
Iran. J. Chem. & Chem. Eng. Vol. 24, No. 1, 2005

Mixed Qualitative/Quantitative Dynamic Simulation of 
Processing Systems

Yadegar, Shadi and Pishvaie, Mahmoud Reza*+

Department of Chemical & Petroleum Engineering, Sharif University of Technology,
 P.O. Box 11365-9465, Tehran,I.R.IRAN

ABSTRACT: In this article the methodology proposed by Li and Wang for mixed qualitative and 
quantitative modeling and simulation of temporal behavior of processing unit is reexamined and 
extended to more complex case. The main issue of their approach considers the multivariate 
statistics of principal component analysis (PCA), along with clustered fuzzy digraphs and 
reasoning. The PCA and fuzzy clustering provide tools to categorize the quantitative dynamic 
trends, describing the temporal behavior of joint human-process interactions qualitatively, and 
through the proposed neuro-fuzzy reasoning the system responses can be obtained when the system 
is exposed to uncertain disturbances. First, the method is applied to a continuous stirred tank 
reactor – CSTR and then to a distillation column to demonstrate the accuracy level and capability 
of the approach to handle more complex processes.

KEY WORDS: Qualitative/Quantitative simulation, Digraphs, Principal Component Analysis -
PCA, Fuzzy c-means clustering.

INTRODUCTION
Process modeling and computer simulation have 

proved to be extremely successful engineering tools for 
the design and optimization of physicochemical, and 
biological processes.  The use of simulation has expanded 
rapidly during the past three decades because of the 
availability of high-speed computers. In the chemical 
process industry, large, realistic nonlinear problems are 
now routinely being solved via computer simulation.  The 
tremendous impact of simulation on the chemical process 
industry is due to the following benefits derived; 
1) Economic desirability, simulation rather than pilot 
construction and operation. 2) Investigating the effects 

of system parameters and disturbances upon operation. 
3) A reasonable way of extrapolating performance and 
process scale-up. 4) Understanding the significant process 
behavior and mechanisms.

There have been two main approaches of imple-
mentation to simulation; qualitative and quantitative. In 
qualitative simulation, the system variables are related in 
terms of differential algebraic equations - DAEs. In 
qualitative simulation, the relationships among various 
quantities are expressed in terms of qualitative connec-
tions, by use of graph as such. But, such a description 
doesn’t contain as much information as a quantitative 
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Fig. 1: Quantitative and qualitative modeling of dynamical systems.

analysis. Therefore it would be a challenge to combine 
qualitative and quantitative simulation to benefit the 
advantages of both methods simultaneously.

Iri et al. [1] first introduced the use of a graph 
theory based on Signed Directed Graph (SDG), the 
so-called digraph method to carry out failure diagnosis 
of chemical processes. Umeda et al. [2] extended it to 
handle qualitative dynamic simulation. Oyeleye and 
Kramer [3] extended the SDG to include certain 
non-physical feed forward paths that explain inverse and 
compensatory responses. Gujima et al. [4] improved 
the accuracy in diagnosis and Mohindra and Clark 
[5] developed a distributed fault diagnosis system. Based 
on these extensions, Li and Wang [6] and also Yu 
and Lee [7] introduced the fuzzy membership function 
into the branches so that qualitative and quantitative 
reasoning can be combined. Han et al. [8] used the fuzzy 
concept to quantify the input data of SDG but the 
reasoning is still similar to SDG. The method has been 
considerably improved but still suffers of the following 
problems: (a) the value space (-, 0, +) is still 
insufficiently precise for many reasoning tasks in process 
engineering; ( b) tasks need to be classified into several 
categories: such as fault diagnosis, operational 
supervision and simulation of behavior. The above 
studies have been concerned with fault diagnosis but 
complications    arise    in   the   last   two   cases  because

ambiguous solution results.
The main approach of this article is based on the 

paper series presented by Wang and Li [6, 14, 16] , 
especially the reference [6], by which the first case study 
(CSTR) has been adopted as a functional prototype and 
motivating example.

The article concerned with the approach of dynamical
system modeling, including both quantitatively and 
qualitatively simulation along with appropriate tools. The 
reasoning mechanism using quantitative information has 
been further explained. The last two sections followed 
by a discussion argument examine two case studies to 
demonstrate the applicability of hybrid simulation 
approach.

DYNAMICAL  SYSTEM  MODELING
The modeling problem can be rather generally 

formulated as follows; for a given dynamical system S 
and a given set of questions about the behavior B of S, 
find a representation M that helps to answer the given 
questions. Then, M is called the model of S. This general 
formulation shows that the model used to solve a given 
problem has to be adapted to the questions to be 
answered. Therefore, there is no unique model but there 
are many different models Mi of a given system S. In a 
broad classification, quantitative and qualitative models 
have to be distinguished (Fig. 1) [9].
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Quantitative modeling
In many engineering fields the modeling of a 

dynamical system means to find a set of differential or 
difference equations that precisely describe the system 

output y(k) for given input u(k) and initial state 0x . Such 

difference models have the form

0x)0(x,))1k(u),1k(x(f)k(x =−−=                          (1) 

))k(u),k(x(g)k(y =                                                       (2) 

Where nx ℜ∈ denotes the system states, mu ℜ∈ the 

inputs and ry ℜ∈ the outputs. This model is the so-called 

quantitative model of the system. All pairs ))k(u),k(x(

that satisfy equations (1) and (2) for given 0x  can 

describe the behavior B.
The reasons why such models dominate in engineering 

problems, are manifold:
- Quantitative models make it possible to precisely 

predict the future behavior of the system.
- Quantitative models are compact representations 

where a single differential or difference equation may 
describe the performance of the system for a large set of 

input functions u and initial states 0x .
- Quantitative models are parameterized, i.e., they can 

be adjusted to different systems of a given class by 
simply changing the parameter values.

However, the application of such models for solving a 
given problem presupposes that the model together with 

the parameter values, the quantitative initial state 0x  and 

input )(ku  are known, and that it is really a part of the 
problem to precisely predict the behavior of the system.

Qualitative modeling
There is many reasons why precise quantitative models 

are not a suitable representation of a given system:
- If the system is incompletely known, no precise 

quantitative model can be set up.
- If the inputs to the system or the initial states can be 

measured only roughly, the quantitative model cannot be 
used for prediction or simulation.

- If the system behavior should not be precisely 
predicted but a qualitative assessment of the behavior 
subject to a given set of input functions or initial states 

has to be found, the quantitative model is not the most 
suitable representation of the system.

On the other hand qualitative simulation is attractive 
because:

- It can express incomplete knowledge, and hence 
handle systems that are not completely known.

- It provides general solutions for classes of system, 
rather than the numerical solutions of a particular case.

- One particular qualitative model can be used to 
describe a large range of operating conditions.

Qualitative models contain important structural 
information about the process static’s and which can be 
utilized in the early stages of modeling. At the same time 
qualitative models can be refined by accumulating data 
and operational experience to obtain conventional 
mathematical models in the limit.  Similar to other types 
of models, qualitative models can serve as a basis for 
qualitative simulation, prediction and model-based 
control.  In addition qualitative models can be interpreted 
as a time dependent set of logical functions (i.e rules) 
which is always consistent, complete and can be a subject 
of different reasoning process.  These general properties 
make qualitative models a promising tool for representing 
process knowledge in expert systems. There are 
commonly used ways to describe incomplete knowledge 
about values, such as probability theory, fuzzy sets, etc, 
but in qualitative modeling, intervals are almost 
exclusively used for this purpose. 

A typical situation where qualitative modeling has to 
be applied is shown in Fig. 2. The system under 
consideration can be controlled merely through a block 
called injection. The input to the system is given by a 
sequence of discrete events (U, T), where U is the name 
of the event and T the time instant, or by the quantitative 
value [ )(ku ]. The injection block maps this event series 

to some input function )(ku .The output )(ky is not 

precisely known, but merely a quantized information is 
available, which may be a sequence of events (Y, T) or a 
sequence of quantized outputs [ )(ky ]. The qualitative 

behaviour [B] is described by pairs of input and output 
sequences [(U, T), (Y, T)] or ([ )(ku ], [ )(ky ]).

There are many engineering problems that refer to a 
qualitative assessment of the behavior rather than to the 
quantitatively precise behavior, as illustrated by the 
following problems taken from process control:
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Fig. 2: Motivation for qualitative modeling.

- Process supervision: The task is to decide whether 
the system performance is within prescribed tolerance 
bands or not.

- Process diagnosis: It has to be decided whether some 
faults occur within the system.

- Supervisory control: Discrete control actions have to 
be found by using a qualitative assessment of the current 
operating conditions in order to avoid safety-critical 
operation points and to satisfy given control aims.

Mixed qualitative and quantitative modeling
In this article, the methodology proposed by Li and 

Wang [6], for simulating the dynamic behavior of 
process, both qualitatively and quantitatively in a hybrid 
or mixed manner has been used. There are two critical 
issues in the proposed method.  The first is how to 
categorically capture the feature of a dynamic transient.  
The second issue is concerned with devising a rigorous 
rather than ad hoc reasoning mechanism in such a 
digraph, particularly when there are interacting and
recycle nodes.  Then it will be extended to include 
qualitative information.  This is achieved through the 
introduction of the method of fuzzy c-means clustering 
for grouping node values.

Researches in various fields have modeled cause and 
effect relationship among process variables using directed 
graphs (digraphs). Digraph models are particularly 
appealing because they provide a pictorial representation 
of the interactions among the important process variables.  
The nodes in the digraph correspond to the process 
variables and the arcs show the causal relationship 

between them.  In the signed directed graph or SDG, each 
arc is marked by a sign indicating the direction of change 
of the target variable relative to the source variable. More 
complex digraphs add other information to the arcs, 
such as the gain and response time for the changes in the 
target variables.  Causal models based on digraphs are 
easy to understand, can be developed from empirical 
relationships or fundamental principles, and can be 
analyzed using the rich store of computational methods 
and theoretical results available from graph theory.

Li and Wang have used the SDG to demonstrate the 
causal and temporal behavior of system qualitatively [6]. 
The inclusion of interacting and recycle relationships for 
more complex systems through SDG nodes provides the 
designer to formulate deeper knowledge embedded in 
process more deliberately. The interacting and recycle 
relationships can be the result of closed control loops, 
process recycles and inherently related interacting causal 
relationship such as the temperatures of the hot and cold 
streams of a heat exchanger.

In the following two mathematical issues that will be 
used later are reviewed briefly.

Principal Component Analysis - PCA
Principal components analysis is a quantitatively 

rigorous method for achieving the simplification of 
visualizing multi-dimensionality. The central idea is to 
reduce the dimensionality of a data set consisting of a 
large number of interrelated variables, while retaining as 
much as possible of the variation present in the data set. 
The method generates a new set of variables, called 
principal components. Each principal component is a 
linear combination of the original variables. All the 
principal components are orthogonal to each other so 
there is no redundant information. The principal 
components as a whole form an orthogonal basis for the 
space of the data. This multivariate statistics concept can 
be handled easily by MATLAB software package.

Fuzzy Clustering
Clustering of numerical data forms the basis of 

many classification/recognition and system modeling 
algorithms. The purpose of clustering is to identify 
natural groupings of data from a large data set to produce 
a concise representation of a system’s behavior. Fuzzy c-
means (FCM) is a data clustering technique wherein each 
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data point belongs to a cluster to some degree that is 
specified by a membership grade. This technique was 
originally introduced by Bezdek [10] as an improvement 
on earlier clustering methods. It provides a method 
of how to group data points that populate some 
multidimensional space into a specific number of 
different clusters. It starts with an initial guess for the 
cluster centers, which are intended to mark the mean 
location of each cluster. The initial guess for these cluster 
centers is most likely incorrect. Additionally, FCM
assigns every data point a membership grade for each 
cluster. By iteratively updating the cluster centers and the 
membership grades for each data point, FCM iteratively 
moves the cluster centers to the “right” location within a 
data set. This iteration is based on minimizing an 
objective function that represents the distance from any 
given data point to a cluster center weighted by that data 
point’s membership grade. The output of FCM command 
line function is a list of cluster centers and several 
membership grades for each data point. The Fuzzy 
Toolbox of  MATLAB has several m_function and visual 
utilities to handle the FCM approach delibrately.

Reasoning mechanisms
Having described the method for the categorical 

characterization of the temporal trends of variables in a 
windowed time scale, using PCA and fuzzy clustering, it 
is now appropriate to develop the reasoning mechanism. 
The central idea is based on if-then rules, describing 
causal effect and consequences of variables on each other 
qualitatively.

For digraph containing no interacting nodes, there are 
three basic connections, that is, serial, convergent, and 
divergent.  Now, assume that the three variables X1, X2

and X3 of a simple process have established a serial 
connection or relationship, as X1 → X2 and X2 → X3, 
meaning that the change in value of X1 has a direct effect 
on X2 values and changes X3 indirectly through the 
correlation of X2 and X3.  Further, suppose that we have 
an experimental data case set which says (after fuzzy 
clustering) when X1 varies in its domain of variation, 
nominated as cluster or case AX1 , the variables X2 and X3

vary in their domains, clustered by CX2 and AX3. Note 
that the domains or clusters of CX2 and AX3 have been 
presumably recognized from other experimental data sets. 
The qualitative reasoning  rules that we learn  from  these

two serial relationships may be declared as following:

If       X1 = AX1          Then          X2 = CX2

If       X2 = CX2           Then          X3 = AX3

For convergent and divergent connections, we act 
similarly.

If the value of a node, namely due to operator’s 
intervention or a fault, is fixed externally, it became an 
independent node. An independent node will not be 
affected by its precedent nodes, but will still influence its 
succeeding nodes.

The difficulty with dealing with interacting nodes was 
first encountered in the work of Iri et al [2] when a 
control loop had to be considered when applying SDG to 
fault diagnosis.  Like Iri et al [2], later developments 
adopted ad hoc methods for dealing with interacting 
nodes, which are often based on some assumptions.  They 
are specifically designed for fault diagnosis and adopt a 
hypothesis – test strategy.  The difficulty with the 
previous works in dealing with interacting nodes was also 
the result of their inability to describe node values more 
accurately than simply +, -, and 0. An interesting and also 
more reasonable approach was developed by Mo et al 
[11] and Lee et al [12], who treat all the nodes related to a 
single control loop as a cluster.  The Li and Wang’s 
method of dealing with interacting as well as recycle 
node is similar to the approach of these authors, though 
their approach [6] is not restricted, and node values are 
not in the form of +, - and 0. However, when a node (or 
nodes) is a dependent node, they consider all its 
interacting and recycle nodes as a single, but when 
considering the effect of a cluster of interacting nodes on 
other nodes, they do not treat the interacting nodes as a 
single node.

It is clear that, unlike earlier works on SDG, the 
causal relationship between two nodes or two node 
clusters is not simply positive or negative.  It is a 
mapping of two spaces of the categorical values of the 
two variables. Therefore, the method works independently 
of the complex relationship between the two nodes 
or variables (or node clusters) linked by a branch.  There 
is no compromise on the complexity of the relationship
 in devising the reasoning mechanism. In contrast, in 
all versions of SDG, the relationships between two nodes 
were simply + (increase), - (decrease) or 0 (no change); 
representing positive, negative, or no influential relation-
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ship.  Consequently, the reasoning rules are derived based 
on the signs of the connections.  This is clearly an over-
simplified treatment. Such a simplified treatment of causal 
variables not only is not accurate but also may lead to 
difficulties in reasoning.  For example, suppose a variable 
X3 has two and only two incoming connections from X1

and X2, both with + signs.  When X1 is increasing while 
X2 is decreasing, it will not be possible to predict whether 
X3 will increase, decrease, or remain unchanged.  
Although there have been several efforts at combating 
such ambiguity, the methods are far from rigorous.

In the next section, we treat the sequel and steps of 
proposed method through two case studies.

Case Study I- Non-isothermal continuous stirred tank 
chemical reactor (CSTR)

To illustrate the approach more clearly, we 
reintroduce the case study of CSTR examined by Li and 
Wang [6]. It should be noted that the results we obtained 
have some discrepancies with their results. It may be due 
to the different noise level introduced and unrecorded 
data, different assumptions and even the simulator, which 
has been used.

A non-isothermal continuous stirred- tank chemical 
reactor (CSTR) is shown in Fig. 3. 

A single reaction A → B takes place in the reactor.  
Detailed description and parameter values can be found 
in the book by Marlin and therefore are not described 
here [13]. The method is applied to the case study in the 
following procedures:

Step 1
A dynamic simulator was developed for the CSTR, 

which has included three controllers as show in Fig 3.  To 
generate a data set or data case, run the simulator at 
steady state and introduce a disturbance or fault and at the 
same time start to record the dynamic responses.  Fifty-
five data sets were generated, using the simulation runs 
summarized in Table 1. 

For each data set, the nine variables shown in Table 1
were recorded, including Fi , Ci , Tci , Fc , TR , Co , and L. 
In each data set, each variable was recorded as a dynamic 
trend consisting of 80 sampling points. Therefore, for 
each variable the data size is a matrix 55 (the number of 
data sets) × 80 (the number of data points representing a 
dynamic trend).

Step 2
PCA is applied to such a matrix of each variable. 

Table 2 gives the Eigen values of the first two PCs for 
each variable and shows that the first two PCs can 
capture most at the information. As stated earlier, there 
are some differences in PCs values in comparison with 
the results obtained by Li and Wang [6].  However, we 
can use only two principal components to replace the 
dynamic trends.

Consider Fi, plotting the first two principal components 
gives three clusters, that is, A, B, and C. Similarly, for the 
variable L, the dynamic trends are also grouped into three 
clusters, D, E, F, in the PC1 – PC2 plane.

Rules can be easily generated for this simple case,

If            Fi=A          Then               L=D

If            Fi=B          Then               L=E 

If            Fi=C          Then               L=F  

In cases where the first two PCs are not able to 
capture most of the variance, more PCs need to be 
included in clustering the trends.  For this purpose, fuzzy 
c-means clustering can be also used, as will be described 
in the next case study.  Even in such cases, the two –
dimensional PC1 – PC2 plot can still be used as a display 
tool because of its visual effect. The current use of PCA 
is clearly different from previous works.  In previous 
works, PCA was almost inevitably used to process data 
involving a number of variables, and the purpose was to 
eliminate dependencies between variables.  But in this 
study, it is used as a tool to categorically characterizing 
dynamic trends of individual variables [6].

Step 3
Then we use the fuzzy c-means clustering approach 

for automatic fuzzy grouping of the data points in the 
PC1 – PC2 plane. Given the number of clusters and an 
estimation of the cluster centers, that is, the pairs of 
values on the PC1 and PC2 axes, the fuzzy c-means 
approach will automatically find the true cluster centers, 
and for each cluster, calculate the distance of each data 
case to the center.  All the PC1 – PC2 clusters have been 
processed using the fuzzy c-means algorithm. It is found 
that the method is very tolerant of the initial center 
approximations and can generally find the center in 3 to 
10 steps.

A key issue in developing a PCA model  is  to  choose
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TC

FC

Cooling 
Water

Feed

Product

LC

Table 1: The data sets used in CSTR reactor.

Data sets data detail

1-10 All control loops at AUTO and S.P of TR = 400ºK      Change Fi (m3/min)

11-15 All control loops at AUTO and S.P of TR = 400ºK      Change Ti (ºK)

16-20 All control loops at AUTO and S.P of TR = 400ºK      Change Ci (Kmol/m3)

21-30 All control loops at AUTO and S.P of TR = 400ºK      Change Tc,i (ºK)

31-35 All control loops at AUTO and S.P of TR = 390ºK      Change Fi (m3/min)

36-40 All control loops at AUTO and S.P of TR = 370ºK      Change Ti (ºK)

41-50 All control loops at AUTO and S.P of TR = 370ºK      Change Fi (m3/min)

51-60
All control loops at AUTO and S.P of TR = 370ºK
Change the output of   the CSTR level controller (%)

61-70 All control loops at AUTO and S.P of TR = 370ºK     Change the output of TR controller (%)

71-85 Disturbance occurred in Fi , Ci , Tc.i

Variables PC-1 Variance captured
PC-1    +    PC-2 

iF 95.5 97.0

iT 97.3 98.7

iC 96.8 98.6

icT , 97.5 98.9

cF 92.1 94.2

RT 92.6 94.4

oF 92.2 95.5

L 95.6 99.2

oC 90.2 95.2

Table 2: Variance captured by the first two PCs.
Fig. 3: Schematic representation of a controlled CSTR 
(case study I).
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the adequate number of PCs to represent the system in 
an optimal way.  If fewer PCs are selected than required, 
a poor model will be obtained and an incomplete 
represents action of the process results.  On the contrary, 
if more PCs than necessary are selected, the model 
will be over-parameterized and will include noise.  
Different approaches had been proposed in the past to 
select the optimal number of PCs; Akaike information 
criterion (AIC), minimum description length (MDL), 
imbedded error function IEF, cumulative percent 
variance (CPV), screen test on residual percent variance 
(RPV), average Eigen value (AE), parallel analyses 
(PA), autocorrelation (AC) and variance of the 
reconstruction error (VRE) [14]. In the original study [6], 
a simple rule has been used, which states that the number 
of PCs chosen should represent more than 90% of the 
variance. Once PCA analysis and fuzzy   c-means 
clustering were applied, the next step is to design the 
CSTR’s digraph.

Step 4
The digraph for the CSTR reactor should be 

intuitively drawn, concerning the interacting and recycle 
nodes or relationships. It has four independent nodes 
Fi, Ci , Ti and Tc,i and  two  dependent  nodes clusters
L ↔ Fo and Co ↔ TR ↔ Fc.

Step 5
To illustrate the reasoning procedure in a fuzzy 

clustered diagraph, we describe a typical relationship.  
Nodes L and Fo interact because of the existence of the 
level controller.  The PC1 – PC2 planes for Fi , L and Fo

indicate that each variable takes three categorical values.  
With the fuzzy quantification of node values, a causal 
rule between node Fi and the node clusters of L and Fo

should be in the form of:

If                               Fi = (A, or B, or C, 
iFµ )

Then                         L = (D, or E, or F, Lµ )

And                           Fo = (A, or B, or C, 
oFµ )

Thus, the digraph establishment is continued to 
generate the reasoning rules, which are summarized in 
Table 3. Separate rules are generating for the two 
dependent  node  clusters  L ↔ Fo   and Co ↔ TR ↔  Fc.

Step 6
Neural network implementation of fuzzy systems has 

been proposed as possible approaches for fuzzy system 
designs. The resulting systems, which are sometimes, 
called neurofuzzy or neural network based fuzzy system 
will posses the advantage of both types of systems and 
overcome the difficulties of each type of system.

The fuzzy neural network discussed in the original 
study [6] is a hybrid system that functions as a fuzzy 
system that the processing mechanism is realized by a 
neural network.  Thus, the capability of learning imposed 
upon a fuzzy system can be achieved by the learning 
algorithm of a neural network.  In principle, a fuzzy 
neural network is a fuzzy system implemented within the 
framework of neural networks so as to achieve the 
capability of learning using input – output data that will 
lead to improvement of fuzzy rules and fuzzy system 
intelligence. Therefore the authors [6] have used a fuzzy 
neural network to learn the fuzzy membership values. 
The first impression of the method seems to be the way of 
describing the causal relationships between two nodes. In 
essence, this does not necessarily imply a deficiency of 
the current method, because in application of either SDG 
for fault diagnosis or the current fuzzy clustered digraph 
for temporal behavior modeling, we are only interested in 
the links and values of nodes, not in the signs of links. 
The signs on the links in an SDG are only used to 
facilitate the reasoning. This is similar to Bayesian 
network in which the branches only mean a link between 
two nodes.

The relationship is represented by the perception of 
Fig. 4, which is trained using the error feedback 
algorithm adapted from feedforward neural network. 
Fig. 5 shows the comparison results of rigorous 
quantitative  simulation  and  qualitative / quantitative 
simulation mentioned above for the CSTR reactor.

Case Study II- Multicomponent Distillation Column
In the above sections the fuzzy clustered digraph 

approach has been illustrated using a CSTR case study.
In this section we apply the approach to a more 

complicated case study, a ternary equilibrium column of 
five stages including a partial condenser and a reboiler. 
Detailed description and parameter values can be found 
in the associated reference [15] and therefore are not 
described here. The system is shown schematically in 
Fig 6.  The  modeling   of   column   is  accomplished   by 
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   If                         Then

Rules Generated for the Dependent Node Cluster L ↔ oF .

iF L oF
Rule1                 A             D                 A

Rule 2                B              E                B

Rule 3                C              F                C

Rules generated for the
Dependent Node Cluster  Co↔  TR ↔ Fw .

         Fi     Ti    Ci    Tc,i    Fo   L    Co   TR    Fc

Rule 4    A        A        B         B          A       D       A         A       A

Rule 5     B       A        B         B          B       E       B         B        B

Rule 6     C       A        A         B          C       F       A         A        A

Rule 7     C       A         C        B          C        F      C         C       B

                                                               OR          C         D       B

Rule 8   C       A         B        A         C         F       C        A       A

Rule 9     C       A         B         B         C        F       D         E       C

Rule 10   C       B         B         B          C        F      D         E       A

Rule 11   C       B         B         B          C        F      D         E       A

Table 3. Rules generated for the CSTR reactor. Fig. 4: The learning procedure.

Fig. 5: The comparison of two simulation methodologies (rigorous or pure quantitative and qualitative/quantitative).
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Fig. 6: Multicomponent distillation column.

individual analysis of each stage and then the lumping 
together of all stages for an overall and simultaneous 
solution.  These solution equations are integrated 
with respect to time for the dynamic response of the 
system. To apply the approach on this case study a 
database of 70 sets was obtained by carrying out various 
tests on the simulator.  Most of data sets correspond to
various operations, which are regarded as abnormal or 
under significant disturbances. The rest are considered as 
normal operations.  Each data set consists of 26 variables 
and each variable represent a dynamic trend consisting of 
21 sampling points.  Henceforth, the size of the data to be 
analyzed is 70×26 × 21.

Early discussion has indicated that in same cases with 
two PCs it is not possible to capture most of the feature of 
a dynamic trend.  To further demonstrate this, we apply 
PCA analysis to temporal trends of column’s variables.

The dynamic trends of some variables are shown in 
Fig. 7.  Only those variables that will later appear on the 
column’s digraph are shown.

Fig. 8 shows the variance captured by principal 
components for some variables. In this case the first two 
PCs are not able to capture most of the variance, thus 
more PCs need to be included in clustering the trends. 
Fig. 9 shows the PCs plane, when three PCs are 
considered, fuzzy c-means clustering can automatically 
identify the centers of clusters.

The digraph for the multicomponent distillation 
column of Fig. 6 is given in Fig. 10. There are five 
independent nodes: R (reflux), zfeed, Ffeed, Tfeed, Qreboiler

and three dependent clusters: L1 ↔ V1, L2 ↔ V2,L4 ↔ 
V4 ↔ L5.

The digraph (Fig. 10) is combined with Fig. 9 to 
generate the reasoning rules.  Separate rules are generated 
for the dependent node clusters, which are summarized 
below. 

Rules generated for the dependent node cluster 
(Ll↔Vl):
If                             R = (A, or B, or C, Rµ )

Then                          Ll = (A, or B, or C, 
1Lµ )

And                        Vl = (A, or B, or C, 
1Vµ )

Rules generated for the dependent node cluster 
( 2L ↔ 2V ):  If        feedF = (A, or B, or C, 

feedFµ )  

         And         feedz
= (A, or B, or C, feedzµ  )

        And          feedT = (A, or B, or C, 
feedTµ )   

        And          1L = (A, or B, or C, 
1Lµ )   

Then             2L  = (A, or B, or C, 
2Lµ )

  And         2V = (A, or B, or C, 
2Vµ )   

Rules generated for the cluster ( 4L ↔ 4V ↔ 5L )                  

If                    feedF = (A, or B, or C, 
feedFµ )

           And         feedz = (A, or B, or C, 
feedzµ )

  And          feedT = (A, or B, or C, 
feedTµ )   

          And         reboilerQ = (A, or B, or C, 
reboilerQµ )   

Then                     4L  = (A, or B, or C, 
4Lµ )

     And                  4V = (A, or B, or C, 
4Vµ )  

        And               5L = (A, or B, or C, 
5Lµ )    

And other connections will be as follows:
 If 1L = (A , or B , or C , 

1Lµ )       

    And         1V = (A , or B , or C , 
1Vµ )                        

   And           2V = (A , or B , or C , 
2Vµ )               

 Then                1,bx  = (A, or B, 
1,bxµ )       

       And            1,tx = (A, or B, 
1,txµ )       

And also:      If       L4 = (A, or B, or C, 
4Lµ  )
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Fig. 7: Dynamic trends of distillation column.
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Fig. 8: Variance captured by the principal component for six 
variables

      And      4V = (A, or B, or C, 
4Vµ )                        

     And       5L = (A, or B, or C, 
5Lµ )               

Then   5,bx =(A, or B ,
5,bxµ )   And   5,tx =(A, or B,

5,txµ )  

Fuzzy neural networks are used to learn these fuzzy 
rules. And results are depicted in Fig.  11 in which pure 
quantitative (rigorous) method is compared with 
proposed hybrid method.

CONCLUSION

Many real systems may be high-order and/or time-
varying and/or non-linear to the extent that conventional 
modeling and analysis techniques can no longer 
be applied. The use of qualitative reasoning can avoid 
complex mathematical operations, and can be employed
to overcome some of the difficulties. Engineers are 
used to solve problems on different level of abstraction. 
It is, therefore, an interesting challenge to investigate 
ways for combining qualitative models. In this study 
fuzzy clustered digraph approach, proposed by Li and 
Wang [6] is applied to more complex case. The method 
is able to not only capture temporal behavior of a variable 
using principal component analysis, but also modeling 
process as a causal digraph with interacting and 
recycle nodes. A critical step in the approach is how to 
categorically capture the feature of a dynamic transient. 
For this purpose, an approach using principal analysis 
as proposed  by Li and Wang [6] was used. The 
advantage of PCA qualitative representation of dynamic 
trends is that it allows one to describe a trend with 
only one simple categorical value.  The digraph method 
is also more advantageous than other methods, such 
as decision trees, because the latter doesn’t allow 
interacting and recycle nodes and therefore it is an 
oversimplified representation. The introduction of fuzzy 
c-means also allows qualitative and more accurate 
description of temporal behavior of variable and 
their dynamic causal relationships. The approach 
was examined on a CSTR reactor and applied to a 
distillation column. It is found that the approach is 
capable of giving acceptable results compared with just 
qualitative method,  even in complex cases.  
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Fig. 9: PC1-PC2-PC3 plots of column variables.
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Fig. 10: Digraph of distillation column.

Fig. 11: Quantitative method is compared with proposed hybrid method.

R L1 V1

V2L2

xb,1 

xt,1 

 
Xb,5 

 
xt,5 

 
L4

V4

L5

zfeed

Tfeed

Ffeed

Qreboiler

66

0 0.2 0.4 0.6 0.8 1
Time

0 0.2 0.4 0.6 0.8 1
Time

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time

Time

Time

0.4

0.2

0

X
T

5

1

0.5

5

X
T

1

1

0.5

0

X
B

1

0.4

0.2

0

X
B

5

3

2.5

2

1.5

V
C

O
N

5

4

3

L
C

O
N

Quantitave & Qualitative sim
Quantitave sim

0.5

5

Archive of SID

www.SID.ir



Vol. 24, No. 1, 2005Mixed Qualitative / Quantitative …Iran. J. Chem. & Chem. Eng.

��

Nomenclature
A                                                  Representative fuzzy set 
B                    Dynamical behavior symbol, representative
            Fuzzyset, distillation column bottom product flow
                                                                    Rate (lbmol/hr)
C                                                   Representative fuzzy set
Ci                      Concentration of component A in the inlet
                                                       Feed stream, (kmol/m3)
Co                Concentration of component A in the product
                                  stream leaving the CSTR, (kmol/m3)
D, D                    Representative fuzzy set, vapor distillate
                                                            flow rate, (lbmol/hr)
E                                                   Representative fuzzy set
F                                                   Representative fuzzy set
F                    Cooling-water flow rate of CSTR, (m3/min)
Ffeed                              Flow rate of feed to the distillation
                                                              column, (lbmol/hr)
Fi                             Feed flow rate to the CSTR, (m3/min)
F                   Product stream flow rate of CSTR, (m3/min)
f           General notation of function
g                                             General notation of function
L                                          Liquid level in the CSTR, (m)
Li      Liquid flow rate of feed from stage i (lbmol/hr)
m   Dimension of input vector space, as superscript
Ma                                              Dynamical model symbol
n             Dimension of state vector space, as superscript
r           Dimension of output vector space, as superscript
S                                                Dynamical system symbol
T,T                                        Sampling time, time instance
Tc,i                                 Inlet temperature of cooling water
Tfeed                             Temperature of the inlet feed to the

           Distillation column (ºF)
Ti           Temperature of inlet feed to the CSTR (ºK),
                                temperature of the distillation column

i-th stage (ºF)
Tr                                 Temperature of reaction mixture in
                                                                     the CSTR (ºK)
U                                                  Dynamical event symbol
U(k)                                 Input vector value at instance k
Vi    Vapor flow rate of feed from stage i (lbmol/hr)
X, X, xi                                       General notation of states
xo                                                            Initial state vector
x(k)                                    State vector value at instance k
xb,i         Liquid mole fraction of benzene, stage i
xt,i   Liquid mole fraction of toluene, stage i
Y                        Dynamical consequence (output) symbol
Y(k)                     Output vector value at instance k

zfeed                         Toluene concentration (mole-fraction)
                           of feed to the distillation column

µ i                       Membership function value of variable i
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