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Abstract
Currently, numerous papers are published reporting analysis of biological data at different omics levels by making statistical 
inferences. Of note, many studies, as those published in this Journal, report association of gene(s) at the genomic and 
transcriptomic levels by undertaking appropriate statistical tests. For instance, genotype, allele or haplotype frequencies at 
the genomic level or normalized expression levels at the transcriptomic level are compared between the case and control 
groups using the Chi-square/Fisher’s exact test or independent (i.e. two-sampled) t-test respectively, with this culminating into 
a single numeric, namely the P value (or the degree of the false positive rate), which is used to make or break the outcome of 
the association test. This approach has flaws but nevertheless remains a standard and convenient approach in association 
studies. However, what becomes a critical issue is that the same cut-off is used when ‘multiple’ tests are undertaken on the 
same case-control (or any pairwise) comparison. Here, in brevity, we present what the P value represents, and why and when 
it should be adjusted. We also show, with worked examples, how to adjust P values for multiple testing in the R environment 
for statistical computing (http://www.R-project.org).
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Biological data is currently being generated on 
a massive scale, which has resulted not only in an 
avalanche of raw data, but has also led to the testing 
of multiple hypotheses. To test these hypotheses, 
inferential statistics is applied to relevant sample 
datasets, leading to further biological insights and 
possible discoveries. Essentially, hypothesis testing is 
a statistical method which computes the probability of 
the strength of evidence based on the sampled data for 
or against the null (i.e. no difference or no change) 
hypothesis, which is culminated in a single numeric, 
namely the P value. Here, we discuss P values, but 
more importantly, with a focus on association studies, 
discuss why, when and how they should be adjusted. 
We hope that this short guide results in more accurate 
reporting of P values and the respective inferences. 

What is a P value?
When you want to statistically infer whether a result 

is significant, you quantify the probability of that 
result occurring by pure random chance given the null 
hypothesis. A historical and intuitive cut-off to reject 
the null hypothesis (thus a meaningful non-random 
event) is 0.05 (1). Accordingly, if the probability of 
testing the null hypothesis of equality of the mean of 
normalized expression levels of gene X in the case 
and control groups (µ1, µ2)  is <0.05, one would say 
(absolutely arbitrarily) that it is their eureka moment 
by shrugging off (reject) the null hypothesis (µ1=µ2), 
and embracing (accept) the alternative hypothesis 
(µ1≠µ2). However, what we are actually quantifying is 

the probability of observing data as or more extreme 
than what we have observed given the null hypothesis 
is true (2-4). Meanwhile, it should be noted that in 
statistical hypothesis testing, we should not only 
report the P value, but to also include power of test, 
confidence intervals and effect size (5-8).

P value issues

There is a matter of considerable controversy 
surrounding the position of P value in scientific inference 
and this has become even more heightened by the 
emergence of big data analysis, which mainly revolves 
around its misunderstanding and misuse (9, 10). The 
first flaw is that the 0.05 cut-off is completely arbitrary 
and merely a convention. This, therefore, indicates that 
this value is not necessarily appropriate for all variables 
and for all research settings. For instance, in disease 
association studies, a more stringent cut-off of 0.01 is 
recommended to be applied. Moreover, two common 
biases further affect the integrity of research findings, 
namely selective reporting and P-hacking (7). In brief, 
selective reporting addresses the bias of substantially 
under-reported negative results (i.e. non-significant P 
values). This bias is apparent in the skewed distribution 
of reported results toward  positive findings (11). In 
contrast, P-hacking describes the biased selection of 
data to signify non-significant results when this  is 
desirable. Although this is technically true, it is a far 
more unrepresented form of direct data manipulation 
(12). 
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The multiple testing issue

Assuming that all the flaws mentioned are addressed, 
the last but the most important issue that remains in P 
value quantification is when multiple testing occurs, 
but what constitutes multiplicity? Imagine a scenario 
where the expression of twenty genes at the transcript 
level have been compared between a fixed set of cases 
and controls or, at the genomic level, genotype/allele 
frequencies of twenty single nucleotide polymorphisms 
(SNPs) have been compared. By pure chance, 
assuming independence of tests, one would expect, 
on average, one in twenty of transcripts or SNPs to 
appear significant at the 5% level. This is because the 
‘probability’ of a false positive in this scenario is now 
inflated and clearly requires adjusting the original 
single test significance level of 0.05. In other words, 
the probability of observing a false positive (i.e. type 
I error) generated by all tests undertaken should not 
exceed the 5% level (2). This issue has become ever 
more apparent after the emergence of omics science, 
in which large number of independent variables are 
tested simultaneously and computing the fraction of 
true positives is crucial (5). As a simple calculation, 
suppose the probability of a type I error in a single test 
is αsingle=5×10-2. The probability of not observing a type 
I error in a single test is then psingle=1-α=1-5×10-2=0.95. 
Accordingly, the probability of not observing a type 
I error in multiple (e.g. 20) tests is pmultiple=(1-α)m=(1-
5×10-2)20≈3.6e-01  and thus αmultiple=1-(1-α)m  ≈ 0.64, 
therefore showing the substantial increase in type 
I error after multiple testing. If the number of tests 
increases dramatically, the inflated type I error rate 
(αmultiple) would reach 1. For instance, αmultiple= 0.9941 
if α=0.05 and m=100.

So how one ought to correct this inflation of the 
false positive rate? The first solution is to control type 
I error by minimising the significance threshold (i.e. 
calculating α’). Say the probability of a type I error in 
a single test is the standard αsingle=α´. The probability 
of  not  observing a type I error in a single test is then 
psingle=1-α´. For  independent tests, this probability 
would be pmultiple=(1-α´)m. Next, the probability of  
type I error for multiple tests is αmultiple=1-(1-α´)m. 
Rearrangment of the equation leads to the approximated 
Bonferroni correction for multiple testing α´≈ α/m. 
Following the same scenario, the α´ for each of the 
twenty tests would be 0.05/20=2.5×10-3. By applying 
the same rule, when 1,000,000 SNPs are tested in a 
genome-wide association study (GWAS)  αˊ would be  
5×10-8 and when expression dysregulation is examined 
for 20,000 genes on a whole-transcriptome microarray,  
αˊ would be 2.5×10-6.

How to adjust P values?

Here we provide worked examples for the two 

most commonly used methods without in-depth 
mathematical detail and formulae. This approach is 
analytically more convenient compared with the first 
method, in which, after setting an adjusted threshold, 
raw P values have to be checked against α′ one at a 
time. The function used here is p.adjust from the stats 
package in R. Imagine you have tested the level of 
gene dysregulation between two groups (e.g. cases 
and controls) for ten genes at the transcript level 
and below is the vector of raw P values obtained 
by implementing the independent t test (assuming 
normality of expression data). 

P_value <- c(0.0001, 0.001, 0.006, 0.03, 0.095, 0.117, 
0.234, 0.552, 0.751, 0.985).

Bonferroni
The simplest way to adjust your P values is to use 

the conservative Bonferroni correction method which 
multiplies the raw P values by the number of tests m 
(i.e. length of the vector P_values). Using the p.adjust 
function and the ‘method’ argument set to "bonferroni", 
we get a vector of same length but with adjusted P 
values. This adjustment approach corrects according 
to the family-wise error rate of at least one false 
positive (FamilywiseErrorRate (FWER)=Probability 
(FalsePositive ≥1)).

p.adjust (P_values, method="bonferroni")
##  [1] 0.001 0.010 0.060 0.300 0.950 1.000 1.000 1.000 

1.000 1.000

The results show that only two out of ten genes remain 
significantly dysregulated. Had we not undertaken this 
multiple testing correction, we would have reported 
significant dysregulation for another two genes. This 
correction method is the most conservative of all and 
due to its strict filtering, potentially increases the false 
negative rate (5) which simply means rejecting true 
positives among false positives.

Benjamini and Hochberg

A philosophically different and more powerful 
adjustment method is that proposed by Benjamini and 
Hochberg (13). This method, rather than controlling 
the false positive rate (a.k.a FWER) as in the 
Bonferroni method, controls the false discovery rate 
(FalseDiscoveryRate (FDR)=Expected (FalsePositive/
(FalsePositive+TruePositive))). In other words, FDR 
is the expected proportion of false positives among 
all positives which rejected the null hypothesis 
and not among all the tests undertaken. In the FDR 
method, P values are ranked in an ascending array 
and multiplied by m/k where k is the position of a 
P value in the sorted vector and m is the number of 
independent tests.
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p.adjust (P_values, method="fdr")
##  [1] 0.001  0.005  0.02  0.075  0.19  0.195
##  [7] 0.334 0.690  0.834  0.985

A quick comparison of the results show that FDR 
identifies one more dysregulated gene compared with the 
Bonferroni method. This third gene (corrected P=0.02) 
is what would be called a false negative as it shows no 
significance when the conservative Bonferroni method is 
used but remains significant under FDR.

To better compare these two multiple testing correction 
methods, a large array of random P values (n=500) were 
adjusted (Fig.1). The frequency distributions show that 
the Bonferroni method dramatically reduces the number 
of significant P values and substantially increases large 
(close or equal to 1) P values. However, the FDR method 
retains more significant P values while increasing non-
significant P values with a peak at around P=0.8. This 
is consistent with a higher correlation between raw 

and FDR-adjusted P values than any other pairwise 
combination. Although a number of different multiple 
testing correction methods exists (for instance see 
p.adjust documentation in R or permutation-based 
correction methods), the most preferable approach is 
controlling FDR as it not only reduces false positives, 
but also minimises false negatives. 

The take home message is that it does not matter 
whether you are interested in identifying a significant 
association with SNPs, differentially expressed 
genes (DEG) or enriched gene ontology (GO) terms, 
the moment you conduct multiple tests on the same 
samples or gene sets respectively, it would be essential 
to address the multiple testing issue by adjusting the 
overall false positive rate through calculating  α´ or 
adjusting your raw P values (as shown here based on 
Bonferroni or FDR) for true positives to be teased 
out. This will in no doubt enhance reliability and 
reproducibility of research findings.

Fig.1: Comparison of the two multiple testing adjustment methods in a matrix plot. The distribution of 500 random P values before and after adjustment 
is represented on the diagonal. The upper and lower triangles show the pairwise correlation coefficients and scatter plot between raw and adjusted P 
values respectively.
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