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Abstract 
Nonlinear Dust lattice modes are studied in a hexagonal two-dimensional dusty plasma lattice, in presence of charge gradient of dust 
particles. In this lattice, such gradients affect nonlinear behavior of dust lattice waves. The amplitude modulation of off-plane 
transverse dust lattice wave packets is investigated considering the anisotropy of interactions, caused by the height-dependent charge 
variations. A nonlinear Schrodinger equation described time evolution of modulated off-plane transverse dust lattice wave packet. 
Calculations show that the charge gradient changes the stability condition of the solution of the nonlinear Schrodinger equation. 
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1. Introduction  
Dust lattice waves are produced by the oscillations of 
regularly spaced charged micro particles suspended in a 
plasma crystal, which form as a result of strong mutual 
coulomb interaction[1, 2]. Dust lattices support a variety 
of linear [3-7] and nonlinear modes [8-15]. Recently, 
Yaroshenko et al, studied the vertical vibrations of a one-
dimensional string of magnetized particles, taking into 
account the magnetic force associated with gradients of an 
external magnetic field, and they found a new low-
frequency oscillatory mode [18]. The influence of an 
inhomogeneous magnetic field, ion focusing effect and 
equilibrium charge gradient on the propagation of the 
modified dust lattice modes in a one-dimensional 
paramagnetic lattice is considered in Ref [19]. Dust lattice 
waves in hexagonal dusty plasma crystal have been 
studied in various inesvestigations [8-22]. The occurrence 
of 2D modulated transverse dust-lattice wave (TDLW) 
packets moving at a negative group velocity, i.e., the wave 
is backward propagating, has been established by recent 
numerical (molecular dynamics) [13] and experimental 
[14] investigations. This “bending mode” was 
theoretically investigated in linear and nonlinear region 
[23]. Mode coupling instability in hexagonal dusty plasma 
crystals has been studied recently [24].  
  In this paper, we consider a two dimensional 
monolayer of micro particles forming the hexagonal-type 
crystal, in the presence of an external electric field. 

Propagation of the dust lattice waves is studied 
theoretically. The aim of this work is to study the effects 
of anisotropy of interactions, caused by the height-
dependent charge variations (HDCV) on the amplitude 
modulation of off-plane transverse dust lattice wave 
(TDLW) packets. The modulational instability is 
investigated. We must point out for rigor that the 
modulation theory employed here is a mildly nonlinear 
theory, which claims to model weak vertical 
displacements. The latter point justifies our choice in 
neglecting the coupling to in-plane dust grain motion, 
since we are only interested in the effect of height-
dependent charge variations on off-plane motion. 
  The outline of the manuscript is as follows. The 
equation of motion is derived in Sec. 2 and simplified by 
adopting a continuum approximation. The derivation of 
an evolution equation for the modulated wave amplitude 
is presented in Sec. 3 by assuming transverse wave 
propagation either along a principal axis of the 
hexagonal structure or perpendicular to it. The 
modulational stability is investigated in Sec. 4, and the 
results are then summarized in Sec. 5. 
 
2. Vibrational modes in a hexagonal lattice 
In order to describe the vertical modes in dusty plasma, 
we consider a hexagonal lattice, where the spherical 
dust grains have the same charge Q  and mass M , 
separated by average distance d  (figure 1). The  
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Figure 1. Hexagonal structure of dusty plasma crystal. 
 
electrostatic potential of each particle is assumed to be 
the screened Coulomb potential. The electrostatic 
potential energy between neighboring grains of 
hexagonal lattice can be written as 

,
,

,
exp ,

4
o io i

o i
Do o i

rQ Q
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r λπε

⎛ ⎞
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       (1) 

where Dλ  is the screening length of the plasma, ,o ir  is 
the distance between the central particle and other 
neighbors, and ( 1, ), ( 1 / 2, 3 / 2)i m n m n≡ ± ± ± . The 
electrostatic force acting on the central particle can 
obtained as , , /o i o i oF U r= −∂ ∂ . Then the z-component of 
equation of motion for central particle in the lattice is 

6
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where EF  is the electric force acting on the central grain 
due to an external electric field. We shall assume a 
smooth, continuous variation of the intensity E , as well 
as the grain charge Q  near the equilibrium position 

0z = . Thus, we may develop  
2 3
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1 1( )
2! 3!
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where the prime and the subscript ‘‘0’’ denote 
differentiation with respect to z  and evaluation at 

0z = , respectively. 
Using eqs.(1) and (2), the equation  of motion become 
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 (3)  
where ,m nz , iz  refers to vertical displacement of the 
central particle and six neighbors from their equilibrium 
positions, respectively. Coefficients ( 1, 18)iK i =  and 

gω  are defined in the Appendix. Here gravitation is 
compensated by two terms of force. 

6
4

o o
o o

o

Q Q
Mg Q E

dπε
′

= − .     (4) 

 
2.1. Linear dispersion relation  
Waves can propagate along an arbitrary direction, which 
is here denoted by an angle θ , representing the angle 
between the wave vector k and a primitive translation 
vector (along the x axis), i.e., cosxk k θ=  and 

sinyk k θ= . Retaining only linear contribution in the 
form of “phonons” of the type  

, 0 exp[ ( cos sin )] . .m nz z i t ikd m n c cω θ θ= − + + + ,  (5) 
we obtain an inverse-optic-mode-like dispersion relation 
from eq. (3), 

2
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The dispersion relation obtained here provides the 
frequency-wave number dependence for TDLW 
propagation at any direction inside the x-y plane. This 
expression is identical to the expression obtained by 
Vladimirov et al. [23]. 
 
2.2. Continuum approximation 
If the characteristic length scale of the wave form, say, 
L, is much larger than the interparticle spacing a, then 
the continuum approximation can be invoked in order to 
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convert the difference [eq. (3)] into a differential 
equation for ,m nz , now expressed as continuous function 

( , )z x t . We expand 1,m nz ±  and 1/2, 3 /2m nz ± ± around 

,m nz  in powers of /d L  and retain terms of the order of 
4( / )d L  (higher powers of /d L  lead only to some 

corrections and do not include any new physical 
concepts) to obtain 
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Substituting (7), (8) into eq. (3), and retaining terms of 
order in 4d , the classical Newton's laws take the form of 
the differential equation for the particle displacements, 
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  (9) 
where coefficients are defined in the appendix. In the 
following, we shall assume a very small damping rate and 
will therefore neglect damping by setting 0ν =  in the 
nonlinear analysis to follow. This is expected to incur a 
relative error of the order of 2( / )gν ω , which is 
reportedly small in experiments. Our results will later be 
extended by incorporating dissipation effects omitted here.   
 
3. Amplitude modulation 
Assuming, the transversal wave propagate in the 

ˆ ˆcos sinx yθ θ+  direction. We shall employ the standard 
lattice version of the reductive perturbation technique 
[25, 26] in the quasi-continuum limit. Allowing for a 
slight departure from the small amplitude (linear) 
assumption, one may consider  

2
1 2z = εz + ε z + , (10) 

where ( ε <<1) is a small (real) parameter characterizing 
the strength of the nonlinearity. The function ju  at each 

order is assumed to be a sum of l th order harmonics, viz.  
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The amplitudes jlz  are assumed to be slowly varying function 
of time and space via the set of independent stretched variables 

1 1gξ = (x v t )− , 1= yη  and 2 1τ = t εt= . We shall now 
substitute these expansions into the equation of motion 
(9) and collect the contributions appearing in each power 
in ε . 
At first order, we obtain the dispersion relation in the form 

2 2
1 16
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⎝ ⎠
,    (12) 

and    
10 0z = .     (13) 

In the second order, considering the annihilation of 
secular terms, we obtain the following expression for the 
propagation velocity, gv , 

1
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g
H k k dv = 1
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,     (14) 

and also the expressions for harmonic amplitudes can be 
obtained 
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It is easy to verify that /gv = dω dk . In the third order, 
we obtain the following NLS equation 
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  (17) 
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Figure 2. (a) The dispersion relation and (b) the behavior of 
normalized group velocity versus kd for 1 2 3 4 0s s s s= = = =  
(line (i)), 1 0 05s .= , 2 10 005s . s= , 3 20 0005s . s= , 

4 30 00005s . s= (line (ii)), and 1 0 1s .= , 2 10 01s . s= , 

3 20 001s . s= , 4 30 0001s . s=  ( line (iii)).. 
 
which describes the evolution of the fundamental 
(carrier) harmonic amplitude 11( , , )Z z tξ η= . The 
dispersion coefficient P  is given by 
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where coefficients are defined in the appendix. Insum, 
the dynamics of the wave fundamental harmonic 
amplitude 11 ( , , )z Z ξ η τ= , is governed by the NLS [eq. 
(17)] and is thus by the interplay among the dispersion 
and nonlinearity coefficients P  and Q . Their analytical 
behavior on relevant parameters will be investigated 
below once their role in dynamics is briefly summarized 
in what follows. 
 
4. Modulation instability 
The amplitude dynamics of a TDLW packet was shown 

to be governed by the NLS [eq. (17)] above. Two 
physical phenomena that are generally modeled via this 
formulation are wave collapse via modulational 
instability and the formation of envelope excitations. 
Without reproducing the whole existing theory, which 
may be found, for e.g., in Ref. 27, we shall provide the 
basic information needed to understand our findings in 
what follows. 
The detailed analysis of the NLS [Eq. (17)] reveals that a 
modulated wave packet whose amplitude obeys the NLS 
equation [Eq. (17)] is modulationally stable for (a) 

0P > , 0R >  and 0Q <  or if (b) 0P < , 0R <  and 
0Q > [28]. In a special case, suppose that the amplitude 

perturbation occurs only in the ξ  direction. Assuming a 
perturbation of amplitude 0Ψ , and characteristic wave 

number k , the maximum growth rate 2
0Qσ = Ψ  is 

attained for a perturbation wave number 

0
2Qk
P

= Ψ   (21) 

The coefficients P  and Q  therefore determine the 
occurrence and first stage evolution of the instability. 
Only the first evolution stage of the instability outlined 
above can be described analytically. The further 
evolution of the instability can only be modeled 
numerically. In the case 0PQ > , bright-type solitons are 
formed: these model localized envelope pulses, which 
confine the fast carrier wave and move at or near the 
group velocity, and are formally equivalent to bright 
pulses in nonlinear fiber optics. On the other hand, for 

0PQ < , modulated wave packets may propagate in the 
form of dark/gray envelope solitons, modeling localized 
voids amidst constant values everywhere else. 
The products PR , PQ  and RQ  are depicted in  
figure  3. Recalling that the sign of the products PQ  and 
RQ  determines the stability profile of the wave. Since 
PR  is positive and both PQ  and RQ  are also negative, 
stable dark-type envelope structures should therefore be 
sustained in the system. It must be added for rigor that 
the sign of P (and presumably Q) may change by taking 
into account HDCV, thus affecting the stability profile of 
modulated wave packets, and the type of envelope 
solitons susceptible to occur. 
 
5. Conclusion 
The propagation of off-plane transverse dust lattice wave 
in 2D hexagonal dusty plasma crystals including the 
height-dependent charge variations was investigated. We 
need to point out for rigor that the approach (the 
continuum approximation) employed here is only valid 
for small values of kd. The linear dispersion 
characteristics of transverse dust lattice waves were 
studied, including the dispersion relation, and group 
velocity (figure 2), and an evolution equation for the 
modulated amplitude of the first harmonic was derived.  
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Figure 3. (a) The variation of PR , (b) PQ  and (c) RQ  versus 
kd  for 1 2 3 4 0s s s s= = = = (line (i)), 1 0 05s .= , 2 10 005s . s= , 

3 20 0005s . s= , 4 30 00005s . s=  (line (ii)) and 1 0 1s .= , 

2 10 01s . s= , 3 20 001s . s= , 4 30 0001s . s=  (line (iii)). 
 
The dispersion relation shows a negative group velocity 
of the wave. These results are in excellent agreement 
with earlier numerical,[13] experimental,[14] and 
theoretical [15,23] results.  
  Using multiple scale theory, we have shown that 
transverse wave packets will in principle be stable in the 
long wavelength region. Furthermore, in an attempt to 
determine the region of validity of our study, in as much 
rigor as possible, we have investigated the role of the 
height-dependent charge variations. We have shown that 
this effect can lead to modulational instability  
(figure 3). Furthermore, in the presence of HDCV we 
predict the formation of both bright and dark-type 
envelope solitons in regions similar to the bright 
envelope structures observed in laboratory 
experiments[14]. Modulational instability may also be 
the first stage of the generic (i.e., for any symmetric 
potential) structural instability suggested in Ref. 29. 
  Our work is of relevance in dusty plasma crystal 
experiments in the laboratory, where our predictions for 
the type and stability of modulated wave packets can be 
tested and will hopefully be confirmed. Beyond dusty 
(complex) plasma physics, we view this work as a 
fundamental investigation of nonlinear transverse motion 
in hexagonal crystals of potential relevance (either 
currently or in the future) in other physical contexts, 
where electrostatic-interaction sustained crystalline 
structures occur (such as ultracold plasmas or one-
component plasmas), or in lattice theory and in discrete 

dynamical systems where pulse formation and wave 
packet localization occur. 
 
Appendix 

2
0 0( ) /g QE Mω ′= − , 

2 2 3exp( ) / 4o oQ Mdω κ πε= − , 
/ Ddκ λ= , 

2 2 2 2
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2 (3) 2

1 0( ) / 2! 3 /o o oK QE M Q d Qω′′= − + , 
2 (4) 2

2 0( ) / 3! /o o oK QE M Q d Qω′′′= − + , 
2 2
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1 2
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1 2
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2 2 2
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2 2

8 1 3 / 6oK s s d ω−= − , 
2

9 (1 )oK ω κ= − + ,  
1 2

10 1 (1 )oK s d ω κ−= − + ,  
2 2

11 2 (1 )oK s d ω κ−= − + , 
1 2
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2 2
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2 2 2
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1 2
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2 2
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2 2 2
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3 [ (1 )]
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2 1 2 1
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3 1 2 1

3 [ 2 (1 )]
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4 1 2 1
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2 2 2
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2 2 2 2
7 2 2 1

3 [ 2 (1 ) (1 )]
8 oH d s s sω κ κ= − − + + + , 

2 2 2
8 1 3

2
1 2

3 [3(3 3 ) 3
8

9 3(1 ) (1 )],
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oH d s s

s s

ω κ κ

κ κ

= + + − +
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where the frequency 0gω  is typically of order of 

0 / 2 20g Hzω π = , and also  
3 2

0( ) / 2! 7.896 10 ( / )QE M Hz meter′′ = − × , 
3 2 2

0( ) / 3! 1.11 10 ( / )QE M Hz meter′′′ = × [Ref. 15]. 
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