
 

 

                                                                                                                                                                                                                                                                                       
                           Iranian Journal of Physics Research, Vol. 14, No. 3, 2014 

 

 
 

 

 

 

High order perturbation study of the frustrated quantum Ising chain 
 

   

 

A Hajibabaei and F Shahbazi 
 

Department of Physics, Isfahan University of Technology, Isfahan, Iran 

E-mail: shahbazi@cc.iut.ac.ir 

  

 
(Received  22 October 2012  ,  in final from  15 July 2014) 

 
Abstract 
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility 

in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest 

neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustrating 

second neighbor coupling ( 0.4k < ), the exponents are the same as those of the classical 2D Ising model ( 1 / 8β = and 7 / 8γ = ), but 

a deviation from 2D classical Ising universality class is observed for larger values of frustration ( 0.4 0.5k< < ). The reason for this 

deviation is the “disorder line” which becomes tangent to the Ferromagnetic phase boundary line at 0.5k = . 
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1. Introduction  
The 1D transverse quantum Ising model with 

ferromagnetic nearest neighbor and anti-ferromagnetic 

next to nearest neighbor interactions (ANNNI model) is 

defined by Hamiltonian as: 

1 2+ += − + − Γ∑ ∑ ∑z z z z x

i i i i i

i i i

H kσ σ σ σ σ  (1) 

This model is related to the two-dimensional classical 

ANNNI model through the τ-continuum formalism, 

hence they belong to the same universality class and a 

similar phase diagram is expected (if 0Γ =  is replaced 

with temperature). The classical axial next-nearest-

neighbor Ising (ANNNI) model was introduced by 

Fisher and Selke [1] to simulate the spatially modulated 

structures observed in magnetic and ferroelectric systems 

(for reviews see [2-4]). 

 The phase diagram of the 1D quantum ANNNI 

model obtained via analytical and numerical studies is 

presented in figure 1. It consists of a ferromagnetic phase 

(FM) phase, a paramagnetic phase (PM) and an 

antiphase (with a modulated ���� structure with period 

4) and a floating phase (FP) with incommensurate 

modulation where the spin-spin correlations decay 

algebraically separating the PM phase from the 

antiphase. The 0.5k =  point on 0Γ =  axes is a 

“multiphase point”. At the multiphase point the ground 

state has a very high degeneracy in a sense that any 

combination of antiphase and ferromagnetic patches will 

serve as ground-state configuration. 

 There is also a critical line in the 0.5k < region, 

given by 1 / 4k kΓ = − , called the “disorder line” [5, 6]. 

The ground state is exactly solvable on the disorder line, 

and is given by a direct product of certain spin 

configurations on each of the sites, i.e., a matrix product 

state. 

 Although large parts of the phase diagram of this 

model are well established, the width and the extension 

of the floating phase shown in the phase diagram for a 

quantum ANNNI chain have been a subject of serious 

debate over last three decades. Generally, there have 

been three types of conclusions in contrast to each other: 

(i) The floating phase, if it exists at all, is restricted to 

only a line, and extends only over 0.5 k > , 

(ii) The floating phase has a finite width, and extends 

only over 0.5 k > , 

(iii) The floating phase extends even for 0.5 k < . 

To review the papers suggesting the first two conclusions, 

see [7]. The third conclusion is obtained by Chandra and 

Dasgupta [8] based on degenerate perturbation calculations 

in order to investigate the phase that exists near the 

multiphase point for a nonzero transverse field. They 

concluded that there exists a floating phase over a region 

extending from the ferromagnetic phase to the antiphase 

(for small values of Γ ). This result is in contradiction with 

previous results as none of the previous studies had 

predicted a floating phase for 0.5k < . In this research, we 

investigate the universality class of the phase transition 
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Figure 1. Phase diagram of 1D quantum ANNNI model and 

classical ANNNI model (if Γ  is replaced with

 

from ferromagnetic to the paramagnetic phase (or 

possibly to the floating phase) in k <
perform a high order perturbation expansion (by means 

of linked cluster expansion method) about the 

ferromagnetic phase in which the transverse field (

considered as perturbation. We obtain the critical line in 

the phase diagram which separates the ferromagnetic 

phase from other phases. Across this line, we obtain the 

critical exponents, β  for magnetization and 

susceptibility. “Is the universality class of phas

transition, i.e. β  and γ , the same for all values of 

(inside 0 0.5k< <  region) or it differs as we vary

 It is found that the critical exponents for 

belong to the 1D quantum Ising universality class

( 1 / 8β = and 7 / 8γ = ) but a different behavior is 

observed for 0.4 0.5k< < . The reason for this different 

behavior is explored as well. This result is not 

informative enough to conclude that phase transition 

from ferromagnetic phase to floating phase occurs for

0.4 0.5k< < . It only states that 0.4 0.5< <
treated differently. 

 

2. Linked Cluster expansion method and its 

application to ANNNI model 
Cluster expansion method is a general technique for 

carrying out systematic, high-order perturbation 

expansions for lattice based quantum many

systems. At 0T = , these expansions require a 

perturbative diagonalization of infinite dimension 

matrices. In cluster expansion method the expansion for 

the infinite system reduces to a sum of terms, each of 

which involves only a finite cluster and hence a finite 

dimensional Hilbert space. For a given cluster one 

constructs the matrices for 
0

H  and 
1

H

0
H  is diagonal. Expressions for ground state energy and

wave function are obtained through elementary recursive 

relations, and the wave function is then used to evaluate 

expressions for ground state expectation values. This 

method is systematic enough to be carried out entirely on 

the computer [9]. This method is explained in detail in 

[10, 11]. 
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 There are two main steps in a cluster expansion. 

first is the identification of the finite number of relevant 

connected real-space clusters for the Hamiltonian under 

consideration. Then, for each cluster, one const

Rayleigh-Schrodinger perturbation expansion for the 

extensive quantity (energy, correlation function) under 

consideration. The results for the various clusters are 

then combined (via ‘subgraph subtraction’) so as to yield 

the quantity per site on the infinite lattice 

 Suppose that we are interested in calculating an 

extensive property P  for a model defined on a lattice

. We assume that we are dealing with a large lattice 

composed of N  sites. The key idea in the cluster 

expansion is to express the quantity 

as a sum over all distinct clusters 

( ) ( )
 

( )
,

c

p
L c W c

N
= ×∑

L
L    

Here, ( ),L cL  is called the lattice constant of the cluster 

c , and is defined as the number of ways per lattice site 

that the cluster c  can be embedded in the lattice. The 

quantity ( )W c  is called the weight of the cluster. It is 

expressed as a power series expansion in the appropriate 

variable and can be obtained from the relation:

( ) ( ) (( , )

g c

W c p c L c g W g

⊂

= − ×∑

Here ( )p c  is the series expansion for th

defined on the finite cluster c

the cluster expansion [10]. 

 

3. Implementation of cluster expansion 

formalism to the ANNNI Hamiltonian:
In this paper, the first two terms in 

unperturbed Hamiltonian ( H

taken to be the perturbation Hamiltonian (

expansion formalism expansion about such an 

unperturbed Hamiltonian is called

type expansion”, because of the presence of the two

body terms in 
0

H  [9]. If unperturbed Hamiltonian 

consists of disconnected sites (i.e. there are no two

terms), expansions about this type of 

“high- temperature type” expansions. In the low 

temperature perturbation expansions up to order

clusters with  n  vertices and less, contribute to the 

expansion. In a perturbative expansion, generally the 

th order correction, the ground state is sum of terms for 

which, after  n  iterations, the system gets back to the 

ground state. Considering the perturbation
x
i i i

i i

σ σ σ+ −= +∑ ∑  

iterations have to make an even number of times on each 

spin in order to find it in the ground state configuration 

again. Therefore, the expansions to the ground state 

properties (which are diagonal in basis of
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Schrodinger perturbation expansion for the 
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then combined (via ‘subgraph subtraction’) so as to yield 

the infinite lattice [10]. 

Suppose that we are interested in calculating an 

for a model defined on a lattice L

. We assume that we are dealing with a large lattice 

sites. The key idea in the cluster 

expansion is to express the quantity P , per lattice site, 

as a sum over all distinct clusters c : 
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is called the lattice constant of the cluster 

, and is defined as the number of ways per lattice site 

can be embedded in the lattice. The 

is called the weight of the cluster. It is 

expressed as a power series expansion in the appropriate 

variable and can be obtained from the relation: 

)W c p c L c g W g   (3) 

is the series expansion for the property 

c . These equations define 

Implementation of cluster expansion 

formalism to the ANNNI Hamiltonian: 
the first two terms in H  are taken to be the 

0
H ) and the third term is 

taken to be the perturbation Hamiltonian (
1

H ). Cluster 

expansion formalism expansion about such an 

unperturbed Hamiltonian is called the “low temperature 

type expansion”, because of the presence of the two-

If unperturbed Hamiltonian 

consists of disconnected sites (i.e. there are no two-body 

terms), expansions about this type of 
0

H  would be 

temperature type” expansions. In the low 

temperature perturbation expansions up to order  n , only 

vertices and less, contribute to the 

In a perturbative expansion, generally the  n -

th order correction, the ground state is sum of terms for 

iterations, the system gets back to the 

ground state. Considering the perturbation 

 (4) 

terations have to make an even number of times on each 

spin in order to find it in the ground state configuration 

again. Therefore, the expansions to the ground state 

properties (which are diagonal in basis of 
0

H ) will only  
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Figure 2. All connected clusters up to 3 vertices. 

 

include the even orders. A cluster consisting of n  

vertices contributes to the order 2n  and higher. As a 

conclusion, to obtain the expansion up to 2n -th order, it 

would suffice to consider all distinct clusters which have 

at most n vertices. 

 As an example, all distinct clusters with the sizes up 

to 3 vertices are shown in figure 2. Clusters should be 

considered embedded in the original lattice with 

ferromagnetic background state. Hence, in computing 

the unperturbed energy levels, we should include the 

interactions between the spins within the cluster and also 

the interactions with spins outside the cluster. The spins 

outside of the cluster are kept in their unperturbed state, 

while the perturbation only acts on spins inside the 

cluster. 

 In this research we obtain the ground state energy, 

magnetization and susceptibility up to order 24, which 

means we generate all distinct clusters which have up to 

12 vertices (2
12

 clusters). 

 

4. Series analysis and the critical behavior 

We use the obtained series to study the critical behavior. 

For this purpose, standard series analysis methods such 

as ratio method, padé approximants and integrated 

differential approximants are developed [12, 13]. Here, 

we use padé approximation to analyze the series. The 

goal of this analysis is to extract information from the 

perturbative series about power-law behavior of the 

order parameter and the susceptibility close to the critical 

point in a second order phase transition. Close to the 

critical point: 

1

c

M A

β
Γ

= −
Γ

 
 
 

  , (5) 

1

c

B

γ
χ =

Γ
−
Γ

 
 
 

    . 

For example, consider a perturbative expansion for the 

order parameter 

0 1  ~ 1
N

N
c

M a a a A

β
Γ

= + Γ +…+ Γ −
Γ

 
 
 

 (6) 

1
0 1 1log ~

N
N

c

d
M b b b

d

β−
−= + Γ +…+ Γ

Γ Γ − Γ
 

The goal of padé approximation is to use the coefficients 
 

 

Figure 3. Critical points of magnetization ( cΓ  and '
cΓ ) versus 

k . 
 

0 1, , Na a −…  or 0 1, , Nb b −…  to estimate  cΓ , β  and  A . 

This is done by converting series to a rational expression 

of two polynomials: 

1 0
0 1

1

~
1

L
N L L

N M
MM

c c P
b b

Qd d

−
−

+…+ Γ
+…+ Γ =

+ Γ +…+ Γ
  (7) 

This has a unique solution for all 
j

c  and 
j

d  coefficients if 

1L M N+ ≤ −  and all we have to do is to solve a set of 

linear equations. The critical point cΓ  is considered to be 

one of roots of the dominator polynomial  MQ . There are 

ways to distinguish the actual critical point cΓ  from the 

other nonphysical roots of  MQ . For example, the 

nonphysical roots of MQ  either happen in the nonphysical 

range of Γ  or coincide with zeroes of  LP . Also the actual 

critical point appears frequently when we apply different 

padé approximations i.e. when we vary L  and  M . Such 

critical points sometimes are called poles of the series. 

After cΓ  is approximated the critical exponent β  and the 

amplitude A  can be estimated by simple extrapolations. 

 Another point about the series analysis is that there is 

often more than one pole (critical point) appearing in 

various padé approximants. Appearing many poles 

usually weakens the analysis and increases the errors, 

especially if there are two poles close to each other. This 

is the case for our analysis. As we will see later, in both 

Magnetization and susceptibility series, there are two 

poles close to each other. In such conditions, the best 

approximations are made for the pole which is the 

closest to the origin ( 0Γ = ). The second pole is not 

physical i.e. it cannot be associated with an actual 

physical phase transition but it is important because it 

influences the behavior of the actual critical point in 

which the physical phase transition occurs. 

 In the next pages, we present the results of analysis 

for magnetization and susceptibility series. 

 

5. Critical behavior of magnetization 

We use the following relation to obtain the critical 

exponent of magnetization: 
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Figure 4. β  and 
'β  versus k . Figure 5. A  and 

'
A  versus k . 
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Figure 6. Critical points of susceptibility (
cΓ  and '

cΓ ) versus k . Figure 7. γ  and 
'γ  versus k . 

 

'

'

'
~ 1 1

c c

M A A

ββ
Γ Γ

− + −
Γ Γ

  
       

  (8) 

The calculated values of cΓ  and '
cΓ  ( '

c cΓ ≥ Γ ) are 

presented in figure 3. Also, the relative critical exponents  

( β  and '
 β ) and amplitudes ( A  and '

A ) are presented in 

figures 4 and 5. 

 The observed critical behavior can be summarized in 

three steps: 

(i) 0 0.3k< <  

There is a critical point at cΓ  with critical exponent 

1 / 8β = , which is the standard critical exponent of the 

order parameter for 1D quantum Ising (or 2D classical 

Ising) universality class. There is also a second weak 

singularity at '
 cΓ  with '

0β ≈  which gets closer to the 

first singularity as k increases but it doesn’t influence the 

nature of the main singularity. We should note that 
'

0β ≈  could mean logarithmic correction to the power 

law scaling behavior, i.e. ( )' '
 log 1 / cA − Γ Γ . 

 At some point in range 0.25 0.30k< <  the nature of 

the second singularity undergoes a sudden change and 

there is a considerable jump in '
A  and 'β  at k 0.3=  

point. As we will see in the conclusions part, this is 

because beyond 0.3k >  the well-known “disorder line” 

crosses the weak singularity line and gets closer to the 

ferromagnetic phase boundary line. 

(ii) 0.3 0.4k< <  

In this range 
'

1 / 8β β= − =  and magnetization can be 

expressed by 
1/8

'
~

 

c

c

M
Γ −Γ

Γ −Γ

 
  
 

, 

(iii)  0.4 0.5k< <  

In this range 

'
~

 

c

c

M

β
Γ −Γ

Γ −Γ

 
  
 

. 

As we get closer to the 0.5k =  point, 
'

  ,c cΓ → Γ  

0   ,β →  

'
, 1  .A A →  

The second singularity (the disorder line) in the phase 

diagram becomes tangent to the main singularity. This 

influences the critical exponent of the actual phase 

transition. As you can see (figure 4), β  gradually 

vanishes as we get closer to 0.5k =  and it differs from 

the 1D quantum Ising universality class. 

 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


IJPR Vol. 14, No. 3 High order perturbation study of the frustrated quantum Ising chain 83 

 

6. Critical behavior of susceptibility Just like magnetization, we express the critical behavior  

 
Figure 8. The phase diagram obtained by SE (this research) 

and DMRG [6] 

 

of susceptibility using a symbolic function 

( )
'

'

~

1 1

c c

B

γγ
χ

Γ

Γ Γ
− −
Γ Γ

  
       

  ,  (9) 

In which   cΓ , '
cΓ  and   γ , 'γ  are presented in figures 6 

and 7. Just like magnetization, there are two 

singularities. The main singularity is associated with the 

critical exponent 1.75γ ≈  for  0.4k < . This is the 

standard critical exponent expected for the 1D quantum 

Ising universality class. For  0.4k > , there seems to be a 

jump in the critical exponent. One can see how this jump 

is influenced by the second singularity (the disorder 

line).As we get closer to the 0.5k =  point, the second 

singularity with '
0.85γ ≈  gets closer to the main 

singularity. Beyond 0.4k >  the two singular point get so 

close that 
' '

' '
lim 1 1 1

c c c cc

γγ γ γ+

Γ →Γ

Γ Γ Γ
− − = −
Γ ΓΓ

    
         

 

This explains the jump in the critical exponent. 

 

 

7. Conclusions 
It is found that the critical exponents for 0 0.4k< <  

belong to the 1D quantum Ising universality class (

1 / 8β = ,  7 / 4γ = ) but a different behavior is observed 

for  0.4 0.5k< < . The reason for this different behavior 

is explored as well: the disorder line becomes tangent 

to the FM phase boundary line as we get closer to

 0.5k = . This changes the nature of phase transition, i.e. 

the critical exponents differ from the expected values. 

 We present the phase diagram obtained by this 

research accompanied by the result of a DMRG study [6] 

in figure 8. As you can see, the FM phase boundary line 

obtained from series expansion (SE) and DMRG are 

identical. Series expansion detects another weak 

singularity for 0.3k <  which gives its place to the 

disorder line beyond  0.3k > . The agreement between the 

two methods (and theory) on the disorder line (beyond

 0.3k >  for SE) is remarkable. 

Nature of the second singularity (triangles in  0.3k >  

region) remains unresolved. Unfortunately, this can not 

be studied using series expansion method anymore, but 

we suggest finite size studies around triangles. This line 

could be the boundary between two different 

paramagnetic phases or the boundary of the floating 

phase and paramagnetic phase as ref. [8] suggests.  
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