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ABSTRACT: This article deals with the issues associated with developing a new design 
methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination 
of multiple neural networks is selected and used to model a nonlinear multi-input multi-output 
(MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based 
on this model is then developed. The proposed scheme has been tested on a model of an 18-plate 
multi-component distillation column. The algorithm provides excellent disturbance rejection for this 
process.
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INTRODUCTION
In recent years, many papers and applications of MPC 

have appeared in the open literature. MPC has been 
successfully applied in chemical process industries. The 
MPC algorithm has many attractive features such as dead 
time compensation, multi-variable control and handling 
of system constraints.

The MPC algorithm optimizes the process outputs 
over some finite future time interval known as the 
prediction horizon P. At the current time step, the future 
outputs are predicted using a dynamic model of the 
process. This model is used to compute the present and 
future M (M ≤ P) control actions (control horizon), 
which minimize a user-specified performance index.

After the M-th time step, it is assumed that the control 
action is constant. Only the first of the resulting optimal 
inputs is implemented on the process. This entire process 
is repeated at each time step.
The choice of model representation is an important 

issue in MPC. A linear MPC system utilizes a simple 
transfer function model to represent the process. In 
practice, most of the systems encountered in chemical 
engineering have sever nonlinear dynamics. However, 
controllers based on a linear approximation of the process 
are only effective in a limited range around the nominal 
operating conditions. In a nonlinear MPC, a nonlinear 
dynamic model is used. Such models are accurate over a
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broad range of operating conditions. Therefore, a 
nonlinear MPC allows processes to be run over a larger 
operating range without controller retuning.
A number of nonlinear modeling techniques have 

been proposed in the literature [1-2]. Recently, neural 
networks are utilized to provide viable process models 
[3-6]. This is due to their ability to approximate virtually 
any arbitrary mapping between a known input and output 
space. In this study, a nonlinear MPC strategy based on 
artificial neural networks is presented for the control of a 
chemical plant.
A single neural network (NN) model may be used to 

predict the process outputs. However, this model may not 
be able to extract all relevant information from the data 
set and the prediction error increases.  In order to 
maximize accuracy on future predictions in this work, a 
combination of multiple neural networks is employed to 
model the system.
The organization of this paper is as follows. First, the 

methodology for combining the neural networks is 
presented. Second, an MPC optimization algorithm 
employing the proposed model is described. Lastly, the 
performance of the proposed model is demonstrated 
through application to a chemical process example. In 
this study, a model of a multi-component distillation 
column is studied to illustrate the technique discussed 
here. Using a full-order rigorous model with tray-by-tray 
calculations, the column is simulated. This process 
contains interaction among the variables and is nonlinear.

MULTIPLE   NEURAL   NETWORKS
A combination of multiple neural networks is used to 

model a 3-input 2-output nonlinear dynamic system.  As 
shown in Fig. 1, the proposed system consists of a two-
dimensional array of neural network blocks. Each block 
consists of a one-step-ahead predictive neural model, 
NNj, which is identified to represent each output yj of the 
MIMO system. Therefore, each block represents a 
multiple-input single-output (MISO) subsection of the 
whole MIMO system.  All blocks in the j-th row utilize 
the same model as NNj.  These models are employed to 
predict the future outputs of the output yj over the 
prediction horizon of P time steps.

The neural models are multi-layer feed-forward 
neural networks containing one hidden layer.  The hidden 
layer contains 10 neurons.  The activation function used 
for   the   neurons   in  the  hidden layer   is  a  Hyperbolic 

Tangent function.  A linear activation function is used for 
the single output node of each network. Fig. 2 shows the 
details of a typical NN block used in this system. As 
shown in this figure, past and current samples of each 
process input ui, and past and current output samples of 
the process output yj are used as inputs to the network.

At time k, the input vector to  the block  NNj( in) is 
defined as:

),d-3-i(ku[1)-i(kI 1jn1nj +=+                             (1)

),d-1-i(ku),d-2-i(ku 1jn11jn1 ++

),d-2-i(k u),d-3-i(ku 2jn22jn2 ++

),d-3-i(ku),d-1-i(ku 3jn32jn2 ++

),d-1-i(ku),d-2-i(ku 3jn33jn3 ++

,1)]-i(kyp2),-i(kyp3),-i(kyp T
njnjnj +++

Where ypj = yj is the j-th measured output of the plant, 
dij is the time delay between the i-th input and j-th output 
and T is the transpose operator. The future outputs in this 
vector are supplied by the preceding blocks.
A correction term dj is added to the model output ymj

to obtain the predicted output   ypj. The correction term dj
accounts for the difference between the measured plant 
output and the model output.  Each predicted disturbance 
dj(k +  in) for any future time k + in  is assumed to be 
equal to the present dj(k).
At time k, the  in-th predicted output vector    is given 

by:
...),1)-i(kI(NN[)i(kyp n11n +=+                             (2)

T
nNNnjj )]1)-i(kI(),...NN1)-i(kI(NN ++  

Where NNj is the j-th output neural network mapping, 
and yp(k+in) = [yp1(k+in),… ypj(k+in),… ypN(k+in)]T.
The back propagation learning algorithm is employed 

in this paper. At the beginning of the learning the step 
size η is set to a small value. During learning period the 
step size is adaptively changed to speed up convergence 
and to prevent the errors bouncing around the minimum. 
The error criterion is the sum of the squared differences 
between the actual outputs of the output nodes of the 
network and the desired outputs over all examples. The 
network training is stopped when the error stops 
decreasing or even starts to rise on an independent test set 
[9]. The errors for the one-step-ahead predictors 
described above are found to be less than 0.001. Training 
iterations are less than 1500.
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Fig. 1: Two-dimensional array of neural network blocks

Fig. 2: A typical NN block
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An attempt was made to identify and use a large 
one-step-ahead predictor for the MIMO process at each 
prediction step. However, finding such a large model 
required further training time and effort. In addition, it 
was not possible to complete the training to a reasonably 
small error. The errors for the one-step-ahead MIMO 
predictors are found to be greater than 0.5. Training 
iterations are greater than 10000.
Similar results were obtained by using a large P-step-

ahead predictor for theMIMOprocess. These observations 
may be explained as follows:

(a) The input vector to the MIMO model must contain 
all the measured outputs, whereas the input vector to the 
MISO model includes only one measured output.

(b) As shown in equations (1) and (2), each output of 
the network is related to an input vector. Each input 
vector generally consists of a distinctive set of pure lags 
between the network inputs and the output. Therefore, it 
is not possible to factorize the time lags in a single-step-
ahead MIMO predictor. Consequently, we need to employ 
a long chain of past input samples in the input vector.  
This largely increases the network weights.  Furthermore, 
the network attempts to approximate the underlying high-
order dynamic relationships associated with pure lags. In 
addition, some of the input samples in this chain are not 
required to predict certain outputs. For example, if an 
output has a pure time delay of five sampling times with 
respect to an input, the current value of this input together 
with its past four input samples are not needed to 
determine the underlying relationship, as defined by 
equations (1) and (2), between the output and input.

Therefore, due to the reduced input and output data 
dimensionalities in the MISO model and reasonably low-
order tight correlations between its inputs and the single 
output, the resulting model is more accurate. As a result, 
a combination of MISO models outperforms a single 
MIMO model.

NONLINEAR   OPTIMIZATION
At time k, the task of the nonlinear optimizer is to 

calculate the present and future control actions which 
minimize the performance index: 

∑ ∑
= +=

+=
N

1j
n

P

d1i
j -)i(k yp[E

ijn

                                  (3)

,2/)]i(k yd 2
nj +

Where { yp j(k + in  ), in =  1+dij ,…, P} and { ydj(k + in  ), 
in = 1+dij ,…, P } are the predicted and desired trajectories, 
respectively of the j-th controlled variable.
At the current time, the i-th present and future 

manipulated inputs {ui(k - dij + in-1 ), in = dij +1,… dij +M;  
dij +M ≤ P}  are calculated repeatedly as:

( )( ) ( )( ) ( )( ),ku/Ekuku ioldinewi ′∂∂×−′=′ η                 (4)

Where k’ is defined as k’ = k - dij + in-1, and η is the 
step size of the steepest descent method.
According to equation (3), the gradients of the 

objective function with respect to the manipulated 
variables can be obtained as:

×+−+=′∂∂ ∑ ∑
= +=

N

1j

P

d1i
njnji

ijn

)]ik(yd)ik(yp[)K(u/E  (5)

)].'k(u/)ik(yp[ inj ∂+∂

It can be shown that the partial differential of the 
output ypj of the NN employed in this work with respect 
to its i-th input ui can be given by:

∑
=

×=∂∂
H

1i
h2ij

h

)i,j(u/yp ω                                            (6)

,)i,i(]))i(O1[ h1
2

hhid ω×−

Where ω1 and ω2 are connection weights in the first 
and second layers, respectively, Ohid(ih )  is the output of 
the ih-th neuron in the hidden layer, and H is the number 
of neurons in the hidden layer.
Equation (5) is computed by the partial differential 

chain operations applied to the multiple neural network 
system.

PROCESS DESCRIPTION AND THE RIGOROUS 
DYNAMIC  MODEL
The process studied is a modified version of the 

multi-component  distillation  column  described in [7]. 
The column has eighteen plates with a plate efficiency of 
0.5. This makes it equivalent to a column consisting of 
nine equilibrium stages plus a bottom stage.  The vapor 
feed to the column will enter below the fourth stage and it 
consists of a mixture of three components. The properties 
of these three components are given in [7]. A liquid side-
stream will leave from the fifth stage. The system has a 
partial condenser plus a reflux drum at the top and a re-
boiler at the bottom.
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The column was controlled by a decentralized system 
employing single-loop controllers. The liquid level in the 
re-boiler is maintained by varying the bottom product 
flow rate. The control loops at the top were modified as 
follows. The reflux flow is controlled by a flow 
controller.  A level controller maintains the liquid level in 
the reflux drum by manipulating the cooling water to the 
overhead condenser. The entire liquid distillate was fed 
back to the column as reflux. By using this control 
configuration, the flow rate of the liquid distillate was 
made equal to the reflux flow rate. In order to implement 
this control scheme, the algorithm for the partial 
condenser was modified. The partial condenser described 
in the above reference assumed either a specific heat 
flux or a condensate temperature, whereas the newly-
developed algorithm assumes a precise output condensate 
flow rate. The condensate rate was chosen to be equal to 
the reflux rate at each sampling time.

In addition, the column dynamic simulation routines 
presented in the above reference were modified, and they 
were coded using the Microsoft Visual C++ programming 
environment. The distillation column simulation reflected 
the nonlinear characteristics and interactive feature of a 
real process.

The control loops described so far is required for 
stable operation of the column. To achieve composition 
control, the MIMO control scheme developed in this 
study is used. The controlled process variables are the 
temperatures T2 and T9 on stages 2 and 9 respectively 
(counting from the bottom). Using the column simulator 
discussed in this section, it is found that the tray 
temperature T9 gives a good indication of heavy 
component loss out of the top of the tower.  In addition, 
the temperature changes in T2 are substantially large 
when the bottom product purity varies.

The steady state values of T2 (T2s) and T9 (T9s) are 
105.73 oC and 79.07 oC respectively. The manipulated 
variables employed are the reflux flow (L) and the steam 
valve stem position (V). The steady state values of L (Ls) 
and V (Vs) are 13 moles/min and 70% respectively. 
Changes in the feed flow rate (F) are employed as 
uncontrolled disturbances which tend to drive the 
controlled variables away from their set points. These 
changes are considered to be ‘measured’, that is, their 
effect is fed forward in control calculations. The steady 
state value of F (Fs) is 25 moles/min.

PROCESS   NONLINEARITIES
Open-loop temperature responses to step changes in 

the feed flow (∆F) are shown in Figs. 3-6. In Figs. 3, 4, 5 
and 6 the step sizes are ±5% and ±10%, ±15% and ±20% 
of the steady-state value, respectively. From these 
figures, it can be seen that the temperature responses to 
equal positive and negative changes in the feed flow are 
not symmetrical.

The new steady-state values of the tray temperatures 
in Figures 3-6 are summarized in table 1. In addition, in 
this table ∆T1 and ∆T2 are deviations of the tray 
temperatures from their corresponding initial operating 
points.  Note that the tabulated values in the ninth column 
of this table indicate that ∆T2 experiences a sign change 
as the magnitude of the step change is altered from 
–10% to –15% of the steady-state value.

Therefore, the system exhibits dynamic and static 
nonlinear behavior in the region of operation.

MODELING   BY   PROCESS   IDENTIFICATION
Linear model of the multi-component distillation 
column

Three dynamic response experiments were carried out 
in open loop to generate data for constructing the linear 
dynamic model of the multi-component distillation 
column. The experiments consisted of manipulating a 
single input at a time. The other inputs were set at a level 
indicated by the process condition.

In developing a linear model, one of the inputs was 
superimposed by a PRBS signal while the other two 
inputs were kept constant at their steady-state operating 
conditions. The PRBS sequence length was chosen to be 
256 and the pulses had a duration time of 0.5 minutes. 
Values of inputs and control outputs would be recorded at 
discrete times. Deviations from the corresponding inputs 
and outputs steady-state values were used as the 
identification data to develop the model. In this work, the 
linear model was determined by extracting the step 
response data of the plant using the system identification 
toolbox of the MATLAB software.

Neural model of the multi-component distillation 
column

In a multi-component distillation column, the 
controlled variables have steady-state nonlinear 
relationships with the manipulated and disturbance inputs. 
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Table 1: The new steady-state values of the tray temperatures

∆F T2 T9 ∆T2 ∆T9 ∆F T2 T9 ∆T2 ∆T9

0 105.73 79.07 0 0 0 105.73 79.07 0 0

5 105.33 81.07 -0.4 2 -5 106.10 76.78 0.37 -2.3

10 104.98 82.73 -0.75 3.66 -10 106.1 74.52 0.37 -4.55

15 104.69 84.11 -1.04 5.04 -15 105.16 73.16 -0.58 -5.91

20 104.45 85.27 -1.28 6.20 -20 103.22 72.63 -2.51 -6.44

Fig.  3: Open-loop temperature responses to ±±±± 5% step changes in the feed flow

Fig. 4: Open-loop temperature responses to ±±±± 10% step changes in the feed flow
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Table 2: Performance-index values of the controllers based on the linear and neural models of the column

M ISE(LM) ISE(NM) IAE(LM) IAE(NM) ITAE(LM) ITAE(NM)

4 5.0277 0.0263 12.2937 1.6779 600.7990 55.5436

3 5.1106 0.0328 12.3240 2.0356 600.9236 69.8976

2 5.3433 0.1996 12.9279 3.5162 639.6471 124.4246

1 11.4757 2.1960 25.2308 17.6019 1035.6478 629.7830

Fig. 5: Open-loop temperature responses to ±±±± 15% step changes in the feed flow

Fig. 6: Open-loop temperature responses to ±±±± 20% step changes in the feed flow

0 20 40 60 80 100
104.6

104.8

105

105.2

105.4

105.6

105.8

106

106.2

106.4

T2
(C

els
ius

)

Time(min)

pos. step
neg. step

0 20 40 60 80 100
72

74

76

78

80

82

84

86

T9
(C

els
ius

)

Time(min)

T
2 
(C

el
si
us
)

0 20 40 60 80 100
103

103.5

104

104.5

105

105.5

106

106.5

T2
(C

els
ius

)

Time(min)

pos. step
neg. step

0 20 40 60 80 100
72

74

76

78

80

82

84

86

T9
(C

els
ius

)

Time(min)
0           20         40           60           80         100

Time (min)

0            20          40          60           80         100

Time (min)

106.5

106

105.5

105

104.5

104

103.5

103

86

84

82

80

78

76

74

72

T
9(
C
el
si
us
)

pos. step
neg. step

T
2 
(C

el
si
us
)

0           20          40          60           80        100

Time (min)

0           20          40          60           80        100

Time (min)

106.4

106.2

106

105.8

105.6

105.4

105.2

105

104.8

104.6

pos. step
neg. step

86

84

82

80

78

76

74

72

T
9(
C
el
si
us
)

T
2(
C
el
si
us
)

Archive of SID

www.SID.ir



Vol. 23, No.2, 2004Jazayeri-Rad, H.Iran. J. Chem. & Chem. Eng.

20

In addition, the column exhibits a nonlinear dynamic 
behavior.

If an excitation signal is applied at the operating point 
of the plant to extract its system dynamic and static 
characteristics, the results are not representative of the 
static and dynamic characteristics of the process over the 
entire range of the input variations. Due to the process 
nonlinearities, these results will be different if other 
operating conditions or different magnitudes of the 
excitation signal are implemented.

To capture the process nonlinearities, the tests were 
run over a wide range of operating conditions, i.e. 
different reflux flow rate (L), vapor flow rate (V) and the 
feed flow rate (F). The training was carried out around 
five samples of operating points on each of the intervals 
[(Ls-22.3%), (Ls+22.3%)], [(Vs-15.2%), (Vs+15.2%)] 
and [(Fs-20%), (Fs+20%)], for the variables L, V and F 
respectively.

At each operating point, a PRBS signal was used   to 
persistently excite each input of the process.  The PRBS 
sequence length was chosen to be 255 for the two 
manipulated variables L, V and F. The PRBS switching 
time was chosen to be 0.5 minutes. To avoid actuator 
restrictions, the magnitude of the PRBS at each input is 
set equally to its corresponding input amplitude span 
divided by 10.

RESULTS
MPC using the linear model of the column
Using the step-response data generated in the former 

section, a predictive controller is designed for the plant. 
This controller is based on the unconstrained form of the 
MIMO dynamic matrix control (DMC) law. Details of 
the derivation of this control algorithm are available in 
the literature [8].
The controller based on the linear model of the 

column was applied to the plant. The distillation column 
was then subjected to changes in the feed flow rate (DF) 
using the multi-level signal as shown in Figs. 7 and 8. 
These changes take place within the interval of –20% to 
+20% of the operating feed flow rate.  The magnitude of 
the quantum jump (step size) between one level and the 
next is equal to 5% of the steady-state value.
In Figs. 7 and 8, measured disturbances in the feed 

flow (DF), the controlled outputs (DT9 and DT2) and the 
profiles of the manipulated variables (DL and DV) are 

shown. Each input or output value in these figures is 
shown using the deviation from its corresponding 
initial operating point (e.g. DL = L-Ls). For control 
calculations, P is fixed at four and the value of M is 
varied from 1 to 4. Profiles corresponding to M = 2 and 
M = 3 are not shown.
The control quality is evaluated by computing the 

performance criteria for different values of the control 
horizon M. All the three optimization criteria: ITAE, IAE 
and ISE are tried. The second, fourth and sixth columns 
of table 2 contain the values of the performance indices 
for the MPC systems based on the linear model (LM) 
of the plant. Referring to these values, one can see 
that the controller with the value of M = 4 has a superior 
performance. However, in real control, high value 
of M can yield more dynamic actions and stability 
problems can arise. Therefore, a lower value must be 
chosen for M.

MPC using the neural model of the column
The optimizer developed in the corresponding section 

was applied to control the column. The model role in the 
nonlinear MPC algorithm was satisfied by the multiple 
neural network model described in the related section. At 
the same time, the first principle model developed in 
associated section performs the column simulator role.
A similar sequence of changes in the feed flow rate as 

in the preceding section was made. The results are shown 
in Figs. 9 and 10. Each controlled output profile in Figs. 7
and 8 is compared to its corresponding profile in Figs. 9 
and 10. The consequential assessment reveals that the 
MPC using the neural model rejects the disturbance much 
better than does the MPC using the linear model.
The third, fifth and seventh columns of Table 2 

contain the values of the performance indices for the 
MPC systems based on the neural model (NM) of the 
plant.  A comparison of the corresponding performance-
index values in each row of this table shows that the 
response obtained with the MPC algorithm using the 
neural model is superior to that obtained using the linear 
model.

CONCLUSIONS
This paper deals with a predictive control strategy 

employing a multiple neural network model of the 
process.   The  multi-step  MPC   optimization   algorithm
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Fig. 7: Profiles of the controlled outputs (DT9 and DT2) and manipulated inputs (DL and DV) for regulatory control
using MPC (P=4 and M=4) with a linear model of the column after measured disturbances in the feed flow rate (DF)

Fig. 8: Same as Fig. 7, but M=1
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Fig. 9: Profiles of the controlled outputs (DT9 and DT2) and manipulated inputs (DL and DV) for regulatory control
using MPC (P=4 and M=4) with a neural model of the column after measured disturbances in the feed flow rate (DF)

Fig. 10: Same as Figure 9, but M=1
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derived in this paper provides excellent regulatory 
performance, as demonstrated for the multi-component 
distillation column. Simulation results demonstrate the 
ability of the proposed strategy to outperform the MPC 
algorithms based on the linear model of the plant.
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