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ABSTRACT: The biologists now face with the masses of high dimensional datasets generated from 
various high-throughput technologies, which are outputs of complex inter-connected biological 
networks at different levels driven by a number of hidden regulatory signals. So far, many 
computational and statistical methods such as PCA and ICA have been employed for computing 
low-dimensional or hidden representations of these datasets, but in most cases the results are 
inconsistent with underlying real network. In this paper we have employed and compared three 
linear (PCA and ICA) and non-linear (MLP neural network) dimensionality reduction techniques to 
uncover these regulatory signals, from outputs of such networks. The three approaches were 
verified experimentally using the absorbance spectra of a network of seven hemoglobin solutions, 
and the results revealed the superiority of the MLP NN to PCA and ICA. This study shows the 
capability of the MLP NN approach to efficiently determine the regulatory components in biological 
networked systems. 
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INTRODUCTION 
The identification and characterization of system-

level features of biological organizations is a key issue of 
post-genomic biology. It is now widely recognized that 
thousands of components of a living cell are dynamically 
interconnected, so that the cell’s functional properties are 
ultimately  encoded into  a  complex  intracellular web  of  
 
 
 

molecular interactions. The biologists now face with 
masses of high dimensional datasets generated from 
various high-throughput technologies which are outputs 
of complex inter-connected biological networks at 
different levels driven by a number of hidden regulatory 
components.  Uncovering these regulatory components in  
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Fig. 1: The connectivity (mixing) diagram of the seven Hb solutions from three  pure components: OxyHb (Oxyhemoglobin), 
MetHb (Methemoglobin), CyanoHb (Cyano-methemoglobin) that serve as the regulatory components. 

 
a given biological network, to represent the high 
dimensional dataset in a lower-dimensional space has 
become a significant challenge for scientists in systems 
biology. 

Different linear methods such as Principal Component 
Analysis (PCA), or Independent Component Analysis 
(ICA) have been previously employed to extract the 
regulatory components in biological systems [1- 5], but in 
most cases a lack of compatibility with the real network 
has been an important drawback of these approaches. The 
main goal of this paper is to make a comparison between 
linear (PCA and ICA) and nonlinear (MLP neural 
network) dimensionality reduction techniques for recons-
truction of hidden regulatory signals. To experimentally 
verify these approaches we used the data for a network of 
seven hemoglobin solutions [6], made up three regulatory 
components, as a test case. Having the absorbance spectra 
of seven hemoglobin solutions and three regulatory 
components at hand, we were able to verity and compare 
these three approaches. The comparison of the 
implantation results revealed the superiority of the 
proposed MLP NN to PCA and ICA. This study shows 
the capability of the MLP NN approach to successfully 
address the problem of reconstructing hidden regulatory 
signals in biological networks. 
 
NETWORK  OF  HEMOGLOBIN  SOLUTIONS 

To verify experimentally the three linear and non-
linear techniques, we used the data (absorbance spectra) 
for a network of seven hemoglobin (Hb) solutions [6] as a 
model system. Each solution contains a specific 

combination of three pure components: oxyhemoglobin 
(OxyHb), methemoglobin (MetHb), and cyano-methe-
moglobin (CyanoHb), that serve as the regulatory 
components for the network of hemoglobin solutions (see 
Fig. 1). In this experiment (which was conducted by Liao 
et al [6]), the absorbance spectra of various Hb solutions 
and the three regulatory components have been measured 
by using a UV/visible spectrophotometer (Beckman 
DU640) at wavelength from 380 to 700 nm. Spectral data 
were collected for a wavelength increment of 1 nm [6]. 
We aimed to determine the absorbance spectra of the 
three regulatory components, as the regulatory signals by 
using the three mentioned computational methods, having 
the absorbance spectra of seven Hb solutions at hand. 
Measuring the absorbance spectra of three regulatory 
components experimentally is to provide a criterion for 
comparison of the estimated regulatory signals from 
PCA, ICA and MLP NN with the true ones. 
 
PRINCIPAL  COMPONENT  ANALYSIS (PCA) 

Principal component analysis (PCA) is possibly the 
most widely used dimensional reduction technique in 
practice, perhaps due to its conceptual simplicity and to 
the fact that relatively efficient algorithms exist for its 
computation. In signal processing it is known as the 
Karhunen-Loeve transform. 

Assume the set of N, D-dimensional column vectors, 
which are already in zero-mean form (If this is not the 
case, it is easily possible to make them zero-mean by 
subtracting the mean vector). If each of these vectors is 
represented by xi (i=1,…,N),  the  elements  of this vector  
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are correlated and dependent. The goal of principal 
component analysis is to find an orthogonal D×D 
transformation matrix U=[u1,...,uD] (ui unit vectors), that 
determines a change of variable: 

xi=Usi                                                                              (1) 

with the property that the new variables s1,…,sD are 
uncorrelated and are arranged in order of decreasing 
variance. Notice that si can be obtained as 

si=U-1xi=UTxi  ,  (i=1......N)                                            (2) 

where superscript T represent the transpose of matrix. 
It is not difficult to verify that for any orthogonal U, 

the covariance matrix of s1,...,sN is D=UTCU where C is 
covariance matrix of x1,...,xN. So the desired diagonal 
matrix is the one that makes D diagonal. Therefore if D is 
a diagonal matrix with eigenvalues λ1,… λD of C on the 
diagonal, arranged so that λ1>…>λD >0, then U would be 
an orthogonal matrix whose columns are the 
corresponding unit eigenvectors of C,, since in this case 
CU=UD or D=UTCU [7]. 

The unit eigenvectors u1,...,uD of the covariance 
matrix C are called the principal components of the data 
in the matrix of observation. The first principal 
component is the eigenvectors corresponding to the 
largest eigenvalue of C, the second principal component 
is the eigenvector corresponding to the second largest 
eigenvalue and so on. 

Principal component analysis is potentially valuable 
for applications in which most of the variance or dynamic 
range in the data is due to the variance only in a few of 
the new variables s,,…,sd (d<D) [7]. Therefore for 
dimensionality reduction one can easily discard the 
variables with small variance, i.e. project on the subspace 
spanned by the first d (d<D) principal components. After 
transformation, the vectors in new space can be 
considered as the regulatory signals. 

 
INDEPENDENT  COMPONENT  ANALYSIS  (ICA) 

Independent component analysis (ICA) was originally 
developed for blind source separation whose goal is to 
recover mutually independent but unknown source 
signals from their linear mixtures without knowing the 
mixing coefficients. Let xi (i=1,…,N) denote the linear 
mixtures, which are formed from a linear combination 
(M)  of  source  signals  si  (which  can  be  considered  as 

regulatory signals): 

xi=Msi                                                                             (3) 

The goal of the ICA is to estimate si, having only the 
linear mixtures at hand, by 

si=Uxi                                                                              (4) 

so that the estimated components of si (s1,…,sD) are 
statistically independent. U in eq. (4) is called the un-
mixing matrix. 

The statistical independence implies that the joint 
probability density of the components of si is equal to the 
product of the marginal densities of the individual 
components. Thus, the higher order information of the 
original inputs is required for estimating si, rather than the 
second-order information of the sample covariance as 
used in PCA. For the identification of eq. (4), one 
fundamental requirement is that all the independent 
components of si, with the possible exception of one 
component, must be non-Gaussian [8]. 

A large amount of algorithms have been developed 
for performing ICA [8-11]. One of the best methods is the 
fixed-point-FastICA algorithm [8,9]. To estimate si, the 
FastICA algorithm finds a direction, i.e. a unit vector uk 

(k=1,…,D) such that the projection i
T
k xu , maximizes 

non-Gaussianity. Maximizing non-Gaussianity leads to 
maximizing the negentropy (the most important 
parameter indicating the measure of non-Gaussianity), 
and this equally corresponds to minimizing the mutual 
information between the components [8,9]. However, 
estimation of negentropy is very difficult, since it requires 
an estimation (possibly non-parametric) of the probability 
density functions of components [8]. In the Fast ICA 
algorithm, the negentropy is approximated by using the 
contrast function which has the following form: 

( ) ( ) ( ){ }{ }[ ] 2 
i

T
kk GExuGEsJ υ−=                                    (5) 

Where uk is a D-dimensional vector, comprising one 
of the rows of the matrix U. υ is a standardized Gaussian 
variable (zero mean and unit variance). G is a non-
quadratic function, and E represents the expected value. 
The point here is that by choosing G wisely, one can 
obtain good approximations of negentropy. The following 
choices of G have proved to be very useful [8,9]: 
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( ) ( )( )k1
1

k1 sacoshlog
a
1sG =                                           (6) 

( ) ( )2sexpsG 2
kk2 −−  

where 1 < a1 < 2 is some suitable constant. Maximizing 
j(sk) in Fast ICA for one unit,  is based on a fixed-point 
iteration scheme as follows [8]: 

1- Choose an initial (e.g. random) vector uk. 

2- Let ( ){ } ( ){ } ki
T
k

l
i

T
ki uxugExugxE −  

3- Let  ++= kkk uuu  

4- If not converged, go back to 2. 
where g and gl are, respectively, the first and second 
derivatives of G. Based on the maximal negentropy 
principal, the whole matrix U can be computed by 
maximizing the sum of one-unit contrast function and 
taking into account the constraint of decorrelation [8]. 

To simplify the Fast ICA algorithm, two preprocessing 
steps are applied to xi. The most basic and necessary 
preprocessing is to center xi, i.e. subtract the mean vector 
so as to make xi a zero-mean variable. The second step is 
to whiten xi, by transforming the observed vector xi 
linearly so that the resulting new vector ix~  is white, i.e. 

its components are uncorrelated and their variances equal 
unity [8,9]. In other words the covariance matrix of ix~  

equals the identity matrix. That is, ii Vxx~ =  and 

E( T
ii x

~x~ )=I. The transformation matrix V can be obtained 

by using eigenvalue decomposition such as PCA. The use 
of PCA whitening also has the property of reducing the 
dimension of ii Vxx~ = , eventually reducing the number 

of components of si. 

 
MULTI-LAYER  PERCEPTRON  NEURAL NET-
WORK (MLP NN) 

The PCA and ICA methodologies have been proposed 
for linear component analysis and separation. But in 
practice the sources and principal components are not 
commonly mixed linearly, and the mixing processes are 
non-linear in nature. One appropriate solution to do 
nonlinear principal component analysis is using Artificial 
Neural Networks (ANN), which have proved their 
successful applicability in many applications such as 
classification, control or regression. To perform non-
linear   component   analysis,   we  used   a    Multi-Layer  

 
 
 
 
 
 
 
 
 
 
Fig. 2: A multi-layer perceptron neural network in auto-
associative mode. The values of the middle layer si, are the 
same regulatory signals. 
 
Perceptron (MLP) neural network in auto-associative 
mode, in which the desired output values are the same 
input values (see Fig. 2). Here the input to the MLP 
network is the available output signals from the 
regulatory network (e.g. network of Hb solutions) such 
that each node in the input layer corresponds to one 
output variable in regulatory network If the activation 
function of all layers are linear and we want to simulate a 
linear PCA, the network structure should be symmetric 
[12]. To do a non-linear PCA, we used the same 
symmetric architecture for a four-layer MLP neural 
network (which is a common strategy in most appli-
cations [12]). But here the activation functions of units 
were non-linear (Sigmoidal) for all layers except for the 
last one. 

For dimensionality reduction, the number of nodes in 
the middle layer (d), should be smaller than those of the 
input layer (D). The values of the middle layer, si are in 
fact the same regulatory signals which can be obtained 
through suitable training of the neural network (such as a 
back-propagation training approach). The number of 
nodes in middle layer should be therefore equal to the 
number of regulatory signals. 
 
IMPLEMENTATION AND EXPERIMENTAL 

VALIDATION 
According to Beer–Lambert law, the absorbance 

spectra can be described as following: 

[Abs]= [C][ε]                                                                  (7) 

where the rows of [Abs] are the absorbance spectra of 
seven Hb solution at various wavelengths, the columns of  

Input = xi Desired = xi 

Si 
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Fig. 3: Experimental validation of the MLP neural network using absorbance spectra of Hb. solutions. The regulatory signals (pure 

component spectra) derived from MLP approach agree well with the true values, whereas those derived from PCA or ICA do not. 
 
the connectivity matrix [C] are the compositions of three 
components in seven Hb solutions, encoding the 
connectivity strength between the regulatory layer and the 
output signals, and the rows of [ε] are the spectra of pure 
components. The connectivity diagram of this solution 
network is shown in Fig. 1. The pure-components spectra 
[ε] are assumed to be unknown and will be estimated 
using the three computational methods described above. 
Determining regulatory signals using the four-layer MLP 
neural network described above and training with a back-
propagation approach, showed that the resulted pure 
components spectra, [ε], agreed well with the true spectra 
obtained from independent measurements for pure 
components, (see Fig. 3). As depicted in Fig. 3, despite 
the similarity among the pure components spectra, the 
MLP approach was able to acceptably resolve the 
differences. In contrast PCA and ICA could not 
reconstruct the pure components spectra faithfully. It is 
important to note that here the similarity between the 
estimated regulatory signals and the true ones is of our 
special interest and the scale is not considered as an 
important factor. Therefore to gain a better insight, we 
have  also  used  a  normalized  criterion  to  measure   the  

distance between the estimated regulatory signals and the 
real signals as the following [13]: 

( )( ) 2 
ii

T
iii PRPR1d ⋅−=                                      (8) 

( ) 3d d iave ∑=  

where Ri, denotes the i-th regulatory signal (spectra of the 
i-th regulatory component resulted from each method) 
and Pi is the i-th true regulatory signal  (the true spectra 
of the i-th regulatory component determined by inde-
pendent measurement). 

As it is seen in table 1 the average distance between 
the true spectra of regulatory components and the spectra 
obtained from the MLP neural network is much less than 
those of PCA and ICA. 
 
DISCUSSION  OF RESULTS  AND  CONCLUSION 

We used a MLP neural network with a symmetric 
structure and with non-linear activation functions for all 
layers except for the first layer and the network is then 
trained based on the back-propagation approach to 
achieve the minimum square error between the targets 
and inputs. As it was observed the results of  MLP  neural  
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network were significantly superior to those of PCA and 
ICA, and it was able to successfully reconstruct the 
regulatory signals for the test case of hemoglobin 
solutions. It is important to note that the traditional 
dimensionality reduction approaches such as PCA and 
ICA are not basically designed to address the problem of 
hidden dynamics reconstruction in our systems of 
interest, biological systems, and they usually ignore the 
underlying network structure. The main reason is that 
PCA and ICA provide decompositions based purely on a 
priori theoretical and statistical constraints on the 
computed regulatory signals. In PCA approach the 
resulted regulatory signals are constrained to be 
orthogonal and in ICA they are constrained to be 
statistically independent. However for cases other than 
biological systems the assumption of statistical inde-
pendence or orthogonality may be a reasonable assumption 
which agrees well with the real system, but this is not 
usually the case for biological systems. The resulted 
decompositions thus provide only a phenomenological 
model for the observed data and do not necessarily 
contain physically or biologically meaningful signals. 
Another point is that PCA and ICA try to extract the 
principal components and regulatory signals based on a 
linear approach, whereas in real biological networks the 
regulatory signals are commonly mixed through a 
complex non-linear process to produce the output signals.  
Therefore in this research we mainly tried to use a non-
linear approach in which no theoretical and statistical 
assumption is made on regulatory signals. In MLP 
approach we used, no statistical constrain is posed on the 
hidden regulatory signals and this naturally allows proper 
reconstruction of the regulatory signals which is more 
consistent with underlying real network. 

On the other hand a large amount of ever-increasing 
datasets from biological systems are now available by 
means of many high-throughput experimental techno-
logies such as DNA microarrays, and developing 
appropriate and powerful approaches to analyze, and 
identify the regulatory components, hidden in their 
underlying networks, is now a significant challenge. This 
study shows the potential capability of the MLP neural 
network approach stated above, to efficiently uncover and 
characterize the hidden regulatory components in many 
types of biological or biomedical networked systems 
using a wide variety of large-scale data, such as DNA 

microarrays, neuronal signals, signal transduction data, 
metabolic fluxes or protein-protein interactions.  

It is important to note however that the Network 
Component Analysis (NCA) is an approach which has 
been previously developed for this purpose [6], but it 
requires a priori knowledge from the underlying network 
topology. Although such knowledge is going to become 
available for some biological systems by means of many 
types of experiments [14-16], it is currently limited to a 
few number of microorganisms and there are still many 
organisms and biological systems for which such 
information from the network structure, are not available 
at present. Therefore our proposed MLP neural network 
approach can be applied to less-characterized organisms 
and biological systems for which there is still only little 
or no information available from their network structure, 
to obtain a primary inference from the regulatory 
components and their dynamic in the network. 
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