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ABSTRACT

This paper concerns nen-linear state estimation in a batch polymenzation
reactor whete suspansion polymerization of methyl methacrylate takes place.
A kinetic: model proposed in tne literature is selected and its validity has been
verified through an exrzarimental set-up. Based on this model monomer
conversion and average molecular weights of the palymer are estimated using
only one output measurement (reactor femperature). The performance of the
estimator, which has the structure of an extended Kalman filter, is examined
through simulation and experimental studies in the presence of different levels
of parameter uncertainties. The effects of adding ‘fictifious noise’ and
parameter state' to the estimation algorithm are aiso investigated. To find the
best fictitious state, the main parameters of polymenzation model are divided
into three groups. The parametric study of the MMA palymerization model
indicates that, when the source of parameter uncertainty is unknown, the best
selection of parameter state is the initial mass of monomer.
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INTRODUCTION

In the polymerization industry there is considerable
economic incentive to produce polymers with desired
end-use propertics. The development of operating
policies that will resuit in the production of polymers
with desired end-use properties is called “quality
contral”. However, the final polymer properties (e.g.
melt index, impact strength, tensile strength, chemical
resistance, thermal stability, etc} can be related, through
empirical relationships, to the molecular properties of
polymers such as molecular weight distribution
MWD) [1,2].

Therefore, the main objective in control of
polymerization reactors is to maintain the molecular
properties at some desired values.

A major problem in control and monitoring of
polymer quality in industrial polymerization reactors
is the lack of suitable on-line molecular property
measurements. Although instruments for measuring
the MWD are available, these instruments are very
expensive and possess substantial measurement delays
[3]. By using state estimation techniques, some of
these difficult-to-measure variables can be estimated
with aid of certain easily measurable variables such as
temperature, viscosity and density of the reaction
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mixtures,

The problem of state estimation for non-linear
processes has been shidied extensively in the literature
and has been reviewed in many papers such as
Embirucu et al. [4] and Soroush [5]. These studies can
be divided into three main classes,

In the first class, different types of neural net-

works are used for state estimation. When the process
madeting is complicated and a suvitable model is not
available, especially in industrial polymerization,
neural network models based upon monitored reactor
data can be developed. Using the learning capability
of a neural network, the relationship between polymer
quality variables and the on-line measured variables
can be identified [6-8].

The second class includes the estimator design
methods whose derivations are based on the notion of
linearization through coordinate transformation,
adopted from non-linear control theory. Examples
include the methed of output injection {9], and the
Luenberger-like observer design methods [10-17]. In
these methods, a non-linear process model, without
any linearization, is used directly for estimator design.

The third class includes those non-linear estim-
ator design tnethods which are a result of a straight-
forward extension of Luenberger observer or Kalman
filter (KF} to nen-linear processes. Examples of this
class are extended Luenberger and EKF. The state
estimation techniques mostly used in polymerization
reactors are those based on the EKF [18-31].

In this paper, the difficulties and’ different
modifications of EKF for state estimation in batch
polymerization reactors are studied. A batch polymer-
ization reactor, in which suspension polymerization of
MMA takes place, is selected for this investigation. Tt
is assumed that the only available measurement is the
reactor tetnperature.

The kinetic model proposed by Chiw ¢t al. [32]
is selected and its validity has been verified through
data obtained from an experimental set-up. Based on
this model an EKF is designed to estimate the average
molecular weights,

The performance of the estimator is examined
through experiments and simulation studies. The
effects of adding ‘fictitious noise’ and ‘parameter
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state’ to the estimator have been investigated.
Simulation results indicate that the best selection for
parameter state is the initial mass of monomer.

EXPERIMENTAL SYSTEM

Figure 1 depicts the schematic diagram of expetiment-
al system. The reactor is a 5L stainless steel jacketed
vessel. The reacting mixture is mixed by a three
paddle agitator at 600 rpm during the polymerization.

The heating/cooling system of the reactor
consists of an electrical heater with power of about
6.0 kW, a shell and tube heat exchanger, a motorized
three-way control valve, a circulating pump and temp-
erature sensors (four 0100 'C resistance temperature
detectors, RTD). The reactor temperature is measured
by a RTD of the s#me type. The circitlating pump
maintains a constant jacket-side heat transfer
coefficient. The temperature of the heater is controiled
by an on/off controller at about 80 C.

The experimental system is connected to a
computer by an [/O interface board (Axiom, Inc;
model AX54113,

Experimental Procedure

To verify the model, the experimental $ystem of
Figure | is used for suspension polymerization of
MMA with benzoyl peroxide initiator. The loading
amounts of monomer, initiator and distilled water in
each batch are 1.4, 0.018 and 2.0 kg, respectively. The

Figure 1. Exparimental system.
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quantities’ of 4isodiumn -phosphaie (TSP), calcium
chloride and SDBS (used for producing suspending
medium), are 0.0191, 0.1315 and 0.0168, respectively.

These quantities are found by trial and error for

obtaining small size pellets of polymer (50~200 prm),”

at agitation rate of 600 rpm.

The procedure used in each batch has the
following steps:

— Preparation of materials using the given loading
conditions,

— Dissolution of the TSP in distilled water and
loading it into the reactor vessel,

~ Loading the monomer into a vessel and stiring it
by an agitator, followed by introduction of nitrogen
gas into the monomer for 1 h to purge any dissolv-
ed oxygen.

— Preheating the reactor to the desired te.nperature
and toading the calcium chloride.

— Loading the SDBS into the reactor vessel within
about 10 min.

— Removing about 150 mL of the monomer and
loading it into a 250 mL beaker and then heating
the remaining monomer in the vessel to the desired
temperature,

— Dissolving the initiator in the beaker containing
monomer.

— Loading the solution- prepared in step 7 into the
monomer vessel and mixing it propetly. Then load-
ing the mixture into the reactor vessel and contro!l-
ing its temperature. In the experimental set-up the
reactor temperature is controlled by manipulating
the jacket inlet temperature using a conventional
PID controller.

— Purging the reacting medium with nitrogen gas to
keep oxygen out of the reactor.

~ During the polymerization, samples were taken and
conversion is determined gravimetrically, while the
average molecular weights are determined by the

gel permeation chromatography (GPC: model 150-
C, Waters).

MATHEMATICAL MODEL

The kinetic mechanism for free radical polymerization
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Table 1. Free radicat polymerization mechanism.

Steps Mechanisms
Iitiation Iy 2R,
Ro+M A R,
Propagation R, +M _"r_.. Ran
Chain transfer R, +M o P+ R;
Termination Rn+ R 5 Py + Py

Ry + R Lh-F'mm

of MMA initiated by benzoyl peroxide is given in
Table 1 [33-35]. In order ta obtain average molecular
weights of the growing radicals and resulting poly-
mers the method of moments is used. These moments
are defined below:

and |J.k=Zn"P“ (1}

n=1 o=l

where: R, and P, are concentrations of live radical and
dead polymer chain with n  monomer units,
respectively,

Usihg the kinetic mechanism and performing
mass and energy balances resulis the following set of
ordinary differential equations:

==Xk, +ha)Rg )
dx;

?=(] _xi)kd 3
T (-AH,)KC,V + UA(T, - T) @
dt me

¥= AoV Cy +Koho) = 0.5k A2V 0
% =3 V(k,C, +kA,) ®)
d(‘;iv) Ry V(K oy + K g )2 M MY Q)
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whens;

1‘0 = (2fkdcl )O.S (8)
kt
k,C
=Rl +— 2 9
ol + k.C.+k lu) )
Ay =4, 2k, Con ) (10)
= 4 —
" :
Cm :U_xm)cmﬂvﬂ (”)
v
Ci = (l —x.')cinvo {12)
v

V=V, (l+ex,) {13)

In the above equations, x and x; are monomer
and initiator conversion, respectively and € is the
volume expansion factor and is given by:

a—¢mo{——n (14)
P

To obtain average molecular weights from the
moments the following equations can be used:

+2,

Mty ky

M,=W, LW, —L (15}
" Hg + Ay " g

M, =w Hathe g B (16)
M2y W

In the MMA polymerization, termination and
propagation reactions can become diffusion-controlled
at increased viscosity of reaction medium. These
phenomena are called gel and glass effects, respect-
ively. To introduce the gel and glass effects in the
model, the correlations propused by Chiu et al. [32]
are used. These correlations are given below:
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k
k,=—712— 17
1 1+1'0kt0 ( )
Dkg,
k
Kk =—® 18
4 1+A'lakp0 ( )
Dk,
where:
2.3 -
D= exp( (1-0,) )
0.168-8.21x<107%(T - T ) +0.03(1-$,)

19)

The kinetic constants and other parameters of
the mathematical model (for suspension polymeriza-
tion of MMA with"benzoyl peroxide initiator) are
given in Table 2 [34, 36, 37]. To calculate DA, the
overall heat transfer coefficient, several step changes
are introduced in the jacket temperature {while only
water is present in the reactor) and reactor temperature
is measured. Using these data and least square
technique UA has been calculated.

KALMAN FILTERING: A REVIEW

The KF is an optimal estimator for lincar processes,
which provides estimate of the state vector from
measurements containing white noise [38]. A straight-
forward extension of KF fo non-linear processes is
called EKF (39]. In the following, an EKF algorithm,

Table 2. Kinetic and other parameters of MMA
polymerization.

ky = 1.69%10" exp (-1.2561x10*/RT) W,=100.12
km = 4661%10° axp (-7 4479%10%RTY =0.5
koo = 4.9167%10° axp (-1.8283=10%RT) c=3.2

ke = 8.800x 107 exp (—2.9442x 10%RT) m=3.585
Kap = 3.0233x10" axp (~1.17%10%RT) R=8.345
ki = Ciax1.454%10°° aup (—1.4584%105RT)

pm=968-1.225 (T—273.2) pe=1200

—AH=5.78%10",  Te=387.2, LA=0067
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based on a continuous-time process model and discrete-
time measurements, has been reviewed briefly.

Consider the process described by the following
equations,

dx
E—f(x,u,t}+v{t], x(0) = x, 20)

¥(K) = h(x) + w(k)

where: v and w is uncorrelated white noise vectors
with covariance  and R, respectively. The EKF
equations have the following form:

— State and covariance estimate propagation:

R+ K =&(K/K)+ [ (R, vt (21)

Pk +1/k) = O(k)P(k/ KO T (K) + Qlk + 1) (22)
— Filter gain calculation:

Kk + D =Pk +1/k)HT (k + D{H{(k + DP{k +
VEH (K + 1)+ Rk + i)}" (23)
— State and covariance estimates iipdate:

Rk +1/k+1) =&k + /R + Kk + D{yk + -
hi&(k + 1/ K]} (24)

P(k + /K + 1) =41 - K¢k + DH(k + D3Pk +1/k)
(25)

(-} is the state transition matrix and is given by:
®(k) = exp[F(t, )t, ] 26)

In the above equations the Jacobians'F and H are
defined as:

af h
¢ H={— 27
¥ (6x)*’ (ax);' @7
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In implementation of EKF to real processes
several difficulties and challenging problems are
encountered. Firstly, it is well known that the EKF
can become unstable, particularly in ill-conditioned
problems, when eqns (22) and (25) are used for cal-
culation of the state covariance matrix, To circumvent
this difficulty, many methods have been suggested in
the literature such as Potter’s square root and
Bierman’s U-D factorization [40]. In the present work
special form of the square root method proposed by
Kaminski et al. [41] is used.

Secondly, if any of the measurements can be
considered as noise-free, the gain of the filter becomes
infinite. This failure of KF is attributed to the optimal
gain of the filter, and thus, a suboptimal gain should
be used [42]. .

Thirdly, when some of the disturbances are
non-stationary or in the presence of modeling errors,
the filter may be diverged or provides biased estim-
ates. To overcome these difficulties, one can increase
the elements of process noise covariance matrix which
is equivalent to adding a fictitious noise to the system.
Alternatively, one can calculate the covariance matrix
Q in an adaptive manner [24}. Another approach is
incorporation of a few non-stationary disturbances
andfor parameter states in formulating of EKIF
[27,43 44].

Finally, in order that the state estimation
techniques to be applied successfully, it is necessaty
for the system to be observable. Unfortunately, in the
polymerization reactors, the molecular properties
cantiot be observed from bulk measurements, such as
temperature and concentrations, However, even if the
process is not observable, it is usually possible to
design a reduced order estimator when the process is
detectable (a process is detectable if its unstable
modes can be observed) [19,45].

Other difficulties and experiences in real
implementation of the EKF have been reviewed by
Wilson et al, [46],

Estimator Design for the MMA Polymerization

[n the experimental system (Figure 1) the only avail-
able output measurement is the reactor temperature.
The analysis of the process model (eqns 2-7) shows
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Rom e = = = b

Figure 2. Block diagram of the designed estimatar.

that monomer and initiator conversions are observable
and dead polymer moments {5, My, P} are not
observable from temperature measurements but
detectable, and a reduced order estimator can be
designed.

The block diagram of the proposed estimator is
shown in Figure 2. The states vector to be updated
contains only the abservable states (X, x;, T). Parallel
to this reduced order filter the equations of the
moments must be integrated without correcting these
variables in the update step. The proposed estimator
contains two parts. The first part is an EKF for
estimating of the cbservable states, and the second
part is an open loop observer for estimating of the
detectable states.

The estimations of the observable and
detectable states may have bias in the presence of the

1

(X3 4
5 °
06
g s
i 04f b4
a %
-]
0.2 %
0 L 1 i
0 50 100 150 200
Tima (min}

Figure 3. Experimental data and madel predictions {solid
line) of monomer conversions at 60 C.
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Figure 4. Experimental data and model predictions (solid
line) of average molecular weights at 60 °C.

model uncertainties. The bias of the observable states
can be reduced by adding a fictitious noise to the
system. But the bias of the detectable states can not be
reduced by this technique. One approach to overcome
this problem is to add all uncertain parameters as
fictitious states to the first part of the estimator. For
this purpose, the observable state vector can be
extended as x"=[x"", ¥ |, where x* is the vector of
deterministic model states (x,, x, T) and x" is the
vector of parameter states. Since the true dynamics of
the fictitious states are usually unknown, it is common

K o
o L]
08}
L]
=
Bosl
°
04|
| ]
o2}
L
1 - 1 A
0 20 40 ) 80 100
Time (min)

Figure 5. Experimental data and modal peedictions (solid
line} of monomer conversiotia at 7y G
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case g [ 7] Qs P11 Paz Paz Pas’
| 5x107° Bx107™" 3x10° 0.01 1%107* 1.0 -
{ 5x107 ax1p® 3x107 0.0 1107 1.0 -
[ 5x10~7 ax107" 3x1p™ rax1p o.01 10 1.0 0.5 for wmp
’ Q1forf
v sx107° ax10™" 3.0 0.01 1x107* 1.0 -

to assume that these states follow a simple non-
stationary random walk behaviour:

dx*®
di

=V (28)

where: v* represents a white noise vector,

In general, the maximum number of fictitious
states that can be estimated is equal to the number of
independent measurements. Therefore, in the experi-
mental system with one independent measurement
{T), one fictitious state can be added to the estimation
algerithm. For this limitation, it is favorable to select a
parameter state that provides a better estimate, when
the source of uncertainty is unknown,

To find the best fictitious state, the main para-
meters of the MMA polymerization model are divided
into Lhree categories, according to their qualitative
effect on the system states:
~In the model equations the parameters wig, ks and f

are usually appeared as f kywq, therefore, the
uncertainties in these parameters can be lumped
into one parameter.

- UA and -AH: These parameters are appeared only
in energy balance equation, and therefore their
uncertainties can be lumped into one parameter.

— W ki and k;: These parameters arc appeared in
different forms in the model equations. Therefore,
the effects of these parameters are stodied
separately.

The effect of adding any of the aferementioned
parameter as parameter state will be discussed later.

Kinetic Model Validation

To verify the model used for the suspension polymeriz-
ation of MMA several experiments have been performed.

tranian Polvmer Jowrnal * Volume 10 Number 3 (2001)

To achieve betier agreement between model predictions
and experimental results, the chain transfer to monomer
and termination by combination reactions are ignored.
Experimental data of the menomer conversion and the
average molecular weights are compared with the
mode] predictions at 60 'C in Figures 3 and 4, and at
70 °C in Figures 5 and 6, respectively. As can be seen
from the results, the model successfully predicts the
menomer conversion, In addition, the model predicts
the average molecular weights satisfactory except for
the region of rapid polymerization. Discrepancies that
exist in the average molecular weights are unavoidable,
and similar weaknesses have been reported by other
researchers [32].

STATE ESTIMATION RESULTS

In this section the performance of the proposed
estimator has been examined under different levels of

n L

o 0.2 04 08 0a 1
Tiena (rmin)
Flgure & Experimental data and madel predictions (solid
line} of average molecutar weighits at/7d/C.
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parametetsT yndercainties. lina 1 runs the sampling per-
iod takes 5 5 and covariance of output measurement {R)
i5 0.0015. In addition, the covariance matrices Q and Py
are assumed diagonal.

The diagonal elements of Q and P, for each case
are given in Table 3, .

Case I: Nominal

If ali mode] uncertainties can be described as white
noise, then the state estimates will be converged
without any bias. For example in Figures 7 (a), (b) and
(¢) the estimated values of monomer conversion,
weight and number average molecular weights are
compared with their real values in the presence of
20% error in the initial value of monomer conversion.

1.0

o8

06

%
D4

0.2

n = L
Q 50 100
Time {min)

(a}

10

&

Ao (x4

2 L
) 50 100
Time {min)

&)

For this case the corresponding variation of the reactor
temperature is shown in Figure 7 (d).

Case I1: Using Fictitious Noise

In the presence of parameter uncertainties and/or non-
stationary disturbances, the state estirmates may have
bias or diverge. As mentioned earlier, one way 1o
overcome this difficulty is adding a fictitious noise to
the systetn. For example the estimated values of x,.
Xi, My and M, in the presence of 20% error in the wy
are shown in Figure 8. The variation of the reactor
temperature is similar to Figura 7 (d). In these Figures
the covariance matrix Q was increased by a factor of
I05, comparing to case 1. The filter will diverge, if the
covariance matrix Q of the case 115 used.

25

10%

nl’l {“

1.0 L
0 50 100
Time (min}

{c}

5;0 100
Time {min)
(d}

Figure 7. State estimations of case I(sofid line: estimated values, dash line: real values).
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Case II: Using Ficlisious Stale

In the following the effect of selecting any model
parameter as a fictitious state has been examined, For
all cases, the variation of the reactor temperature is the
same as Figure 7 (d). :

If the uncertain parameter is known, it can be
added to the estimation algorithm as a parameter state.
In this case the filter will converge with approxi-
mately bias-free estimated states,

For finding the best parameter state, when the
source of uncertainty is unknown, many simulations
have been performed on the basis of three model
parameter categories defined before. For example in
Figures 911 the estimated values of M,, and M, are
compared for two cases where Wy, or f has been

sclected as a fictitious state, In these cases the
estimated values of x, were approximately the same,
and therefore, they are not shown. The performances
of the other cases (selecting wi and UA as a fictitious
state) can be examined in a similar way.

The results can be summarized as follows:

‘— When the uncertainty exists in the first group of
the model parameters (Wi, ky, /), the best selection
of the parameter state is /. In addition, the selection
of wp or wyg gives satisfactory results, but filter
may diverge, if UA is selected.

When the uncertainty exists in the second group of
parameters (UA and —-AH,), the best selection of
the parameter state is wyo of UA.

— When the uncertainty exists in the third group of

1.0 10

]

%

08

2 /;
o4l -7

M., (<10

02 “

0

o

010

50
Time {min}

{2

100

.08

<
g

Figure 8. State estimations of case ) for 20% emor in wmo (Solid line: estimated values, dash line: real vgluas).
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50
Time {min}

(b}

100

2 L

Q 50
Time (min)

{c)

25

100

Mo (x10%

1.0 L

Tiene {min}
{d)

100
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~ purametzrs (K, K, Wa,). the best selection of the
parameter state is wy. In addition, the selection of
w;p or fis accepiable, but if UA is chosen, the filter
may diverge.

Case IV: Experimental Results

In this section the experimental data obtained at 70 'C
are used to check the performance of the proposed
estimator. The estimated values of x,,, R/[w and M, are
compared with experimental results in Figures 12 and
13. The results show that the monomer conversion and
average molecular weights have been estimated
successfully, [t should be stated that the proper value of
matrix ¢ found by trial and error is given in Table 3.

12

5)

Mo (216

3} 50 100
Tirrte {rin}

(a)

3.0

I_ﬂn(ﬂﬂ_s)

10 1

Time {min}
(b}

CONCLUSION

In this paper the state estimation of a batch suspension
polymerization reactor of MMA with only one measu-
rement (reactor temperature} was studied through
simulations and experiments. For this purpose an
estimator consisting of two parts has been proposed.
The first part is an EKF which estimates the observ-
able states and the second part estimates the detectable
states {open loop observer).

The simulation results indicate that, in the
presence of parameter uncertainties and/or non-
stationary disturbances, the estimations of observable
states can be improved by adding a fictitious noise

12
10}
5 8l T
x
l'..E B}
41
2 1
0 50 100
Time (min)
{c}

M. (x15%)

Time {min}
d

Figure 9. State estimations for 20% ermror in ks or wa; {a,b) selecting wwo and {c,d) selecting 7 as a parameter state (solid line:

estimated values; dash line: real values},
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)
s o
3
4}
|~
2 L
0 50 100
Time {min}
(@
2.5

%)

Mo (x10

o 50 100
Time (min)

)

10

50
Time {min)
{c}

25

Mo (%107

0 50 100
Time {min}
{d}

Figure 10. State estimations for 20% error in ke and ki, (a, b) selacting wma and (¢, d) selecting f as a parameter state {solid

line: estimated; dash line: real values),

and/or a parameter state to the system. In addition, in
many special cases, adding a parameter state will
improve the state estimations of detectable states. A
parametric study of the MMA polymerization mode}
indicates that, when the source of parameter
uncertainty is unknown, the best selection for the
parameter state is the initial mass of monomer (wpg).
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SYMBOLS AND ABBREVIATIONS

A reactor-jacket heat transfer area, m’

¢ heat capacity of reactor contents,
kg K™

C,Cp concentration of initiator and its initial value,
kmolm™

CnCmo  concentration of monomer and its initial
value, kmol-m™
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2.5

5

Mo (216

1.0

Time {min

{2)

0 50

100
Tima {min

)

15
1o}
&
%
£
) 5 |
-
o .
o 50 100
Time (min)
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3

Ma (109

1.0

100
Time {min})
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Figure 11. State estimations for 20% error in UA or —AH; (a,b) selecting wmo and (c,d) selecting £ as a parameter state {solid
line: estimated; dash line: real values).

k
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initiator effictency

vector of system equations

number of sampling

rate constant for initiation reaction, s™'

rate constant for chain transfer to monomer,
m* kmol 5™

rate constant for propagation
m*kmol 5™

rate constant for termination by combina-
tion, m*kmol g™}

rate constant for termination by dispropor-
tienation, m*-kmol ™5™

k“d+kt§

reaction,

kpﬂ! krﬂ

kﬁp; kﬁl

=

i) Mw

-7

PALOMN

true propagation and
constant, m™kmaol s '
parameters of gel and glass effect model
filter gain vector

mass of reactor contents, kg

number and weight average molecular
weights, respectively

dead polymer chain consisting of »u
MONOIMET Units

state covariance matrix and its initial value
covariance matrix of process noise v
covariance of measurement noise w

live polymer chain consisting o 0 (nonomer

termination rate

Iranian Polymer Journal / Volume 10 Number 3 (2004)



10
-]

08}
=
§ os|
] o
§ 04L ©
=1 (-]
=

0.2

1] 1 1 1 1
o 20 40 80 20 100
Time {min}

Figure 12, Experimentai data and estimated values (solid
line) of monomer conversions.

units

t, t; time and sampling time respectively, s

T,T;  reactor and jacket temperature respectively,
K

Te glass transition temperature of PMMA, K

U overall heat transfer coefficient of reactor-
jacket, kW-m K™

v vector of the process noise

V,Vy volume of the reacting mixture and its initial
value, m’

w vector of measurement noise

Wig, Wno loading mass of injtiator and monomer
respectively, kg

W molecular weight of monomer, kg-kmol™
X vector of state variables
X Xm  initiator and monomer  conversions,
respectively
¥ vector of output measurements
GREEK LETTERS

~AH, heat of propagation reactions, kJ-kmol™
polymerization volume expansion factor
kth moment of live polymer chains
initial value of monomer volume fraction
volume fraction of polymer

state transition matrix

CE R
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Flgure 13. Experimental data and estimated values {solid
line} of average molecular weights.
T kth moment of dead polymer chains
Puw Pp density of monomer and polymer respective-
Iy, kgm™
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