are not part 
of the lattice Hamiltonian and they are determined by 
looking for a stationary point of the self-energy 
functional. This is not mean-field theory: the interaction 
term is never factorized, and the Weiss fields are not the 
same as the corresponding order parameters.  
 A word of caution about gap symmetry: the 

terminology 2 2x yd − and xyd are not rigorous in the 

context of the dimer model. We should instead consider 
the point group of the model, which is 2C υ , and look at 
its irreducible representation [17,59]. 2C υ consists of a 
rotation of π about the z axis, and reflections across 
the +x y and −x y lines. This group admits two 
possible gap symmetries for singlet superconductivity: 
the so-called 2A representation, which is odd under 
reflections accross the +x y and −x y lines, and the 1A
representation, which is even. The 2 2x yd − state defined 

above corresponds to the 2A representation, and the 

xyd state corresponds to the 1A representation. The 

2C υ symmetry does not require that the two lobes of the 

xyd gap have the same size. Indeed, an s -wave gap 
function would also fall under this representation. Thus, 
the expression “extended s -wave” would be more 
appropriate than xyd , but we nevertheless keep the 
latter, because it is an ingrained practice, and because the 
gap function does have nodes that are in the same 
directions as in a true xyd state. Physically, the presence 
of nodes in an otherwise extended s -wave gap function 
is due to the absence of on-site pairing, because of the 
strong on-site Coulomb repulsion.  
 Besides the four variational parameters that were 
used and that probe broken symmetry states ( M , ∆ , 1∆
and 2∆ ) the chemical potential µ ′ on the cluster is also 
taken as a variational parameter to guarantee the 
thermodynamic consistency, which means that the 
electron density n should be the same whether it is 
calculated from the trace of the Green function ( Tr G ) or 
from the derivative of the grand potential Ω with 
respect to the lattice chemical potential ( µ−∂Ω/∂ ).  
 In practice, the cluster Green function is calculated 
by an exact diagonalization procedure based on the 
band Lanczos method. The value of the functional Ω
is calculated by applying eq. 2, i.e. by performing the 
trace with an explicit numerical integration over 
wavevectors and frequencies (along the imaginary 
axis). The values of the stationary point of the grand 
potential can be obtained from an optimization 
procedure (for instance the Newton-Raphson method) 
that looks for the zeros of the gradient of Ω , from 
initial guess values of the variational parameters. Once 
the stationary point is found, the other properties of the 
system can be derived from the calculated lattice Green 
function at that point, through the Dyson equation 
( 1 1 1

0 ( )tG G− − −′= −Σ ). The lattice chemical potential is 
adjusted so that the electron density is 1n = (half-
filling).  

The order parameters as a function of U t/ for t t′/ =
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Figure 6. (color online) U t/  dependence of the 
antiferromagnetic (blue triangles), 2 2x yd

−
 (red circles, scaled 

by 2) and xyd  (green squares, scaled by 5) order parameter, 
obtained with the VCA on 2 2×  clusters, for various values of 
t t′/ . The vertical lines indicate the transition points, separating 
the various phases. 
 
0.75, 0.85 and 1.0, are shown on figure 6 (for the 2 2×  
cluster) and figure 7 (for the 2 4×  cluster). In the case 
where two solutions, for instance AF and dSC, were 
found, the one with the lowest value of nµΩ +  (i.e. the 
lowest energy) was chosen.  
 We find that the system is in a Néel state when U  is 
large enough and t ′  smaller than a critical value roughly 
equal to 0 9t. . For t ′  smaller than 0 8~ . , the following 
phases are met upon decreasing U : first an AF phase, 
then a SC phase with 2 2x yd −  symmetry and finally, at 

low coupling, a SC phase with xyd  symmetry. The 
transitions between these phases are all of the first order, 
which opens the door to the possibility of macroscopic 
coexistence. This is indeed the case in the κ -Cl 
compound. For t ′  lying between 0 8~ .  and 0 9~ . , a 
paramagnetic insulating phase is intercalated between 
the AF and 2 2x yd −  phases. We interpret this phase as 

the spin liquid phase proposed recently [10,25]. For 
larger values of t ′ , the AF phase disappears, leaving the 
spin liquid phase dominant at strong coupling. However, 
we have not studied the possibility of a 120o  magnetic 
order, and it may be presumed that such an order will 
take place around t t′ =  for large-enough U .  
 The small differences between the two cluster shapes 
indicate that the results are not yet converged with  

 
Figure 7. (color online) Same as Figure 6, this time for 2 4×  
clusters. 
 
respect to cluster size. For instance, the AF order 
parameter is slightly smaller on the larger cluster, as it 
should. There are also minor differences in the values of 
critical parameters. But the overall picture is the same. 
  Figure 8 and 9 show momentum distribution curves 
(MDCs) for t t′ = , and 4U =  and 3U =  respectively, 
obtained on an 8-site cluster. Figure 8 corresponds to a 

2 2x yd −  state. The color code indicates the spectral 

intensity (red is highest, purple is lowest). The gap 
function along the Fermi surface is indicated by the 
white curve, with nodes roughly at 45o  from the axes 
(they are not exactly at 45o  because of the lack of 
rotational symmetry of the electron dispersion relation). 
The AF zone boundary is indicated by the dashed line. 
We observe that the spectral weight is highest along the 
nodal directions, whereas it is depleted at the intersection 
of the Fermi surface with the AF zone boundary (hot 
spots), indicating that scattering with AF fluctuations is 
important, even though no long range AF order is 
realized in that case. Figure 9 corresponds to a xyd  state 
(at a lower value of U ). The nodal directions are 
different, and they are close to the hot spots, which 
preempts the otherwise expected enhancement of the 
spectral intensity there. On the other hand, we notice a 
dip in the spectral intensity in the direction of maximal 
gap ( 3 4π/  and 4π− / ).  
 We have shown that the essential physics of the 
layered organic superconductors can be obtained form 
the dimer-Hubbard model. A rigorous variational 
approach enables to recover the dSC and AF ground  
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Figure 8. (color online) Momentum distribution curve, 
obtained from the VCA, at t t′ = and 4U t= , in a 2 2x y

d
−

state. Red corresponds to the highest spectral intensity, purple 
to the lowest. The Fermi surface is clearly recognizable. The 
white curve is the SC gap function evaluated along the Fermi 
surface, for the value of the order parameters found at this 
point. The dashed lines form the AF zone boundary. The 
spectral intensity is depleted at the intersection of the this zone 
boundary with the Fermi surface. A lorentzian broadening of 

0 2tη = . is used for the spectral function.  
 
states at half filling for different values of the on-site 
repulsive potential. The phase transition between the 
phases appears to be of first order. This is consistent 
with the experimental results of these materials. 
Decreasing the potential U within the dSC region 
results in a transition from 2 2x yd − to xyd pairing 

symmetry. The so-called spin liquid phase, without long  

Figure 9. (color online) Same as figure 8, this time for t t′ =
and 3U t= , in a xyd state. 

range order, is found for higher values of t ′ , because of 
the higher level of magnetic frustration. Our calculations 
indicate that a pseudogap phenomenon also occurs in 
these systems, due to short-range AF fluctuations, even 
within SC phases where no AF long range order is 
observed.  
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