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ABSTRACT

The relaxation spectrum is an important tool for investigating the behaviour of

viscoelastic polymer melts. The most popular procedure for determining the
relaxation spectrum is the use of a small-amplitude oscillatory shear experiment

to determine the parameters in a multi-mode Maxwell model . However, this is
an ill-posed problem and its numerical solution is along with difficulties . The

determination of the discrete relaxation spectrum by a linear regression

approach is widespread in practice and in the literature. In this work, a non-
linear regression technique, based on Marquardt-Levenberg procedure, is

applied in which the minimization is performed with respect to both the discrete
relaxation times and the elastic moduli . Using this non-linear optimization, the
spectrum parameters of a multi-mode Maxwell model were obtained for poly-

butadiene and polystyrene. It has been shown that in comparison with the other
methods, the present approach is more efficient and it was found to give a very

good fit with the fewest possible parameters,
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INTRODUCTION

The relaxation time spectrum describes the viscoelastic

behaviour of polymeric material . The following state-

ments can explain its central role and application in

rheology. In general, using the relaxation time spectrum,

one can correlate the theological properties ofa material

with molecular dynamics [1, 2] . Furthermore, given this

spectrum, it is easy to convert one material function into
another one [3, 4] . Additionally, in order'' to model

polymer processing and to analyze them, rheological
experiments often require the relaxation time spectrum.

In fact, knowledge of the relaxation time spectrum is

necessary for engineering calculations of linear visco-

elastic material functions and complex flows. For

example, when simulating the viscoelastic flows, one
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needs to have available a relaxation time spectrum where
it can be used along with the constitutive equation.

Dynamic mechanical experiments can be used
to measure the storage and loss modulus of polymeric
liquids and solids over wide ranges of Frequency.
Highly sophisticated instruments arc commercially
available for performing these measurements.

However, the problem of converting the
dynamic data from the frequency domain to the time
domain is not at all a straightforward curve-fitting
operation [5].

The relaxation time spectrum is not directly
available from the experimental data . It has to be
determined in an indirect manner . This particular
calculation is one of the classical problems in
rheology . In the literature various techniques have
been proposed to determine the discrete relaxation
spectrum from a set of experimental storage and loss
modulus data.

Laun used the linear regression approach [6],
however, this method may not lead to a physically
meaningful spectrum . Because, as the number of
Maxwell elements increases some negative elastic
moduli are produced and this is physically unrealistic.
Honerkamp and Weese [7] have demonstrated the use
of a mathematical technique called the classical
Tickhonov regularization to overcome this problem.
Using this method, they were able to back-calculate
their simulated relaxation spectrum using a large
number of relaxation times. Therefore, the ill-
posedness of the linear regression approach was well
documented. According to Honerkamp and Weese,
regularization method is robust and it is a general
method . However, practical realization of this method
leads to rather complicated and labour-consuming
operations [8] . Another approach to determine the
relaxation spectrum is to develop a non-linear
regression to determine the rei,xation times and the
number of Maxwell elements as well as elastic
moduli . Baumgaertel and Winter [9] used a non-linear
regression method and found that the resulting elastic
moduli were all positive, provided that the number of
Maxwell elements was small . Unfortunately, they
have not revealed the details of their method, but it is
available as a commercial software product .

The objective of the present work is to show a
non-linear regression method, with the fewest
possible parameters and, for calculating the discrete
relaxation spectrum . For this purpose, a non-linear
regression approach, based on the Marquardt-
Levenberg method, is used to optimize the parameters
of the discrete spectrum function . Using this
technique one allows to compare the results with the
experimental data of polybutadiene and polystyrene
(PS140) and then the accuracy of these results can he
presented.

Theoretical Framework
The basic function in the theory of linear
viscoelasticity is the linear relaxation modulus G(t) . It
relates the stress tensor x(t) to the rate of deformation
tensor y(t') in the following constitutive equation
HO]:

z(t)= ft~G(t-t')y(t')dt'

	

(I)

The function G(t) is directly measureable by a
sudden shear displacement of the material . It is
necessary to represent the modulus by an explicit
mathematical function . The most common function
used is that of the generalized Maxwell model as:

G(t-t')=Eg, exp[- (t - ty

	

(2)

Where g ; is the corresponding elastic modulus
of a relaxation time

In small amplitude oscillatory shear flow, the
shear rate in terms of frequency, to, can be expressed
in a complex form as:

y xY = Re (ymiwe('",))

	

(3)

A stress tensor component T, y( t) is generated
according to eqn (1), which can be written as:

'L xy (t)Re{y n exp(imt)(G ' (m)+iG " (m))[

	

(4)

Where ye, G'(m), G'(m) and Re are the strain
amplitude, the storage modulus, the loss modulus and
the real part of the complex number, respectively.
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It can be shown that G'(c) and G"(w) are the
Fourier sine and cosine transforms of the relaxation
modulus, respectively [11].

G'(w) = co'

	

G(t - t ' ) sin(0(t - t '))dt ' (5)

G"(ua) = w J
W

G(t - t') cos(ua(t - t'))dt' (6)

Inserting eqn (2) into eqn (5) and (6) yields the
following expressions for the dynamic moduli:

N w 2 k1 2

G (cu) = E g ; z (7)
;_t 1+w z k

(8)Ow) - E g ,
l+ril 2 x;

In a dynamic experiment the dynamic moduli
are calculated at a discrete set of frequencies.
However, the discrete relaxation times are not directly
available . On the other hand, the problem of
determining the continuous relaxation spectrum of a
viscoelastic fluid from dynamic data involves the
following pair of Fredholm integral equations:

G'( w) = .I H(A)

03 2x2

	

dk

	

( 9)

	

0

	

l+ua 2 ?s,2 7v

	

G" ( w) _

	

H(X)	
cu 7L

	

(10)
1+0)2X2

X.

Where H (A) denotes the continuous spectrum
as a function of the relaxation time X.

The inversion of either the eqn (9) or (10) or
both as a pair is known as "ill posed" [12] . In parti-
cular, this means that small perturbations in the
measurements of G' (cu) and G" (cu) can lead to
arbitrarily large perturbations in the spectrum II (A.).
Therefore, great care is required to determine H (X)
from dynamic mechanical data . In practice the
discrete relaxation spectrum is determined by fitting
models such as the discrete representation of the eqns
(9) and (10) . The non-linear nature of the eqns (7) and
(8) makes them extremely difficult to solve . In the
next sections optimization of the mentioned
parameters are described.

Linear Regression Method
In linear regression method discrete relaxation times
are given a priori and using the least square objective
function, minimization is performed only with respect
to the unknown elastic moduli . Having the
experimental values for G' ((a) and G" (co), one may
formulate the following least square objective
function :

(G'(aij)-E
N

	

w-27v2
/_t

g,1+wjX, +

FJ

	

2

(G''(wj)-Lg

	

z z+w i ~l

Where M and N are the number of
experimental data and relaxation modes, respectively.
The values G'(w i ) and Mai) are the measured
experimental data over a discrete set of frequencies
co,(l5j5M).

One can differentiate eqn (11) with respect to
each g ; and obtain sets of equations, called the normal
equations that can be solved by Gauss Jordan
elimination method [13] . However, in many cases the
normal equations are very close to singular and a zero
pivot element may be encountered . In such cases, the
minimization problem can be solved by performing a
singular value decomposition (SVD) [14] . Mean-
while, the minimum of the objective function may be
very flat. This means that it yields many solutions that
are compatible with the given data, for example,
negative values for some of the elastic moduli.
Therefore, there are serious shortcomings in the use
of the linear regression method to determine the
discrete relaxation spectrum . In order to overcome
this difficulty, Honerkamp [14] introduced an
additional criterion using Tickhonov's reggjarization
method . However, as stated before, practical
realization of this method leads to rather complicated
and labour-consuming operations . Therefore, non-
linear regression method can be considered as an
alternative method.

Non-linear Regression Method
One of the shortcomings of linear regression methods,

M
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apart from the obvious ill-posedness, is that the
relaxation times are specified a priori . If some of
these were placed too close together then it would
lead to small singular values . in non-linear regression
methods the relaxation times are as adjustable para-
meters . In fact, the objective function is non-linear
with respect to both the relaxation times and elastic
moduli . Also, the number of Maxwell elements, N,
can be selected as an iteration parameter.

The number of Maxwell elements has a crucial
role for the success of non-linear regression methods.
When N is too few the least squares error is large.
However, when a few more relaxation modes are added
the mentioned error decays rapidly. Beyond some critical
value of N, the least-squares errors will not improve
significantly and negative values of the elastic moduli
may begin to appear [15] . Winter et al . [16] chose N to
be a large number, which is decreased gradually until all
the elastic moduli are positive . One may use an
alternative way such that the value of N is a small
number. Initially, we select N=1, and increase it smooth-
ly, until the problem is well posed . In order to determine
the discrete relaxation times and elastic moduli, we
minimize the following objective function [17]:

N

	

m2
z

G r(w 1 ) g' l+wN l j +

(12)
N

E-
\2

1

	

gw17, .~

	

1
G.(W~)i

I+w~1v

Where M and N are the number of experimental
data and relaxation modes, respectively . Also, the
values G' (ce) and G " (a)) are the measured experi-
mental data. In fact, the above objective function is the
average square deviation between model [eqns (7) and
(8)] and measured values of G' (w)) and G'' (a)).

The non-linear least-squares problem at each
step is solved using the Marquardt-Levenberg algo-
rithm . Also, the discrete relaxation times and elastic
moduli are determined as follows:

>A+I ( i-l , . . .,N-1)

g?gi * l (i = 1, . . ., N-1)

Once the discrete relaxation spectrum of a
material is determined it can be used to calculate all
of the material functions . This means that the discrete
relaxation spectrum is an important tool for describe-
ing the viscoelastic behaviour of polymeric material.

EXPERIMENTAL

In order to evaluate the above-mentioned method, two
sets of data are used . These are the dynamic mechanical
data of polybutadiene melt [18] as well as polystyrene
(PS140) melt with narrow molecular weight distribu-
tions . Polybutadiene has average molecular weight
57800 (g/mol), polydispersity 1 .05 and the data values
are obtained at 23 'C . Also polystyrene (PS 140) was
obtained from BASF AG with average molecular
weight 145000 g/mol and polydispersity 1 .03 . Dynamic
oscillatory shear experiment was performed on
polystyrene (PSI40) sample using a rheomertrics
mechanical spectrometer RMS-800 with parallel plate
geometry of 25 mm diameter.

In general, the rheology of polymer melts
depends strongly on temperature . It is well known that
in the case of thermo-rheological materials, the simple
and regular isotherms of G'(w) and G"(w) (or other
material function) can be superimposed by horizontal
shifts along the frequency axis (w). Usually, two
semi-empirical equations, the Arrheninus and the
WLF equation, are used to evaluate the temperature
dependence of the shift factors . It is possible to
describe this kind of the temperature dependence of
polystyrene (PS140) melt by the WLF equation with
high accuracy . The dynamic moduli were measured in
the temperature range 150-200 C . Fin4lly, the master
curve was obtained by shifting the isotherms to the
reference temperature 170 'C.

RESULTS AND DISCUSSION

The discrete relaxation spectrum and corresponding
elastic moduli for each of these polymeric materials

M

a=
J-]
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Table 1 . Discrete relaxation spectrum for polybutadiene.

i A. 9~

1 0.032042 23833 .255732

2 0.015225 72222 .542840

3 0.004007 247429 .506713
4 0.000771 341514 .523423

Table 2 . Discrete relaxation spectrum for polystyrene

(PS140).

1 0 .965210 10 .000000

2 0 .8544.40 39436 .908400

3 0 .253750 76912 .360193

4 0 .003789 71931 .486691
5 0 .004867 86562 .856200

6 0 .000607 83747 .119628

7 0 .000072 41126 .348056

8 0.000001 25802973.719866

are given in Tables 1 and 2, respectively . We compare
the results of the present non-linear regression to the

results of other regression techniques for polybuta-

diene and polystyrene (PS140) in Table 3 . For this

purpose an appropriate criteria, average absolute

deviation (AAD) [19], is used . Also the standard

deviations 0 .8<I0"3 and 0 .9 x 10
-2

are calculated for

both these samples, respectively . It can be investigated

10~
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Figure 1 . Comparison of the experimental data and model

predictions for polybutadiene.
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Table 3. Average absolute deviation AAD* for dynamic

moduli of polybutadiene and polystyrene.

Material

	

I Method ADD (G') ADD (G')

Polybutadiene Laun 16 .6 13 .7

Winter 1 .18 1 .26

Honerkamp 0 .76 0 .94

Present study 0 .95 0 .85

Polystyrene Laun 44 .7 30 .14

Winter 3 .23 2 .71

Honerkamp 2 .16 2 .24

Present study 2 .57 1 .89
{
.)

~ ~r tG ..r G

	

1J
AAt)= M l

	

G

that comparisons of the results of this work with the

results from the other methods lead to conclusion that

the present method has a high accuracy, especially for
loss modulus . In addition, since the result of the

regression is independent of starting value sets, the

solution seems to be unique [20, 21] . Furthermore,

there is no sign of ill-posedness.
The values of N for polybutadiene and poly-

styrene (PS140) were tuned to be 4 and 8, respect-

ively . It can be seen that the results of fitting for both

polybutadiene and polystyrene are excellent . In

addition, the related discrete relaxation spectrum can

be described by the fewest possible parameters.
Figures 1 and 2 show the changes of G'(m,) and

G"(m) against frequency for both the experimental
data and the calculated values by eqns (7) and (8).

10°

	

Iol	10 ,	10 3

	

10 4

	

10 5 loft
Frequency Ms)

Figure 2 . Comparison of the experimental data and model

predictions for polystyrene (PS140) .
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CONCLUSION

In this work, based on Marquardt-Levenberg approach, a

suitable non-linear regression technique has been,
presented for the determination of the discrete relaxation

spectrum . The comparison with the other techniques has

been performed for both polybutadiene and polystyrene
materials and it has been shown that, by increasing

smoothly the Maxwell elements and with the fewest
possible parameters, the results of fitting are in very good

agreement with experimental data.
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SYMBOLS AND ABBREVIATIONS

Average absolute deviation

Linear relaxation modulus

Storage modulus
Loss modulus

Elastic modulus
Continuous relaxation-time spectrum

Number of experimental data
Number of relaxation modes

Real part of the complex number
Shear rate tensor

Strain amplitude

Relaxation time
Least-square error

Stress tensor

Frequency
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