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Abstract

A highly conserved kinase cascade, including mammalian STE20-like protein kinases (MSTs), large tumor suppressors (LATSs), and
downstream transcription coactivators containing YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding
motif (TAZ) are involved in the Hippo signaling pathway. As two critical transcriptional coactivators, TAZ and YAP are adversely
regulated by the Hippo signaling pathway. They lead to the induction of organ regeneration and the expression of cell growth and
division-promoting genes through binding to transcription factors, especially TEA domain transcription factors (TEADs). Previous
studies highlight the role of the Hippo pathway in organ size control, homeostasis, cell proliferation, and tumor development.
Research has shown this pathway’s vital role in cancer stem cell biology, including self-renewal and drug resistance. Improper
activation of YAP and TAZ through theHippopathwaydysregulation or its increased expression can accelerate tumorigenesis. Thus,
pharmacological inhibition of YAP and TAZ is suggested as a promising approach in the treatment of tumors with high YAP/TAZ
activity.
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1. Context

The Hippo signaling pathway (HSP), a conserved
signaling pathway through evolution, plays critical roles
in controlling organ size, tissue regeneration, and tumor
suppression (1, 2). The YES-associated protein (YAP) and
transcriptional coactivator with PDZ-binding motif (TAZ)
are involved in HSP as transcriptional coactivators (3).
Upon activation, YAP and TAZ initiate a transcriptional
program promoting cell proliferation and enhancing
stem cell self-renewal, which are essential for tissue
regeneration stimulation. However, aberrant-activated
YAP and TAZ can lead to malignant tumor formation (4).
Here, we review the updates of theHSP in stemcell biology
and its potential therapeutic targets.

2. Hippo Signaling Pathway

The HSP contains a highly conserved cascade of
serine/threonine kinases, which negatively regulate the
YAP and TAZ expression and activity. Inmammals, the core

members involved in the pathway include mammalian
STE20-like protein kinase 1 (MST1) and MST2 and large
tumor suppressor 1 (LATS1) and LATS2 (5, 6). These kinases’
activity also depends on their interactions with different
scaffolding proteins. Salvador homolog 1 (SAV1) forms
complexes with MST1/2, while MOB kinase activator 1A
(MOB1A) and MOB1B interact with LATS1/2 (7-9). After
the HSP activation, MST1/2 phosphorylates and activates
LATS1/2 and MOB1A/1B (10, 11). Then, the YAP and TAZ
HXRXXSmotifs are directly phosphorylated by LATS1/2 (12).
Two main phosphorylation mechanisms inhibit YAP and
TAZ activity. First, a binding site for 14-3-3 is created by
phosphorylating YAP (on serine 127) andTAZ (on serine 89).
The 14-3-3 complex promotes YAP and TAZ sequestration
in the cytoplasm (13, 14). In the second mechanism,
YAP serine 381 and TAZ serine 311 are phosphorylated,
promoting casein kinase-1 mediated phosphorylation.
The extra phosphorylation induces a motif targeted by
β-transducin repeat-containing protein (β-TrCP), which
results in YAP and TAZ degradation (15). In the nucleus,
the accumulated YAP and TAZ promote the expression
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of specific genes when the HSP is deactivated (Figure 1).
There is no DNA-binding domain in YAP and TAZ. They
regulate the expression of the target genes by forming
complexes with other transcription factors. In mammals,
YAP and TAZ frequently bind to TEA domain transcription
factors (TEAD1 to TEAD4). Studies reported interactions
between other transcription factors, including p73,
T-box transcription factor 5 (TBX5), and RUNT-related
transcription factor 1 (RUNX1), RUNX2 with YAP/TAZ (16).

Recent evidence reported that the extracellular
matrix and neighboring cells regulate YAP/TAZ through
mechanical cues (17-19). Moreover, it was indicated that
various extracellular hormones, including epinephrine,
glucagon, lysophosphatidic acid (LPA), and thrombin,
potently regulate the HSP (17, 20). It seems that the
actin cytoskeleton mediates these mechanical and
hormonal cues. Mechanically, F-actin stability results in
YAP/TAZ activation, whereas F-actin disruption results
in YAP/TAZ deactivation (21, 22). The transduction
of extracellular hormonal cues through the actin
cytoskeleton and RHO GTPases by G-protein-coupled
receptors (GPCRs) modulates YAP/TAZ. The YAP/TAZ
activity is simulated or inhibited by GPCR signaling.
For example, YAP/TAZ is stimulated by G12/13 or Gq/11
activation and inhibited by Gs (20, 23, 24). Many other
extra proteins have been reported to regulate the HSP
beyond the main members of the HSP described above,
including thousand-and-one amino acid protein kinases
(TAOK1-3) (25), MAP/microtubule affinity-regulating
kinases (MARK1-4) (26, 27), salt-inducible kinases
(SIK1-3) (28), RAS association domain-containing
family protein (RASSF) (29), multiple ankyrin repeats
single KH domain-containing protein (MASK) (30), and
homeodomain-interacting protein kinase 2 (HIPK2) (31).

3. Hippo Signaling Pathway in Embryogenesis and
Embryonic StemCells

The HSP is the critical pathway that limits tissue and
organgrowth(4). Humanembryonic stemcells (hESCs)are
characterized by their capacity to self-renew andmaintain
pluripotency in the culture and are derived from the inner
cell mass of the blastocyst. The first cell fate specification
occurs during development between the morula and
blastocyst stages, before the embryo’s implantation into
the uterus (preimplantation). The morula’s outer cells
get apicobasal polarity and differentiate into a cyst-like
epithelial tissue in theblastocyst knownas trophectoderm
(TE). The TE is necessary for implantation and builds the
placental tissues afterward. The inner cell mass (ICM), a
collectionof cells adhering to one side of the TE, comprises
the nonpolar inner cells. The embryo proper and various

extraembryonic tissues are produced by the ICM (32, 33).
The specification of TE and ICM cell fates is regulated by
the HSP. In the outer cells, it is dormant, allowing YAP to
buildup in thenucleus. WhenTEAD4andnuclear YAPbind
together, TEAD4 becomes a transcriptional activator. Cdx2
andGata3 are transcription factors specific to TEs activated
by theTEAD4-YAP complex, drivingTEdevelopment (34-37).
Hippo signaling pathway is active in the inner cells,
which prevents YAP from building up in the nucleus.
Through TEAD4 inactivation, nuclear YAP deficiency limits
the production of transcription factors unique to TE
(38). This permits the high-level production of the
transcription factors Oct3/4, Nanog, and Sox2, which
encourage the differentiation of cells into the ICM and are
likely auto-activationmechanisms (32) (Figure 2).

Recent research on YAP and TAZ has revealed that
transcriptional coactivators control embryonic stem
cell (ESC) self-renewal and differentiation (39). A study
relating HSP to ESC biology found that TAZ controls
the location of transcriptional regulators SMAD2/3-4,
which mediate tissue growth factor (TGF)-signaling.
Transcriptional coactivator with PDZ-binding motif binds
SMAD2/3-4 proteins to encourage nuclear agglomeration
and coupling to the mediator complex, enhancing their
transcriptional activity after TGF stimulation. According
to two studies published more recently, YAP is inactivated
during (mouse) mESC development, and YAP or TEAD
knock-down results in loss of pluripotency (40, 41). On
the other hand, when it is ectopically overexpressed in
induced pluripotent stem cells (iPSCs), activated YAP
improves reprogramming effectiveness and prevents
differentiation in mESCs (40). These investigations also
discovered that YAP-TEAD stimulates the transcription of
recognized stemness genes inmESCs but notmature cells,
including Oct3/4, Sox2, Nanog, BMP signaling, and LIF
targets. These results are consistent with the hypothesis
that YAP/TAZ mediates BMP/TGF transcriptional activity
anddirectly increases the expression of essential stemness
genes tomaintain ESC pluripotency in vitro (42, 43).

4. Hippo Signaling and Somatic StemCells

4.1. Liver Progenitor Cells

The HSP has a crucial role in different somatic stem
cells. The most significant metabolic organ, the liver,
has an important capability for regeneration. Even a
70% hepatectomy can lead to regeneration. Hepatocytes,
the primary cell type in the adult liver, do not undergo
mitosis. The liver has oval cells (OCs) that can produce
a transit precursor compartment, but hepatocyte
proliferation is necessary for the liver to regenerate.
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Figure 1. Hippo signaling pathway. The schematic diagram for the Hippo pathway’s core components and signal transduction. A, when Hippo signaling is on (in high
cell density), unknown upstream signaling leads to the activation of mammalian STE20-like protein kinase 1 (MST1)/2. Activated MST1/2 phosphorylate Salvador homolog
1 (SAV1), which, in turn, phosphorylates large tumor suppressor (LATS) and MOB kinase activator 1 (MOB1). The activated LATS/MOB phosphorylates YES-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), resulting in cytoplasmic retention by the 14-3-3 protein and proteasomal degradation of YAP/TAZ; B, when
Hippo signaling is off (in low cell density), the kinases MST1/2 and LATS are inactive, which inhibits the phosphorylation of YAP and TAZ. The stabilized YAP/TAZ in nuclei
interacts with TEA domain transcription factor (TEAD) and enhances the transcription of target genes related to anti-apoptosis and proliferation.

Although liver regeneration has long been understood,
the underlyingmechanisms and themethod bywhich the
liver determines when it has grown back to its original
size are still unknown (44, 45).

Historic studies verified the HSP’s physiological
significance in mammalian liver using mouse models
that conditionally overexpress YAP in hepatocytes (46).
The postnatal liver underwent significant but reversible
liver hyperplasia due to YAP activation, which resulted in
a four-fold increase in the total mass of the organ. The
primary cellular factor in hyperplasia was the excessive
proliferation of mature hepatocytes. These results provide
evidence that a human homolog of the Drosophila HSP
can affect tissue size and provide the foundation for
further research along this line. Other HSP elements have
recently been postulated to inhibit liver development
(42). After Mst1/2 deletion, mice developed liver tumors
that exhibited traits of both cholangiocarcinoma (CC)
and hepatocellular carcinoma (HCC), proving that these
tumors originated from bipotential liver progenitor
cells (47, 48). Cell lines generated from MST1/2 null

livers experienced growth inhibition and extensive
apoptosis upon YAP depletion (49, 50). These findings
support the theory that the primary cause of liver
enlargement associated with MST1/2 deficiency is YAP
activation. These results suggest that HSP components
may significantly regulate organ size and hepatocyte
quiescence in animals. However, their dysregulation
can result in stem cell proliferation, enlargement, and
cancer via several mechanisms. The phenotypes observed
in mice models with conditional deletion of various
HSP components differ. Consequently, more research is
required to thoroughly understand the functions of these
HSP components in the regulation of liver progenitor
cells, as well as theirmodes of action.

4.2. Neural Progenitor Cells

Neural progenitor cells are distributed throughout
the ventricular zone of the neural tube in developing
vertebrates. Theyproduce several cell types that constitute
the mature central nervous system (CNS) (51, 52). The
YAP protein colocalizes with Sox2 and is expressed in
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Figure 2. Differential Hippo signaling specifies distinct cell fates in the preimplantation embryo cell. The inner cells activate Hippo signaling, allowing the inner cells to
express inner cell mass (ICM)-specific transcription factors and adopt the ICM fate. Hippo signaling is suppressed in the outer cells, promoting the differentiation of outer
cells to trophectoderm (TE).

mouse, frog, and chick neural tube progenitor zones
(53). A significant increase in neural progenitors is
caused by Mst1/2 or Lats1/2 loss, or YAP-TEAD activation,
partly due to the overexpression of cell cycle re-entry
and stemness genes and a barrier to differentiation
by inhibiting critical genes. On the other hand, YAP
deficiency increases cell death and premature neuronal
differentiation (42, 54). In the perivascular niche of
the cerebellum, endogenous YAP is present in high
concentrations in cerebellar granule neural precursors
(CGNPs) and tumor-repopulating cancer SCs (55, 56).
High levels of YAP are also expressed in this area of the
brain by an increase in cells with an undifferentiated
CGNP phenotype, such as medulloblastomas, which are
common in children (57, 58). Since the sonic hedgehog
(Shh) pathway is activated in human medulloblastomas
and CGNPs depend on Shh signaling to proliferate, the
relationship between the Hippo and Shh pathways was
investigated (59, 60). Shh signaling in CGNPs causes
the expression and nuclear localization of YAP, and YAP
then encourages the development of these cells. Recent
research points to a new model of the brain in which YAP
acts as anexusbetweenneural stemcell (NSC)proliferative
pathways, including Notch and Shh (and maybe others),

which were previously believed to cooperate to regulate
brain development, to enhance NSC proliferation (61).

4.3. Skin Stem Cells

Animals’ largest organ, the skin, is a barrier against
environmental dangers and maintains the body’s
moisture. The self-renewal ability of epidermal SCs
(eSCs) at the basal layer allows the skin to regenerate
and continuously maintain its structural and functional
integrity. Short-livedprogenitor cells that stratify leave the
basal layer and ascend upward via the suprabasal layers
to the organ’s surface are the product of asymmetric
divisions in this SC compartment during terminal
development (60, 62). In recent investigations, the
significance of YAP in epidermal development and
SC homeostasis has been emphasized (62-64). Two
research groups demonstrated that YAP activation
significantly thickens the epidermal layer using a
mouse model with skin-inducible YAP expression.
Surprisingly, this hyperplasia is fueled by the expansion
of undifferentiated interfollicular stem and progenitor
cells (65). Colony-formation tests showed that larger
cells exhibited higher levels of clonogenic activity and
a longer self-renewal period. However, skin-specific YAP
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deletion or genetic ablation of the YAP-TEAD interaction
during epidermal development resulted in epidermal
hypoplasia and failure of skin growth (65). Unexpectedly,
a genetic investigation found that the classical Hippo
kinases do not control the skin’s YAP. A downstream
negative regulator of YAP was shown to be -catenin, a
part of adherens junctions (AJs). Based on the massive
overgrowth symptoms produced by -catenin loss in the
developing brain and skin, it was hypothesized that AJs
could function asmolecular biosensors of cell density and
position (66, 67). This notion is confirmed and expanded
upon by genetic and functional findings relating to
YAP and -catenin, suggesting that YAP is a significant
mediator of density regulation in the epidermis. In
this paradigm, increased cellular density prevents SC
expansion by inactivating YAP. When this molecular
network is disturbed, hyperproliferation and cancer
might develop.

4.4. Cancer Stem Cells

The HSP is crucial in controlling organ size and
carcinogenesis by inhibiting cell proliferation, inducing
apoptosis, and controlling the growth of stem/progenitor
cells (57, 58, 68). The nucleus contains unphosphorylated
YAP/TAZ, encouraging tumor and cell proliferation. The
cytoplasm is the central location of phosphorylated
YAP/TAZ, which prevents tumor growth. Numerous
malignant cancers are associated with elevated YAP/TAZ
expression and activity (69-71). Breast cancer stem cells
(CSCs) have also been discovered to be significantly
regulated by TAZ (72). Additionally, highly expressed in
medulloblastoma CSCs are YAP and TEAD (73). CSCs, a tiny
subset of tumor cells that can self-renew, differentiate
into different tumor cell types, and cause tumor growth,
have recently been associated with tumor development.
It is believed that CSCs resistant to chemotherapeutic
agents are to blame for cancer spread and recurrence.
Numerous human malignancies, including liver, lung,
colorectal, ovarian, and prostate cancers, have been linked
to HSP dysregulation (74-78). Studies have shown that
higher expression and nuclear localization of YAP results
in enhanced activity in human tumor tissues. This is
in line with the inhibition of the HSP, which is known
to restrict the function of YAP and TAZ by encouraging
their cytoplasm localization and eventual degradation by
ubiquitin. In numerousmouse andhuman tumormodels,
theYAPgenehas alsobeen found tobeamplified (58, 79-81).
These results suggest that unchecked YAP activation can
circumvent conventional tumor suppressor checkpoints.
Compared to other well-known carcinogenic signaling
pathways, the direct mutation of an HSP component has
only occasionally been associated with malignancies (4).

According to numerous investigations, the HSP is crucial
in human cancer. Inhibiting YAP/TAZ could be a potential
treatment strategy for malignancies with imbalanced
HSP. According to a recent study, HSP controls the YAP
and TAZ transcriptional networks inmammalian systems.
YAP1/TAZ transcriptional output downregulation revealed
that prostate-derived ETS factor (PDEF), a tumormetastasis
suppressor, positively regulates HSP. These results might
provide a fresh avenue for treating prostate cancer (Figure
3) (8, 82).

5. Drug Resistance

The most prevalent cancer treatments at present are
chemotherapy and targeted therapy. Sadly, traditional
treatments frequently fail to eradicate cancer cells
that develop into CSCs, allowing for clinical recurrence
caused by CSCs. Chemotherapeutic resistance is present
in tumor cells with increased YAP/TAZ activity, partly
due to the CSC characteristics brought on by YAP/TAZ
activation. Prostate epithelial cells are transformed in
vivo by YAP activation into androgen-insensitive cells
with castration resistance (83). Recent research has
revealed that miR-302/367-mediated LATS2 inhibition
causes YAP activation and confers CSC status in prostate
cancer cells (84). Metastatic activity and drug resistance
to chemotherapeutic drugs, such as paclitaxel and
doxorubicin, have been linked to YAP/TAZ activation
in breast CSCs (72, 85). Numerous studies have shown
that blocking the HSP or activating YAP/TAZ in various
tumor types increases cancer cell survival against
DNA-damaging medicines, including cisplatin, taxol,
and fluorouracil (5-FU) (86-88). Additionally, YAP/TAZ
promotes resistance to targeted therapy. A severe clinical
issue is that YAP increases treatment resistance to agents
that target RAF and MEK in tumor cells with BRAF, KRAS,
or NRAS mutations (89). Actin remodeling is one way YAP
becomes resistant to BRAF inhibitors in melanoma cells
(90). Importantly, the YAP/TAZ-TEAD target genes of the
secreted ligands play a role in drug resistance. Connective
tissue growth factor (CTGF) promotes chemotherapeutic
drug resistance in glioblastoma multiforme (GBM),
breast cancer, and osteosarcoma (91). These results
imply that non-cell autonomous processes may target
YAP/TAZ-induced secreted ligandsmore effectively.

6. Pharmacological Interventions

A leading cause of death worldwide is cancer. Cancer
stem cells that have undergone EMT can metastasize and
pass on drug resistance. The Hippo-YAP/TAZ pathway has
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Figure 3. Role of the Hippo signaling pathway in somatic stem cells

become a potent oncogenic driver in cancer cells with CSC
characteristics. For small-molecule treatments, protein
kinases, which function as oncogenes, are an excellent
target. Sadly, because MST1/2 and LATS1/2 (the Hippo core
kinases) are tumor suppressors, researchers have been
seeking other therapeutic modalities (Figure 4). The most
significant inhibitors of the Hippo-YAP/TAZ pathway are
covered below.

7. Verteporfin

Verteporfin, a US Food and Drug Administration
(FDA)-approved photosensitizer for macular
degeneration, is the most often utilized YAP inhibitor in
research institutions (92, 93). It reduces YAP-TEAD-induced
target gene transcriptionby blocking YAP-TEADbinding or
increasing 14-3-3 expression (94). Verteporfin suppresses
YAP-induced liver carcinogenesis and uveal melanoma
in living organisms, pointing to the therapeutic benefit
of cutting off the YAP/TAZ-TEAD linkages in cancer cells
(67, 95). It works against tumors by directly attaching
to YAP. It also has a cytotoxic effect independent of YAP,

suggesting that its impact on YAP activity should be
examined cautiously (96).

8. Statins

Through FDA-approved drug library screening for
drugs that result in YAP/TAZ cytoplasmic translocation in
breast cancer cells, statins were found to be potent YAP
inhibitors (97, 98). By blocking 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase, statins help people
with hypercholesterolemia lower their cholesterol
levels. Geranylgeranyl pyrophosphate synthesis, vital
for appropriate Rho GTPase activity, is decreased when
the HMG-CoA to mevalonate conversion is inhibited.
Therefore, statin medication inhibits Rho GTPases, which
reduces YAP/TAZ (97, 99).

9. LATS Kinase Inhibitors

In mouse models and human cell lines, the
knocking-out of NF2, Sav1, MST1/2, and Mob1 causes cancer
development, demonstrating the tumor-suppressive
function of the Hippo core kinases (1). Due to the lack of
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Figure 4. Therapeutic targeting of theHippo pathway. This figure shows the targeting strategies of YES-associated protein (YAP)/transcriptional coactivatorwith PDZ-binding
motif (TAZ) activity in theHippopathway. Dasatinib, ROCK inhibitors, andstatins represent substances that inhibit theactivityof YAP/TAZbyactivating large tumor suppressor
(LATS). Rapamycin andmetformin inhibit LATS-independent YAP/TAZ activity. Verteporfins represent substances that inhibit the interactionbetween YAP/TAZ and TEAdomain
transcription factor (TEAD).

small-molecule kinase activators, Hippo kinases are still
challenging to target. The LATS1/2 kinase, however, was
recently found to serve an unexpected role in obstructing
anti-tumor immunity (100). By inhibiting type I interferon
response mediated by the toll-like receptors-MYD88/TRIF
pathway, LATS1/2 lowers the antitumor immune response.
Inhibition of upstream Hippo kinases, either alone or in
combination with immune checkpoint drugs, maybe a
potential strategy for suppressing tumor growth. Drugs
that target the HSP may aid in tissue regeneration and
wound repair in addition to having anticancer properties.

10. Conclusions

Although most HSP components were initially
identified in Drosophila, recent human and animal
model studies have demonstrated the pathway’s crucial
function in stem cell development, cancer genesis, and
tissue homeostasis. As essential downstream effectors
of the HSP, YAP/TAZ is involved in embryonic stem cells,
tissue-specific stem cell self-renewal, tissue regeneration,

and homeostasis in the liver, colon, pancreas, heart, skin,
and CNS. There is also strong evidence that YAP/TAZ
contributes to developing cancer stem cell traits.
Therefore, elements of the HSP might be promising
therapeutic targets for diseases such as cancer and
degeneration. Oncogenic driver mutations in the main
parts of the HSP are infrequent despite their significance
in cancer development. Finding the CSC-specific YAP/TAZ
oncogenic signaling network will, therefore, open up
new avenues for eliminating CSCs and treating cancer
progression.
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