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ABSTRACT: This paper concerns a study on the optimal control for nonlinear systems. An 
appropriate alternative in order to alleviate the nonlinearity of a system is the exact linearization 
approach. In this fashion, the nonlinear system has been linearized using input-output feedback 
linearization (IOFL). Then, by utilizing the well developed optimal control theory of linear systems, 
the compensated nonlinear system has been controlled. Thus, the structure of the objective function 
will be converted into a quadratic form which is qualitativly comparable with usual cost functions, 
and from operating viewpoint is more favorable. To qualify such a procedure, it has been applied to 
two minimum and nonminimum-phase chemical processes, and its performance is verified through 
computer simulations. 
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INTRODUCTION 
Over the years, the optimal control of dynamic 

systems has received a growing attention from 
researchers [1, 2]. During these researches, various 
approches have been developed to deal with practical 
processes. These approches mainly can be devided into 
three categories; decentralized architectures, interacting 
MPC based methodologies, and hybrid approaches. The 
decetralized architectures are the most straightforward 
approaches which  can be designed using RGA or 
Neiderlinski index criteria. However, for highly 
integrated systems, the optimal pairing may become a 
challenging problem. On the other hand, MPC based 
methods are capable to predict the behavior of the 
system, but solving the resulting nonlinear program to 
find the global optimum is their main drawback. This 
urges us to simplify the structure of the problem. 
Transforming the  original  system into a structure  which 
 
 
 

can be analyzed through a more flexible, yet powerful 
farmework is an appropriate choice to compensate the 
nonlinearity of the system. Based on this idea, hybrid 
approches emerge. Linearization seems to be an 
appropriate alternative which transforms the original 
nonlinear system into a linear one. This way, the linear 
optimal control tools could be used to control the system. 

The hope to eliminate nonlinear behavior of such 
systems led to solutions for exact input-state linearization 
[3], state feedback decoupling [4], and input-output 
feedback linearization [5, 6] based on a differential 
geometric framework. By developing theoretical basis of 
input-output feedback linearization (IOFL) in 1980s, 
because of the limitations which restricted the 
linearizable systems to square, minimum phase and non-
singular ones, the approximate linearization methods 
seem  to  be  more  attractive  to  reaserchers (a survey on 
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various approximate approaches is performed by 
Guardabassi and Savaressi [7]). Parallel to developing 
approximate approaches, the exact methods progressed to 
the point that now it is possible to return to exact methods 
with a more comprehensive knowledge about systems. To 
date, the previous tight conditions are alleviated and the 
new theorems and results for nonminimum-phase [8-10], 
non-square [11-13] and singular [14] systems have been 
derived. These attempts paved the way to redefine 
linearizability conditions to cover a wide range of 
systems. Hence, coupling a nonlinear system with a 
compensator to make the overall system linear is an 
alternative in order to achieve control objectives. The 
linearization provides new coordinates in which the 
behavior of multivariable system is simpler and more 
predictable. Furthermore, we can utilize well-developed 
linear control theory tools [15, 16] to control new system.  

In this work, we will study the optimal control of 
nonlinear systems via input-output feedback linearization; 
so, the rest of this paper is organized as follows:  

In section 2, we introduce the concepts of relative 
order and characteristic matrix as the principal 
differential geometric definitions for nonlinear systems. 
Then, these definitions are used in section 3 to present 
input-output feedback linearization for minimum-phase 
and nonminimum-phase systems. This is because of the 
fact that the major restriction for linearization of 
nonlinear systems is the minimum-phaseness condition . 
It will be followed in section 4, with a topic on optimal 
control theorem for linear systems. In section 5 the 
control methodology has been described. Simulation 
results for both a minimum-phase and  a non-minimum-
phase systems along with the concluding remarks are 
covered in section 6. 
 
MATHEMATICAL  PRELIMINARIES 

Consider the continuous-time state space representation 
of a nonlinear multivariable system as: 
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Denote inputs (u ∈U⊂Rm), states (x∈X⊂Rn) and 
outputs, respectively. It is assumed that the vector fields 
f,gi:X→Rn and h:X→Rm are real analytic and smooth 
functions whose number of inputs and outputs are equal 
(square system). In the literature, there are various cases 
in which the system is assumed to be square. It is due to 
the fact that the major part of the linearization theorems is 
developed upon this foundation. Some other analogous 
definitions and equations have been derived that take into 
account non-square systems [13]. Since the assumption of 
squareness makes no restriction to our work, for the sake 
of simplicity and clarity we proceed with square MIMO 
systems. We start by reviewing definitions of relative 
order and characteristic matrix for nonlinear systems. 
 
Definition 1: A nonlinear MIMO system of form (1) is 

said to have relative order of 
i

r  with respect to output 
i

y  

if 

[ ] 0)x(hLL)x(hLL)x(hLL i
k
fgi

k
f1gi

k
fg m

=L               (2) 
2r,...,1,0K i −=  

[ ] 0)x(hLL)x(hLL)x(hLL i
k
fgi

k
f1gi

k
fg m

≠L  
1rK i −=  

where ri is the smallest integer k for which the vector 

)x(hLL i
k
fg  has at least one nonzero component. This 

definition shows that ri is the smallest order of derivative 
of the output yi which is explicitly affected by 
manipulated variables vector, u [17]. 

 
Definition 2: The characteristic matrix for a system 

of the form (1) with finite relative orders ri is defined as: 
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This matrix plays an important role in multivariable 
control. It can be used for linearization as well as input-
output decoupling. Due to the structure of this matrix, it 
depends on input and output properties of the system. 

Based on the definitions for relative order and 
characteristic matrix, the systems that do not abide these 
conditions are classified as singular systems. For some 
systems  whose  output  yi  does  not  have  a  well-defined 
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relative order, there is no dependence of yi and its 
derivatives, and manipulated variables. This means that 
probably the problem formulation is not correct, and 
output yi is not controllable. Another source of singularity 
which is of more concern is the singularity of the 
characteristic matrix. In this situation, the characteristic 
matrix is not invertible. As a result, the system is not 
feedback linearizable. 
 
INPUT-OUTPUT  EXACT  LINEARIZATION 

Kravaris and Soroush extended the GLC methodology 
to MIMO systems [5]. They derived necessary and 
sufficient conditions and studied the stability of the input-
output linearized systems. Consequently, they developed 
a static-state feedback law as follows: 
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Whose corresponding closed-loop response is: 
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Based on the necessary and sufficient conditions, as 
the equation (4) shows, the system is input-output 
feedback linearizable if it possesses definite relative 
orders and non-singular characteristic matrix. Additionally, 
an input-output linearized system is internally stable if its 
zero dynamics is stable. In other words the system must 
be minimum-phase. 
 
Linearization of non-minimum phase systems 

As it has just been stated, the key restriction for input-
output feedback linearization (IOFL) is the minimum-
phaseness condition. For linear systems, it is possible to 
separate the minimum-phase and nonminimum-phase 
components from each other and use the factorized stable 
part to control the system. However, it cannot be a 
general methodology to be used for all systems. In the 
case of nonlinear systems, modifying the input and output 
variables of the system is a more suitable choice. Since, 
usually the number of manipulated variables are limited, 
the major effort is to select outputs as appropriate as 
possible to fit the system into the linearizability 
conditions. 

Kravaris and Soroush showed it is possible to fit the 
system into the necessary conditions by modifying the 
outputs [5]. To do so, the original outputs should be 
substituted with statically equivalent ones to make the 
system minimum-phase. This way, Niemiec and Kravaris 
proposed an algorithm to synthesize new outputs [9]. 
They constructed vanishing manifolds on the equilibrium 
manifold of a nonlinear system to generate new outputs. 
In general, this set of vanishing manifolds is not unique, 
and there are infinite possible synthetic outputs for a 
certain system. The generated outputs are statically 
equivalent to the original ones, while during transitions 
they have distinct behavior. This causes an opportunity to 
assign desired transmission zeros to the system and make 
the overall system nonminimum-phase. The algorithm for 
producing vanishing manifolds as well as transmission 
zeros is outlined in [9]. The new outputs are in the form 
of equation (6). 

)x()x(h)x(h* ηΛ+=                                                      (6) 

Where, h and h&  represent the original and synthetic 
outputs, respectively. η is the vector of vanishing 
manifolds and Λ  is the matrix of weighting parameters 
to place transmission zeros of linearized system to pre-
assigned locations. The weighting parameters can be 
constant values or functions of state variables. In the 
former case, the corresponding Sylvester equation must 
be solved whose main drawback is being ill-condition or 
low-rank for high dimensional systems. For latter, the 
problem will be converted into a singular PDE system 
and can be solved only for moderate nonlinear systems, 
in a reasonable time. 
 
OPTIMAL  CONTROL  OF  LINEAR  SYTSTEMS 

Due to the simplicity of the linear time-invariant 
systems, in this direction the control theorem has been 
extended widely. Moreover, many numerical packages 
have been developed and optimized for such systems. 
Multi-model and IOFL are two examples of control 
structures which make use of linear systems theorem 
facilities. A linear system without direct affection of 
inputs on outputs can be showed as follows: 

Cxy;BuAxx =+=&                                          (7) 

The major goal of converting systems into the linear 
format is to take advantage of the low computational cost.  
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Mathematically, an optimal control problem for linear 
systems can be solved efficiently if the objective function 
is in the following quadratic form: 

∫ +=
f
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t

t
TT dt)uRuxQx(

2

1
J                                            (8) 

where R, the weight of input vectors, is a positive definite 
matrix. Also, Q is the matrix of weight factors of the state 
variables. Furthermore, if other constraint and bounds are 
taken into account they must be of linear type. 
 
INCENTIVES  OF  PROPOSED  METHOD 

Nowadays, the integrity is the essential property of 
chemical processes whose main drawback is difficulty in 
designing the control systems. This makes the use of 
multivariable control configurations a necessity to fulfill 
the control objectives. The proposed method is supposed 
to take advantage of both exact input-output linearization 
and linear optimal control theory to control nonlinear 
systems. This goal can be achieved in a two-step 
approach. First, the nonlinear system is linearized via 
IOFL. In the next step, this linear time-invariant system is 
controlled via the linear multivariable optimal control 
theory. Based on this idea, the structure of such a control 
configuration is illustrated in Fig. 1. The inner loop 
consists of a nonlinear compensator in which the 
nonlinear system is linearized using IOFL, and the outer 
loop is utilized to control this linear system. 

Optimal setpoint tracking which is a kind of a fixed-
endpoint problem [16] is an appropriate case-study to 
verify this configuration. In mathematical formulation, 
minimizing the functional subject to the dynamics of the 
linear system and end-point values is the main objective. 
This problem can be showed as follows: 
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where z is the vector of state variables, and v is the vector 
of manipulated variables of linear system in new 
coordinates. 

Since the optimization problem in this form is a 
quadratic functional of virtual variables (v, z) which may 
have no physical meaning, the contemporary cost 
functions cannot be interpreted as the objective function. 
In  fact,  such  a  kind of function is a qualitative criterion 

 
 
 
 
 
 
 
 
 
 
Fig. 1: The hybrid optimal control structure for nonlinear 
systems system. 
 
which is more favorable from the operating viewpoint. 
With such a rationale, there is not much difference 
between using original and virtual variables. In this 
fashion, the optimal results for virtual variables can be 
considered as near-optimal solutions for the original 
system. 
 
SIMULATION  EXAMPLES 

In this section, the proposed method is used to 
optimally control the transitions of nonlinear systems.  
We consider two nonlinear systems, one of which is a 
minimum-phase and the other one is a non-minimum-
phase real chemical process. For both simulation examples 
the objective function has the formulation of equation (9). 
Specially, there are no other constraints on the systems. 
Both simulation studies were run on a Pentium IV with 
1.73 GHz Dual Core CPU and 1 GB RAM. 
 
Optimal Control for a minimum phase system 

One of the most common and severely nonlinear 
polymerization reactions is free radical polymerization of 
methyl methacrylate (MMA) which takes place in a 
CSTR where Azo-bis-isobutyronitrile (AIBN) is the 
initiator and toluene is the solvent. The reaction is 
exothermic and its heat is removed through a jacket 
cooling system. As a major simplification it is assumed 
that the process is standard free-radical polymerization, 
no gel effect has been considered and the flow of initiator 
is negligible. The process consists of 2 inputs as well as 2 
outputs. The manipulated variables, flow of initiator (FI) 
and flow of cooling water (Fcw), have been used to 
control the number average molecular weight (DI/D0) and 
reactor temperature (T) at desired points.  

 

Linear 
multivariable 

controller 

 

Nonlinear 
compensator 

(IOFL) 

 
Process 
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More information about the dynamic model of the 
system and its parameters are given in appendix A. This 
system is minimum-phase, non-singular and consequently 
input-output feedback linearizable. Both outputs have 
relative order of 2 which means the overall linear system 
has 4 state variables. The decoupled closed loop response 
for this process is selected as follows [6]: 

⎥
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The selected normal operating condition for the 
process is Te=329.6C and DI/D0 = 67348.1. Increasing 
reactor temperature by 6 C and decreasing average 
molecular weight by 10000 units during 1 hour is the 
major goal. In this case, we have only considered the 
effect of input variables in the objective function (R=I, 
Q=0). In Figs. 2 through 7 the variations of linearized 
system inputs (v), process inputs (u) and process outputs 
(y) have been plotted. It should be noted that the inputs of 
linearized system have no physical meaning, and rapid 
changes in their values make no instability in the system. 
To prove the claim, it has been illustrated in Figs. 4 and 
5, that the variations of process inputs (u) are completely 
mild and valid.  

As it is expected this procedure is very fast, and 
calculations of the optimal trajectory for this case took 
0.012 s which is incomparable with nonlinear optimal 
control algorithms [2]. 

 
Optimal Control for a non-minimum phase system 

This example is an optimal control problem for a non-
isothermal continuous stirred tank reactor which consists 
of parallel and serial reactions [18]. The details of the 
model and kinetic data are given in appendix B. 

285
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75
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65 )OH(HCOHHCHC 2221 ⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ++  

1210
K

65 HCHC2 3⎯→⎯  

OHHCB,HCA 7565 ≡≡  

1210285 HCD,)OH(HCC ≡≡  

The objective is to control the temperature and the 
molar concentration of component B at desired points by 
dilution rate (F/V) and heat duty (QH).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Optimal trajectory for first input of linearized MMA 
process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Optimal trajectory for second input of linearized MMA 
process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Optimal trajectory for cooling water flow in MMA 
process (First input). 
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Fig. 5: Optimal trajectory for initiator flowrate in MMA 
process (Second input). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Optimal trajectory for average molecular weight in 
MMA process (First output). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Optimal trajectory for temperature in MMA process 
(Second output). 

The initial operating conditions of the reactor are at 

L/mol25.1Ce
A = , L/mol9.0Ce

B =  and K15.407T e =  

while their equivalent manipulated variables are 
1e

1 h52.19u −=  and 1e
2 kjh51.451u −−= . The process is 

stable while it has one unstable zero at 122.71, [9]. By 
finding synthetic outputs for the system and placing 
transmission zeros at desired locations through the 
algorithm proposed by Niemiec and Kravaris [9], the new 
system is input-output feedback linearizable. Since the 
relative orders of both outputs of the system are 2, we 
select the following closed-loop response: 
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In this way the outputs are linearized and decoupled at 
the same time. Our objective is to take the system to the 

desired conditions which are L/mol8.0Ce
B =  and Te = 390 

K during 10 hours. To do so, we have selected the 
identity matrix as the inputs and states weighting matrices 
(R=Q=I). Figs. 7 through 11 show the variations in 
virtual inputs (v), process inputs (u) and process outputs 
(y) during transitions.  

The variations near the end of the time span have their 
greatest values. This is due to the fact that the objective 
function is concerned with the weighted values of input 
and state variables, while there is no constraint on their 
rate of changes. The size of the linearized system is the 
same as it was at the former simulation example. 
Therefore, for this case the calculations took a time of 
0.012 seconds too. 

 
CONCLUSIONS 

A framework for the optimal control of nonlinear 
systems based on input-output feedback linearization has 
been presented. This framework consists of two steps, 
which are design of a nonlinear compenstaor based on 
input-output linearization theory used as  the inner loop, 
and an external controller designed based on the optimal 
control theory. The formulations and algorithms required 
to linearize minimum-phase and non-minimum-phase 
system are reviewed. This leads to the definition of the 
linear-quadratic optimal control problem.  
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Fig. 8: Optimal trajectory for inputs of linearized non-
isothermal CSTR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Optimal trajectory for dilution rate in non-isothermal 
CSTR (First input). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Optimal trajectory for heat duty in non-isothermal 
CSTR (Second input). 

The rationale and benefits of the proposed method 
have been elaborated. Two MIMO case-studies, one 
minimum-phase and one non-minimum-phase system, 
were used to evaluate the performance of the proposed 
method. The results show that the proposed method could 
be used to optimally control various nonlinear systems. 
 
Appendix A: Kinetic model of MMA free radical 
polymerization 
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The kinetic coefficients and parameters of the system 
are presented in table A1 and A2 in order. 
 
Appendix B: Kinetic model of non-isothermal CSTR 
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Table A1: Kinetic coefficients of MMA free radical reactions. 
ij 

Zij Eij 

Tc 3.8223E+10 2.9442E+03 

Td 3.1457E+11 2.9442E+03 

ij 3.7920E+18 1.2877E+05 

P 1.7700E+09 1.8283E+04 

fm 1.0067E+15 7.4478E+04 

 
Table A2: Parameters of MMA free radial reactions model 
(Normal operating condition). 

F=1 Fcw=3.26363 V=0.1 
0wT =293.2 

R=8.314 FI=0.01679 Mm=100.12 sp
1y =25000 

inIC =6 ρ=866 A=2 sp
2y =335 

U=720 -∆Hp=57800 V0=0.02  

Tin=350 Cw=4.2 f*=0.58  

 
Table B1: Kinetic parameters of the non-isothermal CSTR. 

0AC CA0 =5 mol/l ∆H2 = -11 kJ/mol E1/R = -9758.3 K 

T0=403.15 K ∆H3 = -41.85 kJ/mol E2/R = -9758.3 K 

ρ = 0.9342 kg/l k10 = 1.287×1012/h E3/R = -8560.0 K 

Cp = 3.01 kJ/(kg K)  K20 = 1.287×1012/h  

∆H1 = 4.2 KJ/mol K30 = 9.403×109 l/(mol h)   

 

=
dt
dT  

p

H
2
A33B22A11

C
QC)T(k)H(C)T(k)H(C)T(k)H(

ρ
+∆−+∆−+∆−  

V
F)TT( 0 −+  

where The kinetic parameters of the system are presented 
in table B1. 
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