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ABSTRACT: Direct orthogonal signal correction(DOSC) and Savitzky-Golay filters (SGF)  
were applied as preprocessing methods on the original and first derivative absorbance data. 
Principle component regression (PCR), partial least squares (PLS) and iterative target 
transformation factor analysis (ITTFA), were used in spectrophotometric simultaneous 
determination of heavy divalent metal ions, lead, zinc,  mercury and cadmium, using 4-(2-pyridylazo) 
resorcinol (PAR) as metallochromic indicator. The optimum values of the parameters for  
DOSC and SGF were obtained according to REP, R 2 and RMSEP functions for calibration  
and prediction sets. The concentration for Hg2+, Pb2+, Zn2+ and Cd2+ ions in calibration set were  
varied between 0 - 12.24, 0 - 9.81, 0 - 0.87 and 0 - 3.96 ppm, respectively. The experimental 
calibration set was composed of 35 sample solutions and the 7 solutions as prediction set using a 
simple lattice (4,4) mixture design. The absorption spectra were recorded from 450 to 600 nm and 
absorbance data were autoscaled. The effect of pH on the sensitivity and selectivity was studied in 
the range of 1.00 - 11.00 and pH=7.50 was chosen according to net analyte signal (NAS) as a 
function of pH. 
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INTRODUCTION 
Several techniques such as polarography [1], mass 

spectrometry [2], inductively coupled plasma atomic 
emission [3], voltammetry [4], liquid chromatography 
[5], etc. have been used for the simultaneous 
determination of lead, zinc, mercury and cadmium in 
aqueous media. The simultaneous determination of these 
ions by the common UV-visible spectrometry techniques 
and conventional metallochromic indicators in aqueous 
solution is difficult because, generally, the absorption 
spectra overlap in this region and the superimposed 
curves are not suitable for quantitative evaluation.  

Under computer-controlled instrumentation, derivative 
techniques and multivariate calibration methods are 
playing very important roles in the multicomponent 
analysis of mixtures by ultraviolet (UV)-visible molecular 
absorption spectrophotometry [6,7]. The main advantage 
of multicomponent analysis using multivariate calibration 
is the speed of the method of determination for 
components of interest in a mixture, as the separation step 
could be avoided. 
 
THEORY 
Multivariate Calibration Methods 

Nowadays quantitative spectrophotometry has been 
greatly improved by the use of a variety of multivariate 
statistical methods; particularly principle component 
regression (PCR), partial least squares regression (PLS) 
and iterative target transformation factor analysis 
(ITTFA). The theory and application of these methods in 
spectroscopy have been discussed by several workers  
[8-14] and here we describe them briefly. 
 
Principal Component Regression (PCR) 

Principal component regression consists of two steps; 
in the first step, as is in principal component analysis 
(PCA), it does decomposition of spectral matrix into a set 
of eigenvectors, loadings and scores, and then regress the 
obtained scores against the concentrations as a calibration 
step (as we do in inverse least squares) [9]. 
 
Partial Least Squares (PLS) 

Partial least squares modeling is one of the most 
powerful multivariate statistical tools that has been 
applied to the quantitative analysis [11-13]. PLS is a 
quantitative spectral decomposition technique that is 

closely related to principal component regression (PCR). 
However, in PLS the decomposition is performed in a 
slightly different fashion. PLS actually uses the 
concentration information during the decomposition 
process. Thus, the eigenvectors and scores calculated 
using PLS is quite different from those of PCR. The main 
idea of PLS is to get as much concentration information 
as possible into the first few loading and score vectors  
[8, 9]. 
 
Iterative Target Transformation Factor Analysis 
(ITTFA) 

In the absence of good candidate targets to be tested 
by target transformation factor analysis (TTFA), one 
defines an initial target, which is gradually improved until 
the TTFA test passes. The target is modified by using 
chemical knowledge (e.g. in our study non-negativity) 
and resubmitted in an iterative way until the tested target 
is considered to match one of the true factors 
satisfactorily. In other word, ITTFA can give a priori 
estimates of the transformation matrix to rotate the 
abstract factor analysis solutions to good approximations 
of real peak profiles when there are no data points unique 
to the individual components [14]. 
 
Preprocessing 
Direct Orthogonal Signal Correction (DOSC) 

Orthogonal signal correction (OSC) [15] is generally 
applied to spectroscopic data (X) to remove from the 
spectra as much as possible the variation that is unrelated 
(i.e. orthogonal) to y, the vector of the parameter which 
has to be modeled (e.g. the concentration). After the OSC 
correction, a new PLS or PCR model can be built and this 
model will be less complex than the model built with the 
original, uncorrected data. Algorithms to perform an ortho-
gonal signal correction have been proposed by Wold [16], 
Sjoblom [17], Wise and Gallagher [18] and Fearn [19].  

A similar method called direct orthogonalization has 
been developed by Andersson [20]. All of these methods 
find an approximate solution to the problem set out, i.e. 
finding a subspace of X that is orthogonal to y and 
accounts for the largest possible proportion of X-variance. 
Recently, the exact solution was found independently by 
Westerhuis et al. [15]. The corresponding algorithm was 
coined direct orthogonal signal correction (DOSC). The 
first step in this algorithm is  a  decomposition  of  X  (the  
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spectral matrix) into two orthogonal parts, one part 
related to y and another part that is orthogonal to it. This 
is carried out by projecting (or regressing) y onto X. In 
this way, one decomposes y into ŷ ; the part of y lying in 
X-space and f , the residual that is unrelated to X, i.e. 

y= ŷ + f                                                                          (1) 

For spectral data, X is generally of less than full 
column rank. The column rank of a matrix is the number 
of independent columns (wavelengths). Since in UV-vis 
spectra, neighboring wavelengths are not independent, 
but highly correlated, the rank of a spectral matrix is less 
than its number of columns. 

Next, X is projected onto ŷ  giving X̂  and E, the 

residual part of X that is orthogonal both to ŷ and y, i.e. 

X= X̂ +E                                                                          (2) 

Principal component analysis (PCA) or singular value 
decomposition (SVD) is applied to E in order to find a 
small number of principal components T corresponding 
to the largest singular values. This T is a basis for the 
low-dimensional subspace that accounts for the 
maximum of variance of E, the part of X that is unrelated 
to y. 

The DOSC-corrected spectra of the calibration data 
can now be written as: 

XDOSC=X-TP’                                                                  (3) 

where TP’ is the ‘orthogonal’ part removed from the 
original spectra with P the loading matrix: 

P=XT(T’T)-1                                                                   (4) 

T can be expressed as linear combinations of X: 

T=XR                                                                              (5) 

Here, R is the matrix of weights of the original 
variables in the principal orthogonal directions, which 
can be obtained via X+, the Moore_/Penrose generalized 
inverse of the original data X: 

R=X+T                                                                            (6) 

Given weights R and loadings P, one can directly 
obtain corrected spectra for new data: 

XDOSC=X-XRP’                                                              (7) 

Derivation and Smoothing Using the Savitzky-Golay 
Filter 

By calculating first or higher order of derivatives, 
baseline drifts are eliminated and also small spectral 
differences are enhanced. These derivations are 
performed by using the Savitzky-Golay filter, which is a 
moving window averaging method: a window is selected 
where the data are fitted by a polynomial of a certain 
degree. The central point in the window is replaced by a 
linear combination of itself and some number of nearby 
neighbors [7, 22, 23].  
 
 Selection of optimum pH 

The effect of pH on the sensitivity and selectivity was 
studied according to the net analyte signal (NAS, a 
portion of the signal of each component that is orthogonal 
to the rest signal of other components) for each 
component in a first-order system [25, 26]. The NAS is 
defined as: 

( ) nnn rRRINAS +−=                                                      (8) 

where I is the identity matrix, Rn the matrix of pure 
spectra of all constituents except the nth analyte, Rn

+ the 
pseudoinverse or general inverse of Rn and rn is the 
spectrum of the analyte. The NAS is a vector and is 
related to the regression vector as depicted in the 
following equations: 

c = rb + e                                                                        (9) 

2NAS
NASb =                                                                  (10) 

where ||NAS||2 designates the square root of the sum of 
squares of each element in the vector b, c the analyte 
concentration and e the error vector. Sensitivity (SEN) 
and selectivity (SEL) were calculated using following 
equations: 

2
2

NAS
b
1SEN ==                                                 (11) 

2n

2

2n2 r

NAS

rb
1SEL ==                                       (12) 

 
Figures of merit 

There are several functions to evaluate and assess the 
correctness  and  also the validity of the calibration model  
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and also the effects of the preprocessing methods. In this 
study we have applied several objective function to check 
the efficiency of the calibration and preprocessing 
methods. The most common of these are root mean squared 
error of prediction (RMSEP), square of the correlation 
coefficient (R2), relative error of prediction (REP) and 
predictive residual error sum of squares (PRESS) which 
were calculated for each component as follows: 

( )
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where xi is the true concentration of the analyte in the 
sample i, represents the estimated concentration of the 
analyte in the sample i, the mean of true concentration in 
the prediction set, and n the total number of samples used 
in the prediction sets 

In this work we report the simultaneous spectro-
photometric determination of lead, zinc, mercury and 
cadmium with 4-2-pyridylazo resorcinol PAR using PCR, 
PLS and ITTFA multivariate calibration methods. The 
results obtained by these methods with and without 
preprocessing using DOSC, derivation and smoothing by 
the Savitzky-Golay filter are compared and discussed. 
We apply two versions sof derivative spectra a) without 
removing of the noisy part of the derivative spectra, 
named as DERV and b) with removing the noisy part 
named as CORRDERV. 
 
EXPERIMENTAL 
Reagent 

All chemical were of analytical-reagent grade and 
deionized water was used throughout. Stock solutions of 
500 ppm of lead, zinc, mercury and cadmium were 
prepared from their nitrate salts. A stock solution of PAR 
8.48×10-3 M in water was prepared by dissolving solid 
reagent samples. Buffer solutions (pH 1.00-11.00) were 
prepared by mixing sufficient amount of HCl, and KCl, 
(0.2 M) for pH=1.00 and 2.00, potassium hydrogen 
phthalate and NaOH, (0.1 M) for pH= 2.00 to 4.00,   

tris (hydroxymethyl) aminomethane and HCl (0.1M) for 
pH= 7, 8, 9 and finally sodium bicarbonate (0.05 M) and 
NaOH (0.1 M) for pH=10 [27]. The pH-meter was 
calibrated with at least two buffer solutions at pH= 2.00 
and 9.00. 
 
Apparatus 

Electronic absorption measurements were carried out 
on a CECIL 9000 spectrophotometer (slit width 0.2 nm 
and scan rate 500 nm/min) using 1.00 cm quartz cells.  
A Metrohm 692 pH-meter furnished with a combined 
glass-saturated calomel electrode was used for pH 
measurements. 
 
Computer hardware and software 

Absorption spectra were digitized and stored at 
wavelengths from 460 to 600 nm in steps of 0.5 nm and 
then transferred in text format to a Pentium II computer 
for subsequent manipulation by corresponding programs. 
The data pretreatment was done in workspace of 
MATLAB for windows (Mathworks, Version 6.5). PLS 
program for calibration-prediction and experimental 
design was written in MATLAB according to the 
algorithm described by Martens and Naes [9] and PLS 
routine of PLS-Toolbox (Eigenvector Company, Version 
2.1). ITTFA program for calibration-prediction according 
to the algorithm described by Gemperline [14] was 
written in MATLAB and DOSC m-file achieved from 
reference [30]. 
 
Procedure 

In a 5 ml calibrated flask, known amounts of the 
standard solutions of each cation and 2.0 ml of PAR 
solution (8.48×10-5 M) were placed and diluted to the 
mark with appropriate buffer solution. The final concent-
ration of lead, mercury, zinc and cadmium cations were 
varied between 0.00 - 9.81, 0.00 - 0.87, 0.00 - 12.24, and 
0.00 - 3.96 ppm respectively according to a simplex lattice 
(4,4). Finally after 30 minutes the spectra of all prepared 
solutions were recorded on spectrophotometer. The 
autoscaled spectra were used for subsequent analysis. 

 
RESULTS  AND  DISCUSSION 

The pH has a drastic effect on the resolution, shape 
and also intensity of the spectra of the complexes of cited 
metal  ions  with  PAR.  So  the influence of the pH of the  
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Fig. 1: The effect of pH on the absorption spectra of the PAR 
and lead, zinc, mercury and cadmium complexes in different 
pH-value. 
 
medium on the absorption spectra, and in consequence on 
the sensitivity and selectivity of the determination of 
metal complexes, was studied over the range 1.0 - 11.0 
and the result at pH=7.5 is shown in Fig. 1.  

This pH=7.5 is the optimum value according to 
variations of the SEN and SEL values against pH. This 
value is selected as the optimum value, to compromise 
between the sensitivity and selectivity for all four metal 
ions and also to reduce the effect of the uncomplexed 
PAR absorbance. A reagent concentration of 8.48×10-5 M 
was chosen to ensures a sufficient reagent excess relative 
to all metal ions concentrations.  
 
Univariate Calibration 

To evaluate the linear behavior of each metal complex 
and also the linear dynamic range for each metal ion an 
individual calibration curve was constructed using the 
absorbance values of the resulting complexes at their 
λmax’s (508, 489, 493 and 491 nm for lead, zinc, mercury 
and cadmium respectively) vs. metal ion concentrations. 
The linear ranges, as depicted in Fig. 2, are 0.0 - 9.8,  
0.0 - 0.7, 0.0 - 12.24 and 0.0 - 3.96 ppm for of lead, zinc, 
mercury and cadmium, respectively. Linear regression 
results; line equations and R2 are: 
Abs. = 0.1171 CPb + 0.2612 (R2 = 09976),  
Abs. = 1.3108CZn+0.3046 (R2 = 0.9992),  
Abs. = 0.2853CHg+ 0.3398 (R2 = 0.9936) and  
Abs. = 0.0192CCd + 0.3291 (R2 = 0.9950) for lead, zinc, 
mercury and cadmium, respectively. 
 
Mixture Design 

Multivariate  calibration  methods  require  a   suitable  

 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Analytical curve for univariate determination of  lead, 
zinc, mercury and cadmium complexes at optimum 
experimental conditions. 
 
experimental design of the standard belonging to the 
calibration set in order to provide good prediction ability. 
A mixture design for four component mixtures was used 
for calibration [11, 12, 30]. The calibration set, table 1, 
contains 35 standard solutions and the pH of all solution 
was adjusted to 7.5 just before recording. The spectra was 
recorded between 400 and 650 nm, which implies 
working with 401 experimental data points per spectrum 
(as the spectra are digitized every 0.5 nm interval). This 
region was selected for analysis, because this region 
contains the suitable spectral information from the 
component mixtures of interest. The compositions of the 
calibration mixtures were selected according to a (4,4) 
simplex lattice design. For model assessment, seven test 
mixtures inside the linear range of each metal ion were 
used. The concentrations of each cation in test mixtures 
were inside the calibrations space by inspection of their 
scores in the first PC vs. second PC’s plot, (Fig. 3).  
 
Optimum Conditions for Calibration and Preprocessing 
Methods 

The cost functions for different calibration and 
preprocessing methods rise from the deviation of the 
calculated concentration in calibration or predication set 
by their analytical values. Here we use several types of 
equations which indicate and stress on different aspects 
of random and bias errors. 
 
Selection of Optimum Number of Factors for 
Calibration Methods 

To select the number of factors in PCR or PLS 
algorithm,  in  order  to  model  the  system  without  over  
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Table 1: The 35 designed sample solutions by using (4, 4) simplex lattice design. 
 

No. of Solution Lead (II) ppm Zinc (II) ppm Mercury(II) ppm Cadmium(II) ppm 

1 9.80 0.00 0.00 0.00 

2 0.00 0.87 0.00 0.00 

3 0.00 0.00 12.24 0.00 

4 0.00 0.00 0.00 3.96 

5 4.93 0.43 0.00 0.00 

6 4.89 0.00 6.13 0.00 

7 4.93 0.00 0.00 1.97 

8 0.00 0.43 6.17 0.00 

9 0.00 0.43 0.00 1.98 

10 0.00 0.00 6.17 1.97 

11 2.46 0.64 0.00 0.00 

12 2.44 0.00 9.19 0.00 

13 2.47 0.00 0.00 2.95 

14 0.00 0.22 0.00 2.97 

15 0.00 0.00 3.09 2.96 

16 0.00 0.21 9.21 0.00 

17 4.91 0.21 3.08 0.00 

18 4.93 0.22 0.00 0.99 

19 4.91 0.00 3.08 0.98 

20 0.00 0.43 3.09 0.99 

21 2.46 0.43 3.09 0.00 

22 2.47 0.43 0.00 0.99 

23 2.45 0.21 6.15 0.00 

24 2.45 0.00 6.15 0.98 

25 0.00 0.21 6.17 0.98 

26 0.00 0.22 3.09 1.97 

27 2.46 0.00 3.09 1.97 

28 2.47 0.22 0.00 1.98 

29 7.35 0.21 0.00 0.00 

30 7.38 0.00 3.09 0.00 

31 7.37 0.00 0.00 0.98 

32 0.00 0.65 0.00 0.99 

33 0.00 0.00 9.21 0.98 

34 0.00 0.65 3.09 0.00 

35 2.46 0.22 3.09 0.98 
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Fig. 3: Score plot of calibration set solutions as PC2 vs. PC1 
a) original , b) after DOSC. 
 
fitting of the concentration data, a cross-validation 
method, leaving out one sample at a time, was used [10]. 
Given the set of 35 calibration spectra, the PLS or PCR 
calibration on 34 spectra were performed, and using this 
calibration the concentration of the compounds in the 
sample left out during calibration was predicted. This 
process was repeated 35 times until each calibration 
sample had been left out once. The predicted 
concentration of the compounds in each sample was 
compared with the known concentration of the compound 
in this reference sample and PRESS was calculated. The 
PRESS was calculated in the same manner each time a 
new factor was added to the PLS or PCR model. 

One reasonable choice for the optimum number of 
factors would be that number which yielded the minimum 
PRESS. However, for PCR and PLS models using the 
number of factors (h*) that yields a minimum in PRESS 
usually lead to some over fitting. A better criterion for 
selecting the optimum number of factors involves the 
comparison that PRESS from model should not be 
significantly greater than PRESS from the model with h* 

factors. The F statistic was used to make the significance 
determination. Haaland and Thomas [10] empirically 
determined that an F-ratio probability of 0.75 is a good 
choice. 

For PLS and PCR models, we selected the number of 
factors for the first PRESS values with the F-ratio 
probability, which drops below 0.75. The number of 
factors which are selected as the optimum numbers for 
the calibration models were 5, 6, 12 and 11 in PLS and  4, 
7, 6, 7 in PCR for Pb, Zn, Hg and Cd, respectively. 

We used a different tactic for selection of the 
optimum number of factors in ITTFA. For ITTFA 
calibration, the predicted concentration profile of each 
compound in samples was compared with the known 
concentration profile of the compound in the reference 
samples and each time the relative error of prediction 
(REP) was calculated. The REP was calculated in the 
same manner each time a new factor was added to the 
ITTFA model. The number of component which yielded 
the minimum REP, was selected as optimum number in 
ITTFA without and with application of preprocessing 
methods. The REP value reached to a minimum at 
numbers 4, 6, 4 and 7 for Pb, Zn, Hg and Cd, 
respectively. 

The effect of the DOSC and first derivation of spectra 
(DERV) and corrected first derivative of spectral data 
(CORDERV) on the PCR, PLS and ITTFA calibration 
methods were evaluated by using commonly RMSEP, 
and the correlation coefficients of the line was obtained 
by plotting the calculated versus analytical concentration 
in the calibration set. The RMSEP and linear correlation 
coefficients are listed in table 2. As it can be seen from 
the data in table 2 it is easy to conclude that DOSC-PLS, 
DERV-PLS, CORRDERV-PLS and PLS show distinct 
superiority with respect to PCR and ITTFA with and 
without preprocessing methods.  
 
Tuning of DOSC 

The parameters which have the main role on the 
efficiency of the DOSC filter as a preprocessing method 
are tolerance and the number of components. Here we 
used REP and correlation coefficient of the plot of 
analytical versus calculated concentrations of the metal 
ions. As precious experiences have shown the number of 
components are rarely more than two DOSC components. 
So we check the effect of the tolerance value at just one 
and two DOSC components. 
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Table 2: The RMSEP, REP, R2, PRESS R and number of factors for prediction set. 
 

Original Component REP RMSEP PRESS R2 R 

Pb(4)* 3.9424 0.0693 0.0336 0.9175 0.9579 

Zn(7) 9.9384 0.0306 0.0065 0.8890 0.9428 

Hg(6) 31.655 0.6971 3.4021 0.7617 0.8728 
PCR 

Cd(7) 17.676 0.1991 0.2776 0.6366 0.7978 

Pb(5) 3.6103 0.0635 0.0282 0.9359 0.9674 

Zn(6) 8.7978 0.0271 0.0051 0.8899 0.9434 

Hg(12) 4.6393 0.1021 0.0730 0.9426 0.9709 
PLS 

Cd(11) 5.2283 0.0589 0.0242 0.9557 0.9776 

Pb(4) 7.8185 0.1375 0.1323 0.8420 0.9176 

Zn(6) 37.1170 0.1144 0.0917 0.5026 0.7090 

Hg(4) 42.1490 0.9282 6.0318 0.5027 0.7090 
ITTFA 

Cd(7) 23.1760 0.2611 0.4773 0.6590 0.8118 

DOSC Component REP RMSEP PRESS R2 R 

Pb(4) 4.5798 0.0805 0.0454 0.9517 0.975 

Zn(7) 8.2287 0.0253 0.0045 0.9184 0.9583 

Hg(4) 2.7925 0.0615 0.0264 0.9843 0.9921 

PCR 
TOL=1E-3 

NOCOMP=2 

Cd(7) 16.198 0.1825 0.2331 0.5566 0.7460 

Pb(4) 4.5015 0.0791 0.0438 0.9854 0.9926 

Zn(6) 6.8671 0.0211 0.0031 0.9230 0.9607 

Hg(4) 2.7402 0.0603 0.0254 0.9850 0.9925 

PLS TOL=1E-3 
NOCOMP=2 

Cd(11) 7.9200 0.1393 0.1358 0.8509 0.9224 

Pb(6) 23.8860 0.4201 1.2355 0.6358 0.7974 

Zn(6) 39.4850 0.1217 0.1037 0.4995 0.7067 

Hg(4) 49.1830 1.0832 8.2129 0.3774 0.6143 

ITTFA 
TOL=1E-3 

NOCOMP=2 

Cd(10) 36.6520 0.4129 1.1939 0.4471 0.6687 

DERV Component REP RMSEP PRESS R2 R 

Pb(4) 5.4797 0.0964 0.0650 0.9039 0.9508 

Zn(4) 16.378 0.0505 0.0179 0.8883 0.9425 

Hg(4) 38.292 0.8433 4.9784 0.6343 0.7965 
PCR 

Cd(8) 1.8018 0.0203 0.0029 0.9487 0.9740 

Pb(5) 4.23 0.0744 0.03875 0.9380 0.9685 

Zn(8) 1.196 0.0036 0.0001 0.9887 0.9943 

Hg(8) 3.381 0.0744 0.0388 0.9851 0.9855 
PLS 

Cd(8) 1.8018 0.0203 0.0028 0.9487 0.9740 
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Table 2 

Pb(6) 23.8860 0.4201 1.2355 0.6358 0.7974 

Zn(6) 39.4850 0.1217 0.1037 0.4995 0.7067 

Hg(4) 49.1830 1.0832 8.2129 0.3774 0.6143 

 
 
 

ITTFA 

Cd(10) 36.6520 0.4129 1.1939 0.4471 0.6687 

CORDERV Component REP RMSEP PRESS R2 R 

Pb(4) 5.7874 0.1017 0.0725 0.8894 0.9431 

Zn(4) 15.8610 0.0489 0.0167 0.8992 0.9483 

Hg(4) 38.5780 0.8496 5.0530 0.6321 0.7951 
PCR 

Cd(4) 24.4570 0.2755 0.5315 0.5635 0.7507 

Pb(6) 2.1111 0.0371 0.0096 0.9693 0.9845 

Zn(8) 1.9061 0.0058 0.0002 0.9957 0.9978 

Hg(7) 7.1972 0.1585 0.1758 0.9819 0.9909 
PLS 

Cd(7) 3.3590 0.0378 0.0100 0.9549 0.9772 

Pb(5) 25.4720 0.4480 1.4050 0.6421 0.8013 

Zn(5) 39.2150 0.1209 0.1023 0.4766 0.6904 

Hg(4) 51.5200 1.1346 9.0119 0.3443 0.5867 
ITTFA 

Cd(5) 46.2450 0.5210 1.9006 0.3129 0.5593 

 
The best values of the tuning of the DOSC by changing 
of the tolerance value at two levels of DOSC components 
are shown in table 2, for all four metal ion complexes. As 
it is very clear from the REP and R values for PLS 
calibration method, the best results are obtained at 2 DOSC 
components and the tolerance values between 0.01 - 0.001. 

The effect of the DOSC parameters on the required 
number of significant factors in the PLS calibration 
model were studied. It can be concluded that the PRESS 
values are reduced by using two DOSC components in 
the model building. It means the application of DOSC 
does not results in a more efficient model but it just leads 
to a more simple and interpretable model. So, the number 
of significant factors by DOSC-PLS model and two 
DOSC components are 5, 5, 7 and 8 for lead, mercury, 
zinc and cadmium, respectively.  The effects of the 
DOSC components and tolerance value on the PCR and 
ITTFA calibration models were also studied and the two 
DOSC components and 0.01-0.001 tolerance values are 
obtained. The numbers of significant factors required in 
the PCR and ITTFA models were 7, 7, 9 and 11 and 8, 9, 
10 and 11 for lead, mercury, zinc and cadmium 
respectively.  

Optimization of Savitzky - Golay filter 
 The fundamental idea of Savitzky-Golay algorithm is 

to fit a different polynomial to the data surrounding each 
data point. The number of data points and polynomial 
degree must be optimized by user. We use error value 
estimator (REP) and correlation coefficient (r) to 
optimize the Savitzky - Golay conditions. The most two 
important factors which have to be minimized are degree 
of polynomial and window size (the number of data 
points to be smoothed or derivative). The tuning process 
was performed as a one-at-a-time manner, that is, each 
time one variable was kept fix and the other one was lefts 
to change freely. First at a predefined degree of 
polynomial the number of data points changed and vice 
versa. The results of the optimization of the Savitzky-
Golay filter are shown in table 2. The number of optimum 
data point (window size) and the order of the polynomial 
are 13 and 2 respectively for all calibration models and 
all metal ion complexes. 

 
Smoothing After First Derivation of Spectra 

To avoid enhancing the noise, which is a consequence 
of   derivation,   sometimes   spectra   are  first  smoothed.  
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The effect of smoothing was investigated and found that 
using Savitzky-Golay filer as soothing filter does not 
have satisfactory effects in the present work. This is 
probably due to the fact that by the application of 
smoothing process some useful information may be 
removed from the spectral data and lead to the increasing 
the error or at least let it remains constant. So we used 
first order derivation spectra obtained by Savitzky-Golay 
filter without any more smoothing for the calibration 
models. The results of effect of the smoothing on the 
calibration models by using REP and R are shown in 
table 2. 

 
Comparison of the Calibration Models in Predicting of 
the Test Set Solutions. 

To choose the best model according to its ability  
in prediction of the concentrations of the test set 
solutions, according to the  effect of the number of DOSC 
components, number of significant factors, derivation, 
smoothing and  type of the calibration were used in 
model building  by evaluation of the REP %, RMSEP, 
PRESS, R2, and R values. The results of this assessment 
are presented in table 2. As it is shown in table 2 the most 
versatile model to predict the concentrations of test 
solutions is DOSC-PLS with 2 DOSC components, 0.001 
tolerance and numbers of significant factors of 4, 6, 4 and 
11 for lead, zinc, mercury and cadmium, respectively, on 
the original spectral data. 

 
CONCLUSIONS 

The proposed method is a spectrophotometric 
simultaneous determination of some heavy metal ions 
using PAR as a metallochromic indicator with several 
chemometrics calibration and with two preprocessing 
methods. The effect of several aspects of the combination 
of calibration and preprocessing methods on prediction 
sets were studied by evaluation of the different assessors. 
The results showed that the most versatile method for 
prediction of the concentration of four metal ions form 
their mixture spectral data is DOSC-PLS with 4, 5, 4 and 
11 significant factors for lead, zinc, mercury and 
cadmium, respectively. The most important finding of 
this study is that, the application of the DOSC on 
different preprocessed or original spectral data does not 
produce a more efficient model but it produces a simple 
and more interpretable model. 
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