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Cord blood is a rich source of hematopoietic stem cells and could be 
potentially used for transplantation instead of conventional sources 
of stem cells (bone marrow or peripheral blood). 
Cord blood cells are successfully used in pediatric and adult patients, 
but their major limitation is the low number of hematopoietic stem 
cells for patients of large body size. 
There are several possible solutions for this problem, including use 
of third party donor, use of multi-unit cord blood, and finally ex-vivo 
expansion of cord blood hematopoietic stem cells to accelerate 
engraftment of transplanted cells. In this article we will discuss ex-
vivo expansion from bench and clinical points of view.  
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Introduction 

Cord blood is a potential source for 
hematopoietic transplantation. The most 
important limitation of its use is the low 
number of hematopoietic stem cells (HSCs) in 
cord blood samples that might prevent a 
successful engraftment or cause delayed 
engraftment and higher morbidity and mortality 
during pancytopenic period after the 
transplantation. One of the possible theoretical 
methods to circumvent this unacceptable 
mortality rate is ex vivo expansion of 
hematopoietic cells to increase the number of 
stem cells and then use of this ex vivo 
expanded HSCs as a source of transplantation. 
 
Biology of human umbilical cord blood 
hematopoietic stem cells 
Cord blood stem cells are identified by their 
immunophenotypic and functional 
characteristics. 
Immunophenotypic characterization of cord 
blood HSCs: 
Certain immunophenotypic markers help 
define primitive cell populations, such as: 
CD34, CD38, thy-1, c-kit, HLA-DR, 
Rhodamine 123, etc. 
CD34 antigen, an integral membrane 
glycoprotein, is a defining hallmark of HSCs. It 
has been suggested that this molecule 

functions as a regulator of hematopoietic 
environment (1). In cord blood, the CD34+ cell 
content is about 1% of nucleated cells, which 
is similar to the bone marrow content of 1-3% 
(2). However, the frequency of CD34+ cells is 
much higher, up to 11%, at earlier stages of 
gestation, although this decreases with age of 
gestation (3). 
One of the most frequently used markers is 
the CD38 antigen, which is absent on the 
more primitive CD34+ cells (4). The subset of 
CD34+CD38- cells in cord blood is fourfold 
higher than in adult bone marrow (5). 
Another cell surface marker commonly used in 
immunophenotyping is HLA-DR. Primitive 
CD34+ cells in the bone marrow are DR-, 
while CD34+ cells from cord blood with similar 
functional properties express HLA-DR (6).   
The function of Thy-1 on HSCs is unknown. It 
might be involved in HSCs development by 
mediating signals inhibiting the proliferation of 
primitive cells. Baum and colleagues 
demonstrated that only CD34+ cells 
expressing the Thy-1 antigen reconstituted 
human hematopoiesis in SCID mice (7). 
The c-kit proto-oncogene encodes a 
transmembrane receptor with tyrosine kinase 
activity and is intimately involved in 
hematopoiesis (8). The ligand for this receptor 
is steel factor or SCF. The c-kit antigen is 
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expressed by 60% of CD34+ cord blood cells 
(9).  
Expression of lymphoid and myeloid 
associated antigens on umbilical cord blood 
CD34+ cells has also been documented. 
Saeland et al. found that in contrast to adult 
bone marrow in which 25% of the CD34+ cells 
express CD10 and 18% express CD19, these 
markers are rarely expressed in CD34+ cell 
population derived from cord blood (10).  
The vast majority of umbilical cord blood 
CD34+ cells (90%) co-express Flt3 (CD135). It 
is the receptor for early acting cytokine Flt3 
ligand (11).  
Several cell adhesion molecules are present 
on umbilical cord blood CD34+ cells, as is 
observed in bone marrow (BM) CD34+ cells. 
CD44 and LAM-1 adhesion receptors involved 
in the homing of hematopoietic cells have 
been found to be strongly expressed on 
umbilical cord blood CD34+ cells (10).  
Functional characterization of cord blood 
HSCs. 
Different methods are used to assay function 
of HSCs, including: colony forming cell (CFC) 
assay, long term culture – initiating cell (LTC-
IC) assay, and SCID repopulating cell (SRC) 
assay. 
Published data indicate that there are about 
13 to 2400 GM-CFC, 8000 BFU-E, and 
between 1 and 10000 CFU-GEMM per ml of 
cord blood. (12). CFC proportion is higher in 
cord blood compared to BM, and is even 
higher in cord blood samples from pre-term 
infants (13).  
Pattergell et al. compared the results of LTC-
IC in BM, cord blood, and mobilized peripheral 
blood. They showed that mononuclear cells 
(MNCs) of peripheral blood produce more 
CFCs than cord blood and BM (14). However, 
others found significantly more progenitor cells 
in LTC-IC assay and longer cell production in 
cord blood MNCs compared with BM ones 
(15).  
Vormoor et al. has reported stable human 
hematopoiesis in SCID mice transplanted with 
human cord blood cells. It has been suggested 
that the human cells capable of repopulation in 
such animals represent more primitive 
properties than LTC-ICs (16). Studies show 
that the frequency of SCID repopulating cells 
(SRCs) in cord blood is three folds higher than 
BM and six folds higher than peripheral blood 
(17).  
Immunological characterization of cord blood 
HSCs. 
There is less graft versus host disease (GVHD) 
with cord blood compared to BM 
transplantation, and we can transplant cord 
bloods with more HLA mismatches (18). 

Therefore, cord blood may generate a lower 
immunological response compared to adult 
cell transplantation. T lymphocytes and NK 
cells are the most important cells in this 
response. Cord blood T cells have significantly 
less ability than adult T cell to produce IL-2 
and express functional IL-2 receptor 
complexes. Moreover, the potential of cord 
blood cells to produce helper T cells derived 
cytokines (INFg and IL-2) is lower, presumably 
due to the presence of immature, naive T cells 
in cord blood (19). 
NK cells have been implicated in mediating 
the graft versus leukemia (GVL) effect. While 
cord blood generally manifests low NK activity 
compared to adult BM and blood, cord blood 
NK activity is readily augmented in vitro by 
cytokines such as IL-2 and IL-12, suggesting 
that cord blood NK cells should be as effective 
as adult BM or blood NK cells to mediate a 
GVL effect (20). 
 
Cell cycle status of cord blood HSCs. 
Practically, all CD34+CD38- cells in cord 
blood are in G0/G1 status (21). These cells 
would present a useful target for retroviral 
transfection, as they respond to cytokine 
stimulation and rapidly enter S phase of the 
cycle. The proportion of primitive CD34+ in 
G0/G1 decrease from 98% to 55% after 48 
hours of exposure to certain cytokines or 
unknown factors in cord blood plasma (22).  
 
Important factors in cord blood expansion 
1. Stromal cells: 
Stroma-dependent culture systems have been 
developed to study long term hematopoiesis in 
vitro. Stromal cells are a source of growth 
factors and adhesion molecules to support 
stem cells (23). Cord blood mononuclear cells 
can not form long term colonies in culture 
without supportive environment (15). Some 
murine cell lines have been found to be useful 
for stroma dependent cultures of HSCs. 
Kawada and colleagues (24) used a murine 
cell line for expansion of cord blood HSCs. 
They showed that direct adhesion of stromal 
cells to human progenitors significantly 
increased the number of CD34+CD38- cells. 
When cell lines were physically separated 
from human progenitor cells, they failed to get 
good results. It is suggested that stromal cells 
can support proliferation of HSCs by direct 
cell-cell interaction. It seems that stromal 
support improve expansion of cord blood 
hematopoietic stem cells (25).  
2. Effect of serum on cord blood expansion: 
Unknown factors present in cord blood plasma, 
probably capable of crossing the placenta, 
affect both by themselves and in the presence 
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of growth factors, hematopoietic progenitor 
cell proliferation and differentiation at all 
stages of hematopoietic development. 
Moreover, co-culturing the cord blood cells 
with mesenchymal cells may increase 
expansion and also CXCR-4 expression on ex 
vivo expanded cord blood cells (26).  
In the absence of growth factors, CFU-GM 
expansion didn’t occur in cord blood cell 
cultures supplemented with fetal calf serum or 
peripheral blood plasma (27). Broxmeyer et al. 
noted that cord blood plasma, but not fetal calf 
serum or peripheral blood plasma, increased 
both the size of secondary, replated CFU-
GEMM and the number of times that CFU-
GEMM could be replated to form colonies in 
culture containing SCF and erythropoietin 
(EPO) (28). As combining IL-1, IL-3, IL-6, IL-
11, G-CSF and GM-CSF couldn’t reproduce 
this effect, it is possible that the cord blood 
plasma effect may be attributable to a novel 
growth factor with synergy for SCF and EPO 
(28). IL-6, Flt3 ligand, and thrombopoietin 
(TPO) are the possible candidates (29). 
Although experiments showed that expansion 
could be improved using serum, but to transfer 
expansion to the clinic, good manufacturing 
practice (GMP) standards are required. 235-
fold expansion of cord blood CD34+ cells was 
obtained with a cocktail containing flt3 ligand, 
TPO, IL-6, and IL-11 at 5 weeks with serum-
free medium [30]. Flt-3 ligand, SCF, and TPO 
are considered as early acting and 
indispensable cytokines. By adding IL-3 for 
these cytokines in serum free culture, the 
amplification of CD34+ cord blood cells was 
increased 20.9 fold as opposed to 9.3 fold 
without IL-3 after 7 days (31).  
CD34+CD38- surface phenotype has been 
used to measure primitive cell numbers. One 
UK study demonstrated a lack of expression of 
CD38 on CD34+ cells in serum free cultures. 
This finding must be considered in ex-vivo 
cord blood expansion in serum free conditions, 
and CD34+CD38- phenotype should not be 
used to confirm the presence of primitive 
progenitor cells (32). 
 
3. Purification: 
Cells belonging to the stem cell compartment 
are rare, representing about 1 in 10,000 
mononuclear cells in the adult bone marrow. 
Purifying the stem cell compartment becomes 
progressively easier as markers become 
available to select these cells positively 
(CD34+Thy-1+) or negatively (CD38-DR-). 
CD34+ selected cell fraction has been used 
most frequently as the starting cell population 
for the expansion of hematopoietic progenitor 
cells. 

CD34+ selection is a time-consuming and 
expensive process, leading to approximately 
50% loss of CD34+ cells (33). In the static 
culture, the increase in total number of cord 
blood mononuclear cells is less than CD34+ 
selected sample. However the CD34+ 
proportion increases significantly in the 
mononuclear cell culture and decreases in the 
CD34+ cell culture. This, in part, compensates 
the limited increase of cell number in the 
mononuclear cell culture. [34] In addition, 
cultures initiated with mononuclear cells have 
nearly the same performance as CD34+ cells 
in perfusion cultures (35). 
 
4. Cytokines: 
I) Stimulatory Cytokines 
Hematopoietic cell proliferation and 
differentiation is regulated by stimulatory and 
inhibitory signals that are mediated by 
cytokines. Cytokines are secretory proteins 
produced by a variety of hematopoietic and 
non-hematopoietic cells. Each cytokine alone 
has modest effect on hematopoietic cell 
amplification, but they show additive or 
synergistic effect in combination with other 
growth factors (36, 37, 38, 39).  
Moreover, the effect of cytokines in a culture 
system is not only a function of their 
concentration and synergistic interaction, but 
also other factors like culture conditions (40) 
and target cells. Cord blood progenitors and/or 
their progeny can produce cytokines including 
GM-CSF and IL-3, in culture, leading to 
autocrine or paracrine stimulation of cells (41). 
Stem Cell Factor (SCF) is a potent 
hematopoietic growth factor [36] produced by 
bone marrow stromal cells and fibroblasts. It 
interacts with a variety of other growth factors 
to influence very early hematopoietic stem 
cells (36, 42). The c-kit acts as its receptor. 
Flt3-Ligand (FL) provides a significant 
amplification of both committed and early 
progenitors (43). Flt3-L has been shown to act 
directly on quiescent cells causing them to 
enter the cycle (44). In addition, it has been 
demonstrated to induce the proliferation of 
CD34+CD38- bone marrow and cord blood 
cells that are non-responsive to other early 
acting cytokines (45, 46, 47). 
 
Granulocyte-Colony Stimulating Factor (G-
CSF) and Granulocyte-Macrophage Colony 
Stimulating Factor (GM-CSF) are produced 
by a variety of cell types including fibroblasts, 
endothelial cells, macrophages, and T 
lymphocytes. G-CSF can act on primitive as 
well as later hematopoietic progenitors, 
whereas the action of GM-CSF may be 
restricted to terminally differentiating cells (48). 
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Thrombopoietin (TPO) is an early acting 
cytokine (49). TPO stimulates and supports 
survival of primitive stem cells. It also 
regulates megakaryocyte proliferation and 
differentiation (49, 50, 51, 52). The C-mpl acts 
as its receptor. 
Erythropoietin (EPO) secreted by renal 
tubular cells has limited proliferative effects; it 
modulates/stimulates survival and terminal 
maturation of erythroid progenitors. EPO also 
increases red blood cell production. 
Interleukin-3 (IL-3) is a multilineage 
stimulator with direct megakaryocyte, mast 
cell/basophil, B cell, and eosinophil stimulatory 
activity. There is some evidence that IL-3 
increases asymmetric division of the stem 
cells, leading to stem cell differentiation (53).  
There is some evidence that Interleukin-6 (IL-
6) dramatically stimulates expansion of human 
hematopoietic progenitor cells in vitro in the 
presence of SCF [54]. IL-6 is active on more 
immature hematopoietic progenitors (50). Its 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
receptor has two chains: a ligand binding 
chain (IL-6R), and a signal transducing chain 
(gp130) (54). 

Interleukin-11 (IL-11) is produced by bone 
marrow stromal cells and induces 
megakaryocyte colony forming and maturation. 
Although different combinations of cytokines 
have been used, standard expansion 
protocols have not yet been established due to 
complexity of cytokine interactions.  
Different studies have shown that maximal 
expansion of hematopoietic cells is generally 
achieved using one or more cytokines acting 
on primitive cells in combination with cytokines 
acting on less-primitive cells (53). In addition, 
the cytokines acting through separate 
signaling pathways show more synergism (i.e., 
IL-6 in combination with SCF) (54). Some of 
these combinations are presented in Table 1. 
II) Inhibitory Cytokines 
Macrophage inflammatory protein-1 alpha 
(MIP-1 alpha) is secreted by monocyte/ 
macrophage and T cells. It has been shown 
that MIP-1  prevents in vivo murine stem cells 
from entering cell cycle (62). 

Table-1: Effects of cytokines on ex vivo expansion of human stem/progenitor cells (53). 
 

Expansion time Reference Cells Culture Cytokines Duration 
TNC CFC LTC-

IC 
Piacibello 
(55)  

CD34+ 
IMDM/ 
10%FCS 

FL+TPO <30 weeks  28 millions 270000 

Dening- 
Kendall 
(56)  Cd34+ 

IMDM/ 
20%FCS 

SCF+ 
IL-3+ 
IL-6+ 
GM-CSF+ 
G-CSF 

14 days 2500 
CFU-GM: 49 
BFU-E: 1  

2.5 

Kogler 
(57)  Cd34+ Serum- Free 

FL+ SCF+ 
IL-3 

7 days 138 
CFU-GM: 264 
CFU-GEMM: 94 
BFU-E: 126 

6.7 

SCF+ IL-3 8 weeks 12000 36  Piacibello 
(50)  

CD34+ 
IMDM/ 
10%FCS SCF+ FL 12-14weeks <20000 <300  

Ohmizono 
(38)  CD34+ Serum- Free SCF+ IL-3 14 days  

BFU-E: 50 
CFU-GM: 30 
CFU-GEMM: 30 

 

Traycoff 
(58)  

CD34+ Serum- Free SCF+ IL-3 5-7 days   
Reduce
d 

Ruggieri 
(59)  CD34+ 

McCoys/ 
10%Cord 
Serum 

SCF+ IL-3 
+GM-CSF 

7 days 64 11  

Moore 
(60)  CD34+ Not stated 

SCF+ IL-3 
+IL-1 
+ EPO 

14 days 2800 600 18 

Durand 
(61)  

CD34+ Serum- Free 
SCF+ IL-3 
 

21 days 1000 5000  

SCF+ IL-3  20  

SCF+ 
G-CSF 

 10  

Migliaccio 
(42)  CD34+ 

SBA- 
Serum- Free 

SCF+EPO 

3 weeks 

 2-3  

IMDM: Iscov’s modified Dulbecco’s medium; FCS: fetal calf serum; FL: Flt3 ligand; TPO: thrombopoietin; SCF: stem cell factor; IL: 
interleukin; GM-CSF: granulocyte-macrophage colony-stimulating factor; G-CSF: granulocyte colony-stimulating factor; EPO: 
erythropoietin; TNC: total nucleated cells; CFC: colony forming cells; LTC-IC: long-term culture-initiating cells; CFU-GM: colony 
forming unit granulocyte-macrophage; BFU-E: burst-forming unit Erythroid; CFU-GEMM: colony forming unit granulocyte-erythroid-
macrophage-megakaryocyte. 
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Some studies showed that MIP-1  
suppressed the growth of immature 
hematopoietic progenitors. Nevertheless, 
recent studies suggest that it has also a 
stimulatory effect on proliferation of more 
mature hematopoietic progenitors (63, 64, 65, 
66). MIP-1  may have a role in maintaining the 
long-term culture initiating cells (LTC-IC) (67). 
There is also some evidence that MIP-1  
inhibits bone marrow granulocyte-
macrophage-colony forming cells (GM-CFC), 
while stimulating GM-CFC from cord blood 
CD34+ cells over the same dose range (68, 54, 
93). 
Transforming growth factor-beta (TGF-beta) 
is secreted by most cell types and affects most 
cell types. The major biological effect of TGF-
beta on hematopoietic cell growth is the 

reversible inhibition of entry into the cell cycle 
(69). Many studies have shown the inhibitory 
activities of TGF-beta on hematopoiesis (70, 
73), but recent evidence supports that TGF-
beta can have both inhibitory and stimulatory 
effects, depending on the differentiation state 
of the target cell and other cytokines 

interacting with the cell (71, 74). There is also 
some evidence that the inhibitory effect of 
FCS and human serum on progenitor cell 
proliferation is caused by TGF-beta (71, 72). 
Leukemia inhibitory factor (LIF) is a 
glycoprotein affecting a wide spectrum of cells 
(75). LIF prevents differentiation commitment 

of normal embryonic stem cells (75, 76). In 
human, it stimulates IL-3-dependent growth of 
primitive HSCs (77, 78). LIF induces in vitro 
proliferation of primitive HSCs and appears to 
be required for the survival of HSCs in vivo 
(79).  
Since using a combination of just stimulatory 
cytokines leads to production of more mature 
cells rather than primitive stem cells, it seems 
that an ideal combination of cytokines should 
include both stimulatory and inhibitory 
cytokines. 
 
Bioreactor systems 
Recently, alternative culture techniques such 
as bioreactor systems have been developed to 
maintain growth factors and other required 
elements such as oxygen as well as waste 
products in constant and characteristic 
concentrations. This stirred culture system is 
particularly required when large-scale 
expansion culture is planned, especially for 
clinical purposes. By providing a closed 
system, this method protects the culture 
medium from infectious agents, which always 
threaten the conventional cultures especially 
during refeeding and other manipulations. 
Some studies have reported significant 

improvement in cord blood expansion in 
bioreactor perfusion culture system, compared 
with static cultures (80, 81, 82).  
 
Cord blood cryopreservation and expansion 
The use of cord blood for transplantation 
would be much facilitated by banking of cord 
blood samples. Since cryopreservation 
remains the method of choice for long-term 
preservation of progenitor/stem cells, cord 
blood cryopreservation has become an 
important issue in banking and transplantation. 
It seems that the most suitable 
cryopreservation techniques used for cord 
blood samples are almost similar to those of 
bone marrow or peripheral blood progenitor/ 
stem cell cryopreservation (83, 84). 
Although several studies have shown that 
cryopreservation does not significantly reduce 
expansion potential (85), colonogenicity, and 
immunophenotypic properties of cord blood 
progenitor/ stem cells, most of these studies 
have focused on quantitative measurements 
and they have not assessed the quality of 
recovered progenitor/ stem cells after 
cryopreservation (86).  
Rice et al. found that cryopreservation of ex-
vivo expanded cord blood cells doesn’t 
deteriorate engraftment measures in NOD-
SCID mouse model (87). This study raises the 
question whether expansion of cord blood 
cells should be done prior to or after 
cryopreservation to obtain the best clinical 
results.  
 
Clinical studies of transplantation by ex-vivo 
expanded cord blood cells 
Animal models demonstrate that engraftment 
of ex vivo expanded cord blood cells is 
possible, but it is delayed (88). Recent data 
demonstrated that ex vivo expanded cord 
blood cells may be useful in transplantation in 
adults. These expanded cells resulted in faster 
neutrophil engraftment (89, 90, 91, 92). 
Theoretically, transplantation of ex vivo 
expanded cord blood cells at the same time of 
non-expanded cord blood cells from the same 
donor could increase the number of 
immediately available progenitor cells 
responsible for short term engraftment. 
Kogler et al. showed that expansion of 1/8 of 
sibling cord blood in the presence of G-CSF, 
TPO, and flt3-L and then simultaneous 
transplantation of a high risk leukemic patient 
using both expanded and non-expanded cells 
resulted in rapid and durable neutrophil 
engraftment (91). Pecora et al. evaluated the 
effect of supplementing unrelated umbilical 
cord blood with ex vivo expanded umbilical 
cord blood cells from the same donor in two 
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older adult patients with high risk CML and no 
alternative donor (92). They used a clinical 
grade perfusion system (Aastrom Replicell) 
and observed that ex vivo expanded cells 
facilitate hematopoietic recovery.  
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