
In this work Flory-Huggins theory has been extended to satisfy the hard sphere limit.
The resulting equations are used to correlate the solvent activity and to calculate the
polymer size parameter. Based on the extended model new equations have been

derived to predict the enthalpy and entropy of dilution of various polymer solutions with
diverse molecular weights in different solvents. The results obtained from the extended
Flory-Huggins theory are compared with those of the original theory and with the experi-
mental data. The comparisons indicate that the proposed extension improves the pre-
dictability of the theory for thermodynamic properties of polymer solutions.
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Various statistical mechanical theo-
ries of polymer solutions have been
developed during the last half a cen-
tury [1-5]. The original and one of
the best known of these theories is
Flory-Huggins theory [6,7]. Several
attempts have been made to improve

the predictive capability of Flory-
Huggins theory which most of them
have been in the direction of modify-
ing Flory-Huggins interaction
parameter (χ) by assuming that it is
dependent on concentration, molecu-
lar weights of polymer and tempera-
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ture [8]. However, in the original work of Flory-Hug-
gins the interaction parameter was assumed to be a
function of temperature only.

The works done on Flory-Huggins theory can be
classified as:

(i) those in the direction of improving the short-
comings of the theory such as correcting it for contri-
butions of enthalpic part, non-combinatorial and com-
binatorial entropic parts [9-11]; 

(ii) presenting new methods for determining the
interaction parameter (χ) [12] and increasing pre-
dictability of theory in phase separation calculations
[13-22];

(iii) attempts in presenting superior theories to
Flory-Huggins theory based on lattice model to predict
the thermodynamic properties of polymer mixtures
[23-25].

On the other hand the properties of polymers
depend on size and shape of polymer chain. It has been
reported that for a large size difference between poly-
mer and solvent, Flory-Huggins theory gives rise to
larger combinatorial entropy. The dependence of com-
binatorial entropy to size and shape of molecules has
been discussed by Hildebrand [26]. It has been shown
that in calculating entropy change for mixtures of mol-
ecules differing in shape as well as size, modifications
in the theory are required since Flory-Huggins expres-
sion for combinatorial entropy does not distinguish the
shape and the size of molecules [27, 28]. Also, the
activity coefficient is a strong function of size differ-
ence between polymer and solvent for solutions of
polymers in common solvents. The large deviation
from ideal solution behaviour is observed merely as a
consequence of differences in molecular sizes even in
the absence of any energetic effects (enthalpy of mix-
ing) [29,30]. The effect of size difference on the extra
entropy in Flory-Huggins theory has been discussed by
Chan and Dill [9]. Meroni et al. [31] have shown that
Flory-Huggins theory for the entropy of mixing is a
poor approximation and becomes worse for increasing
values of the molecular diameter ratio of polymer to
solvent. 

Flory-Huggins theory and analytical integral equa-
tion theory have been used for studying hard sphere
mixtures [32, 33]. The combination of the two theories
have been extended to athermal mixtures of hard
spheres and polymers [34]. The approach was applied

to all sphere/polymer size ratios, and polymer-polymer
segmental attractive interactions. Bjorling et al. [35]
used Flory-Huggins theory and integral equation theo-
ries to describe the equation of state and the relevant
mixing properties of hard sphere binary mixtures in the
limit of high size-asymmetry. They found that by
choosing a physical recipe for the volume fractions of
the two species in the mixture Flory-Huggins theory is
a good approximation to the entropy and the Gibbs free
energy of mixing at high size asymmetry [35]. Shimizu
et al. [36] have generalized Flory-Huggins theory of
solvation using fused hard sphere system as a reference
system in their perturbation approach.  

Therefore, it is completely clear that the application
of Flory-Huggins theory to study polymer systems is
still a source of debate [37-41] and further research
should be done to clarify various aspects of this theory.  

In the present work, by taking into account the size
ratio of polymer to solvent, attempt is made to clarify
the limitation of Flory-Huggins theory in application to
polymer-solvent mixtures. In this approach the size
ratio of polymer to solvent is represented as the ratio of
hard sphere diameters. Then by introducing the hard
sphere limit for the mixtures of hard spheres with infi-
nite size ratio as a necessary condition, Flory-Huggins
theory is improved to satisfy this limit. In what follows,
the main points of the approach used in this paper are
described.

The Extension of GE in Flory-Huggins Theory 

Tukur et al. [42] for a binary hard-sphere mixture of
infinite size ratio have presented the following limit for
excess Helmholtz free energy of the mixture:

where, ρ, NA, T, xi and σi are the mixture density, Avo-
gadro’s number, absolute temperature, mole fraction
and molecular diameter  of component i, respectively.
It has been shown that [42] the above expression is rig-
orously valid when there exists an infinite size ratio of
molecules in the binary mixtures. At low pressure the
Helmholtz free energy and Gibbs free energy can be
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approximated, (AE)T,ρ ≈ (GE)T,ρ [43], and eqn (1) can
be written for the excess Gibbs free energy, GE as:

The excess Gibbs free energy in Flory-Huggins the-
ory, GE

FH
, is in the following form [44]:

where, ϕ1 and ϕ2 are the volume fractions of solvent
and polymer, respectively, and χ

12 is the interaction
parameter and r is the segment number. The segment
number can be approximated as the ratio of molar vol-
ume of polymer (ν2) to molar volume of solvent (ν1)
and can be represented as: r = 

ν2
ν1

. Also, the following
relation represents r as the ratio of molecular diameter
of polymer (σ2) to that of solvent (σ1): 

where, No is the Avogadro’s number. 
It can be shown that Flory-Huggins excess Gibbs

function, as expressed by eqn (3), cannot satisfy the
hard sphere limit required by eqn (2):

It is obvious that the hard sphere limit of GE
FH

is in con-
trast with the non-zero limit predicted by eqn (2) and it
needs an extension to satisfy this limit. 

In the extension of Flory-Huggins excess Gibbs
function for satisfying the hard sphere limit we take the
advantage of perturbation theory approach and consid-
er GE

FH as a reference state and then add a ∆GE as a per-
turbation term for the hard-sphere limit:

where, GE
FH is given by eqn (3) and the perturbation

term ∆GE will be obtained in the following manner:
For a binary mixture of solvent (1) and polymer (2)

the hard-sphere limit of eqn (2) can be expressed in
terms of packing fraction ηi as:

where,

is the packing fraction of component i and ρ is the den-
sity of the mixture.

To include the deviation of polymer chain from
hard-sphere shape and adjust the limit represented by
eqn (7) to a real chain, the perturbation term is

introduced to the hard sphere limit and then 

the final result will be:                          

where, ε1 is the energy parameter, which is a measure
of molecular interactions and  f/RT has been included to
consider both any deviation from the hard-sphere shape
for molecules and also the effect of temperature on the
molecular interactions. This factor satisfies the require-
ment that, as T→∞ the hard-sphere limit will be
approached. It is worth noting that the factor ηixi/σj
has been introduced to take into account the effect of
packing fraction as a measure of the molecular separa-
tions.

Integrating eqn (9) for the cases where i =1 and j=2:
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and for the case  i = 2 and j = 1:

where, S ≡ σ2/σ1 and G(η2,x1) and G(η1,x2) are the
integration constants. 
By adding  eqn (10) to eqn (11) we have:

In the above equation, the integration constants
G(ηi,xj) have been represented as G(ηi)xj since the
variables ηi and xj must be separable to satisfy the
requirement that, as xj→0 the function G(ηi,xj) van-
ishes. To proceed further it is convenient to assume
that:

where, the constant C can be evaluated by ideal mixture
limit, namely for ε1 = ε2 and σ1 = σ2, GE=0 and then
GE = 0. Then from eqn (12), C can be obtained in the
following form:

From eqns (6) and (12) to (14) the final equation for GE

will be obtained as:

where, α = fε2 and E =
ε2
ε1

.
Starting with eqn (15) the expressions for the other

thermodynamic properties of polymer solution can be
derived.

The expressions for the activity of solvent, α1=
x1γ1, and activity of polymer,  α2= x2γ2, can be derived
from eqn (15) using the well known thermodynamic 

equation; , the final equations 
are:

and                                                                             

In the above equations α
1
FH and α2

FH are Flory-
Huggins solvent and polymer activities, respectively.
Using eqns (16) and (17) in the following equation for
the entropy of dilution:

for solvent (1) and polymer (2) the results will be:
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where, ∆S1
FH and ∆S2

FH are Flory-Huggins solvent and
polymer entropy of dilutions. In a similar manner, and
using:

the following expressions for the heat of dilution will
be obtained: 

where, ∆H1
FH and ∆H2

FH are, Flory-Huggins solvent
and polymer enthalpy of dilutions, respectively.  

In the next section the above equations are used to
calculate properties of various polymer solutions and
the results are compared with the calculations based on
the original Flory-Huggins relations.

CALCULATION PROCEDURE

For utilizing the proposed extension of Flory-Huggins
theory, initially we have to determine the parameters
appearing in the theory. Parameters E and σ1 are calcu-
lated using group contribution methods [45,46]. Then,
from the experimental data of activities we are able to
determine the parameters χ12, σ2 and α. 

In order to test the extended model, the experimen-
tal data for polymer/solvent solutions with various size
differences are needed. For the present study, the appli-
cation of the extended Flory-Huggins equation is inves-
tigated for seven different polymer/solvent solution
systems, for which the experimental data are already
available and also used in the calculations of thermo-
dynamic properties when the original Flory-Huggins
theory was originally proposed [44]. These systems are
polymers with different molecular weights in various
solvents. 

In the first stage, from Bondi s method of group
contribution [46] the van der Waals volume of solvent
molecules were calculated and then by considering
spherical shape for solvent molecule the parameter σ1
was calculated. The values of σ1 for various solvents
are reported in Table 1. While Bondi s method provides
a reasonable approximation by considering spherical
shape for small solvent molecules, it is not a reasonable
method for calculating σ2 for large polymer molecules.
Therefore, the parameters χ12, σ2 and α are calculated
by eqn (16) from experimental activity data using a
least square method. The values of these parameters are
reported in Table 1.

The parameter E, the ratio of energy parameters of
solvent to polymer can be expressed in terms of σ1, σ2
and the molecular weights M1 and M2 by the following
equation [47]:

where, ∆P1 and ∆P2 are obtained from structural group
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Table 1. Parameters used for the present study.

System
Group-cont method Flory-Huggins Modified  theory

Benzene + PDMS 3,850

Benzene  + PDMS 15,700

Toluene + PS 290,000

MEK + PS 290,000

Acetone + PS 15,700

Propylacetate+PS 290,000

Benzene + PIB 45,000

0.535         1.620

0.535         1.250

0.574        1.602

0.539        1.480

0.499        1.384

0.585        2.624

0.535        2.227

1.895       0.809        1.500     

3.027        0.756       1.720     

7.797        0.343       6.300     

7.732        0.725       6.800     

2.870        0.915       2.570     

7.748         0.649      6.200     

4.735        0.673       3.370     

0.426                  -36.271

0.536                  -78.789

0.114                 806.077

0.149                 693.142

0.220                  -18.426

0.397                493.637

0.399                 -63.756
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parameters of solvent and polymer, respectively. The
values of σ1 and E for seven binary mixtures of poly-
mer/solvent are reported in Table 1.

Using the experimental activity data for seven bina-
ry mixtures of polymer/solvent in eqn (3), χ12 and σ2
have been calculated for the original Flory-Huggins
theory. The same experimental data were used in eqn
(16) to calculate χ12, σ2 and α for the modified Flory-
Huggins theory. The numerical values of all the param-
eters are reported in Table 1. 

In the next stage, by using the same calculated
parameters as mentioned above, the enthalpy of dilu-
tion of the solvents for seven different polymer/solvent
solution systems and the entropy of dilutions for four

binary polymer-solvent mixtures have been calculated
by eqns (22) and (19), respectively.  

DISCUSSIONS

The results of calculations of activity for two different
systems are shown in Figure 1.  Figures 2 and 3, respec-
tively, represent the results of calculations of enthalpy
of dilutions ∆H

1
(by eqn (22)) and entropy of dilutions

∆S
1
/φ

1
2(by eqn (19)) for two binary polymer/solvent

mixtures for both the original and the modified Flory-
Huggins theory. In the same figures the experimental
data have been presented. According to Figures 2 and
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Figure 1. Solvent (1) activity a1 versus volume fraction of

polymer (2) ϕ2 for two solutions systems of [acetone (1)/

PS15,700(2)] and solution of [MEK(1)/PS290,000] at 25°C.

For the first system, the solid circles are the experimental

data [50], the dashed thick lines are the calculations based

on the Flory-Huggins theory and the solid thick lines are the

calculations based on the modified theory. For the second

system, the solid triangles are the experimental data [49], the

dashed thin lines are the calculations based on the Flory-

Huggins theory and the solid thin lines are the calculations

based on the modified theory.

Figure 2. Solvent (1)  ∆ H1 heat of dilution versus ϕ2 volume

fraction of polymer (2) for two solution systems of [ace-

tone(1) /PS15,700] at 25°C and [benzene(1)/PIB45,000(2)]

at 65°C. For the first system, the solid circles are the experi-

mental data [50], the dashed thick lines are the calculations

based on the Flory-Huggins theory and the solid thick lines

are the calculations based on the modified theory. For the

second system, the solid triangles are the experimental data

[51], the dashed thin lines are the calculations based on the

Flory-Huggins theory and the solid thin lines are the calcula-

tions based on the modified theory.
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3, the enthalpy of dilution and entropy of dilution pre-
dicted, respectively, from the original Flory-Huggins
theory are not in agreement with the experimental data
especially for high molecular weight polymers. But, for
the extended theory the calculations of enthalpy of
dilution and entropy of dilution respectively by eqns
(22) and (19) are in very good agreement with the
experimental data for both low and high molecular
weight polymers. Also, as it is seen from Figure 3, the
entropy of dilutions predicted by the original Flory-
Huggins theory, are nearly constant and independent of
the kind of polymer under consideration. 

The mean absolute errors in calculation of activity
of solvent (a1), enthalpy of dilution (∆H1) and entropy
of dilution (∆S

1
/ϕ

1
2) for various binary mixtures of

polymer/solvent are reported in Table 2. 
It is worth mentioning that the parameter χ

12
reported in Table 1, for (toluene + PS290,000) and
(MEK + PS290,000) calculated by the modified model
are much less than those of other systems. This can be
justified by the related equation derived from original
Flory-Huggins theory where, for ∆H

1
≈ 0 predicts:

χ12 ≈ 0. The reported values of size parameter σ2 in
Table 1, for the three PS 290,000 solution systems
show small differences. This may be attributed to the
differences in the experimental activity data arise from
nature of solvents interactions in these solution sys-
tems. 

According to Table 1, as it is expected, the values

of α parameter are different for different polymer/sol-
vent systems. The variation of α versus the size ratio
(σ2/σ1) of the polymer/solvent systems is shown in
Figure 4. As mentioned before, parameter was intro-
duced in eqn (15) to include the deviation of poly-
mer/solvent systems from hard sphere behaviour. As
Figure 4 shows, for the polymer/solvent mixtures
where the molecular weight of polymer is high the
large values of size ratio parameter α indicate more
pronounced deviation from hard sphere behaviour for
these mixtures. 

Overall consideration of the results reported in this
paper demonstrates the ability of the extended Flory-
Huggins theory for calculation of thermodynamic prop-
erties of polymer solution systems with appreciable
size ratio of polymer to solvent. 

It worth mentioning again that, most modifications
in Flory-Huggins theory, so far, have been focused on
improving the interaction parameter χ. In this work a
different aspect of Flory-Huggins theory was explored
and the theory was extended to satisfy the necessary
hard sphere limit. It is unfortunate that this aspect of
theory has not been investigated by other researchers
and a rigorous comparison with similar results is not
possible. However, the results of calculations in this
paper indicated that the extension of the theory, to sat-
isfy the hard sphere limit, promotes its accuracy, in pre-
dicting thermodynamic properties to an appreciative
extent. 

Table 2. Mean absolute errors (MAE)* in calculation of activity of solvent (a1), enthalpy of dilution (∆H1) and entropy of dilution

(∆S1/ϕ
1
2) for various binary mixtures of polymer/solvent.

n. a. = experimental data are not available. (1) number of experimental data for activity; (2) number of experimental data for enthalpy.

are, respectively, the experimental data and the calculated  values [ using the Flory-Huggins theory (FH) or the mod-

ified theory  (M)]. n is number of experimental data.

∑ −−=
∗ cal

E
exp

E where,,
cal

E
exp

E
n

1
MEA

System

No. of

exp.

data

Ref. of

exp.

data

Benzene + PDMS 3,850

Benzene +  PDMS 15,700

Toluene + PS 290,000

MEK + PS 290,000

Acetone + PS 15,700

Propylacetate + PS 290,000

Benzene + PIB 45,000

0.03

0.03

0.01

0.02

0.03

0.00

0.01

0.03

0.03

0.00

0.01

0.03

0.00

0.00

33

25.9

85.06

230.23

0.00

114.08

n.a.

21.3

14.8

43.72

30.06

184.01

17.91

n.a.

0.11

0.10

0.38

0.70

6.64

n.a.

n.a.

0.04

0.08

0.15

0.07

n.a.

n.a.

n.a.

10

8

12

11

8(1), 4(2)

11(1), 5(2)

9(1), 5(2)

48

48

49

49

50

50

51

FH

1
a

M

1
a

FH

1
H∆ M

1
H∆ 2

2ϕ

∆

R

FH

1
S

2
2ϕ

∆

R

M

1
S
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SYMBOLS

A : Helmholtz free energy
a : activity
E : is equal to  ε2/ε1
f :  a parameter for considering any deviation from the

hard sphere shape
G : Gibbs free energy
G(ηi,xj): integration constant
H : enthalpy of dilution
M : molecular weight
N : number of molecules
n : number of moles
R : gas constant

r : number of segments
S : entropy of dilution
s : is equal to σ2/σ1
T : absolute temperature
ν : molecular volume
x : mole fraction

Greek letters
α : is equal to fε2
ε : energy parameter
η : packing fraction
φ : volume fraction
χ : interaction parameter
ρ : density (mole/volume)
σ : molecular diameter

Subscripts
A : avogadro
hs : hard sphere
i, j : discrete component identifiers
M : mixing
P : pressure
T : absolute temperature
x : mole fraction
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Figure 3. Solvent (1) ∆S1 entropy of dilution versus ϕ2 volume

fraction of polymer (2) for two solution systems of [toluene(1)/

PS290,000(2)] and [MEK(1)/PS290,000(2)] at 25°C . For the

first system, the solid circles are the experimental data [49],

the thick lines are the calculations based on the modified the-

ory. For the second system, the solid triangles are the exper-

imental data [49], and the solid dashed lines are the calcula-

tions based on the modified theory. For both systems, the

dashed thin lines are the calculations based on the Flory-

Huggins theory.
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Figure 4. The variation of α values versus σ2/σ1 polymer/sol-

vent mixtures studied in this work.
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σ : molecular diameter

Superscript
FH: Flory-Huggins
E: excess
M: modified
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