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ABSTRACT: In this paper, the fuzzy system has been used for fault detection and diagnosis of  
a yeast fermentation bioreactor based on measurements corrupted by noise. In one case, 
parameters of membership functions are selected in a conventional manner. In another case, using 
certainty factors between normal and faulty conditions the optimal values of these parameters  
have been obtained through the genetic algorithm. These two cases are compared based on  
their performances in fault diagnosis of a yeast fermentation bioreactor for three different conditions. 
The simulation results indicate that the fuzzy-genetic system is superior in multiple fault detection 
for the conditions where the minimum and maximum deviations from normal conditions occur in  
the process variables. 
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INTRODUCION 
A failure can be described as diversity of malfunction 

in the real plant which can be caused due to instruments 
failures, disturbances and plant parameters uncertainties. 
The abnormal conditions in a plant can result in financial 
losses. Therefore, in the chemical processes, fault 
diagnosis has been the focal point of many researches and 
various fault detection and diagnosis strategies have been 
presented in the literature. The fault diagnostic systems 
should possess desirable characteristics such as quick 
detection, isolability, robustness and multiple fault 
identifiability [1].  

The fault detection strategies can be classified in two 
groups based on the type of knowledge and information  
 
 
 

being used. In the first group, the mathematical model  
of the system is used for fault detection like Signed  
Direct Graph (SDG), Fault tree, Extended Kalman Filter (EKF). 
For example, Cui et al. [2] presented a model based 
online fault detection and diagnosis strategy for 
centrifugal chiller systems. Sotomayor et al. [3] utilized 
unknown input observer methods for designing fault 
diagnosis systems for a styrene polymerization reactor 
and the FCC reactor–regenerator system. Nelly Olivier-
Maget et al. [4] presented a method for the fault detection 
based on the comparison between the reference model 
evolution and the real system generated by the extended 
Kalman filter for the industrial plant. 
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In most cases, finding rigorous mathematical model 
of the process is very difficult or even impossible. 
Therefore, in order to overcome this problem, model 
independent strategies have been used [5]. Among these 
methods statistical based techniques and intelligent 
strategies have been used frequently. Genovesi et al. [6] 
presented a fuzzy logic based diagnosis system and 
implemented it, for the fault diagnosis of a wastewater 
treatment plant. Eslamloueyan et al. [7] designed an 
efficient probabilistic neural network for fault diagnosis 
of nonlinear processes operating at multiple operating 
regions.  He et al. [8] proposed a new fault diagnosis 
approach with variable weighted kernel Fisher 
discriminant analysis for the Tennessee Eastman process. 

Detroja et al. [9] presented an approach based on the 
Correspondence Analysis (CA) for fault diagnosis systems. 
Cen Nan et al. [10] proposed a knowledge-based fault 
diagnosis method using the valuable knowledge from the 
experts and operators for a micro steam power. 

In this work, an intelligent strategy (fuzzy logic)  
is proposed for fault detection and diagnosis of a yeast 
fermentation bioreactor. First a conventional fuzzy 
system has been designed for fault diagnosis. Second, 
genetic algorithm is used to select the appropriate 
parameters of membership functions for optimizing the 
fault diagnosis designs. The performances of the 
proposed strategies are evaluated for two groups of faults. 
The first group has the minimum deviation from the 
normal condition while the second group has the 
maximum deviation.  

 
FAULT  DIAGNOSIS  BASED  ON  FUZZY  LOGIC 

The importance of Fuzzy Logic (FL) derives from the 
fact that most modes of human reasoning and especially 
common sense reasoning are approximative in nature [11]. 
Fuzzy logic has many applications in medicine [12], 
control [13], modeling [14], fault detection, diagnosis [15] 
and so on. Fuzzy systems can handle problems with 
imprecise and incomplete data, and it can also 
approximate various types of nonlinear functions. Furthermore, 
the implementation of FL is flexible and easy. The fuzzy 
fault diagnosis consists of the following three steps: 

1. Fuzzification: The fuzzifier converts the crisp input 
parameters into linguistic variables. The membership 
function transforms the degree of fuzziness into the 
normalized interval [0,1]. Usually, each linguistic  
 

Table 1: The MIMO form of linguistic rules. 
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variable has several fuzzy sets. A fuzzy set is represented 
by a set of pairs Mi/Ci, where Mi is the membership 
function for the linguistic value Ci.  

2. Fuzzy rule base: The rule base consists of a set of 
linguistic IF–THEN rules. Fuzzy rules link the input 
variables of fuzzy system to its output variables. In fault 
diagnosis based on fuzzy logic, the fuzzy relations 
between faults and symptoms are assumed to be one to 
many (i.e. one fault may cause several symptoms).  
The number and complexity of rules depend on the number of 
input parameters that are to be processed and the number 
of fuzzy sets associated with each parameter. The MIMO 
rule with m input and n output is shown in Table 1. In this 
table u and y are input and output of linguistic variables, 

respectively. 
j
iA%  denote the jth linguistic value of the 

linguistic variable ui and j
iB%  indicate the jth linguistic 

value of the linguistic variable yi. 
3. Inference engine: To define the relationship 

between fuzzy sets of inputs and outputs, fuzzy inference 
should be established. For example: 

If Sym1 is S1,n AND Sym2 is S2,n AND … AND Symm 
is Sm,n Then F1 is H1 where Symi (i = 1. . . m) is the  
vector of fuzzy input variables (symptoms) and Fj (j = 1 . . . n) 
is the fuzzy output variables (Faults). Si,j is the input 
linguistic value relevant to jth output and Hj is the output 
linguistic value. Then, the degree of membership of each 
linguistic value of the output will be expressed as 
follows: 

h i, jH Sμ = ∏μ                                                                   (1) 

where μ is the final membership value resulted by 
fuzzy logic. The schematic of a fuzzy fault diagnosis 
system is shown in Fig. 1.  
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Fig. 1: Schematic diagram of a fuzzy fault detection system. 
 

The input and output membership functions of a fuzzy 
fault diagnosing system can be triangular functions, 
trapezoidal functions or Gaussian functions. The most 
flexible and accurate type of membership function is the 
Gaussian function which is obtained at the expense of 
more computational load. They are not usually used for 
systems with lots of inputs and outputs. However, since 
the number of inputs and outputs for the system under 
consideration used is not large, in order to have an 
accurate and yet flexible system the Gaussian membership 
functions are used. Five applied linguistic fuzzy sets for 
the input and output variables are NL (Negative Large), 
NS (Negative Small), Z (Zero), PS (Positive Small) and 
PL (Positive Large). The functions of fuzzy sets can be 
determined according to the following equations: 

For fuzzy set NL: 

N
N 2

N N

1 if x C

exp( .5((x C ) / ) ) else

⎧= ≤⎪μ = ⎨
= − − σ⎪⎩

                           (2) 

For fuzzy set PL:   

P
P 2

P P

1 if x C

exp( .5((x C ) / ) ) else

⎧= ≥⎪μ = ⎨
= − − σ⎪⎩

                           (3) 

For fuzzy set Z, NS and PS:   
2

Z Z Zexp( .5((x C ) / ) )μ = − − σ                                           (4) 

Where x  is the deviation of the normal variable. μ is  
the degree of the membership function and c,σ are  
the parameters of the membership function.  

The corresponding membership function can be 
constructed according to Fig. 2. 

It should be mentioned that, using an algorithmic  
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2: Schematic of the applied fuzzy sets. 
 
solution may improve the results of the fuzzy diagnosis 
system. As too many parameters of fuzzy sets exist  
and their extreme values are wide-ranged, an optimization 
method should be used in order to obtain the appropriate 
values for the parameters of each fuzzy set. In the present 
work, a genetic algorithm has been used for the design of 
the parameters of fault diagnosis system which will be 
described in the following section. 

 
THE  GENETIC  FUZZY  DIAGNOSIS  SYSTEM 

Genetic algorithm (GA) can be considered as one  
of the available approaches for global optimization which 
is inspired from the evolutionary mechanisms that exist  
in the Mother Nature. In the binary GA the decision variables 
whose optimum values are being sought are encoded in  
a binary string called chromosome. Each part of this binary 
string (called genotype) corresponds to a specific decision 
variable (called phenotype). The algorithm uses a set of 
chromosomes (called population) rather than a single one 
which increases the probability of reaching the global 
optimum. Fitness function which is somehow related to 
the objective function represents the suitability of each 
chromosome. The cycle of the ‘fitness’ evaluation of all 
chromosomes and obtaining the new population is called 
a generation. The chromosomes of the new generation are 
obtained based on genetic operators. The selection 
operator chooses two chromosomes from a set of 
chromosomes (called mating pool) in which the 
chromosomes with higher fitness values have more 
copies than those with poor fitness. This approach is used 
to make sure that chromosomes with better fitness have 
priority to participate in the production of new 
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chromosomes. The selected chromosomes produce two 
new chromosomes called offspring through the following 
procedures: 

(a) Mating the selected two chromosomes from 
mating pool using the crossover operator. 

(b) Random change of the newly produced 
chromosome using the mutation operator. 

The crossover operator consists of the information 
exchange between parent chromosomes in order to 
generate two offspring. The mutation operator makes 
random changes on the selected genes of each offspring. 
The algorithm goes through numerous generations in 
which the chromosomes are evolved to increase their 
fitness until the termination criterion is met [16]. There 
are various termination criteria in the literature, the most 
frequently used approaches are as follows: 

1) Reaching the maximum number of generations 
2) Getting a small difference between the average and 

maximum fitness of the population 
3) Getting a population in which the percent of 

similarity between the chromosomes is beyond a 
threshold  

As can be seen in equations 2, 3 and 4, the number of 
the Gaussian function parameters in each fuzzy set is two. 
Therefore, the number of adjustable variables is 
calculated by the following equation: 

nAG= 2*nFS*nMV                                                              (5) 

where nAG is the number of adjustable variables, nFS is 
the number of fuzzy sets for each variable and nMV is the 
number of measured variables. Consequently, the nAG 
parameters should be determined by genetic algorithm.  

In this paper, the genetic algorithm has been used to 
optimize membership function parameters of fuzzy 
diagnosis system. The structure of the chromosome used 
in the Genetic Algorithm has been designed such that  
it contains all the parameters of the fuzzy diagnosing 
System. This structure has been shown in Fig. 3. The 
fitness function of the genetic fuzzy diagnosis system is 
the difference of certainty factors between normal and 
faulty conditions. If the parameters of fuzzy sets which 
are decrypted from the chromosome whose fitness  
is evaluated, are appropriate and lead to an efficient and 
accurate fuzzy diagnosis system, the fitness value of the 
chromosome will be almost one, otherwise its fitness 
would be a smaller number. Hence, the best chromosome  
 

 
 
 

i=1,…, nFS 
j=1,…, nMV 

 

Fig. 3: The structure of the chromosome used in the GA. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Schematic diagram of the fermentation reactor. 

 
of each generation represents the parameters of the fuzzy 
diagnosing system which gets more accurate and 
efficient. At the time when the similarity ratio of the 
chromosomes in each generation is beyond a certain 
threshold (about 96%), the GA has converged to the 
optimum set of parameters representing the design of 
appropriate fuzzy diagnosing system. 

An initial population of Chromosomes is randomly 
generated. The population in each generation is taken as 
100 and crossover probability and mutation probabilities 
are chosen to be 0.7 and 0.1 respectively. The number of 
bits used to span the interval of each parameter  
is assumed to be 10. 
 
CASE  STUDY 

The considered case study is a yeast fermentation 
bioreactor that is shown schematically in Fig. 4. This 
process is one of the most frequently used biochemical 
processes. The process model can be obtained using 
material and energy balances as presented by Nagy [17]: 

Material balance: 

P PS eX K c
X X X

S S

c Fdc
c e c

dt K c V
−= μ −

+
                             (6) 

C1,j
 σ1,j

 Ci,j σi,jσi,1Ci,1… … … σ1,1C1,1 … 

Fi    cS,in   Tin  

cS  cX   cP  Tr    Fe

TC, in   FC

TC     FC

α  Fb   

pHC  

TC  

CC  
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P PS S K c
X X

SX S S

dc c1 c e
dt R K c

−= − μ −
+

                              (7) 

P1 PS eiK c
P X S,in P

SP S1 S

c FF1 c e c c
R K c V V

−μ + −
+

 

P1 PS eP K c
P X P

S1 S

c Fdc
c e c

dt K c V
−= μ −

+
                             (8) 

where cx, cs and cp are concentrations of biomass, 
substrate and product respectively. 

The concentration of the dissolved oxygen in the 
rector is evaluated from the following equation: 

2

2 2 2

O *
1 O O O

dc
(k a)(c c ) r

dt
= − −                                         (9) 

where rate of oxygen consumption is given by: 

2

2 2
2 2 2

O
O O X

O O O

c1r c
Y K c

= μ
+

                                            (10) 

Energy balance:   

er i
in r

FdT F
(T 273) (T 273)

dt V V
= + − + +                           (11) 

2O r T T r ag

r heat,r r heat,r

r H K A (T T )
32 C V C

Δ −
−

ρ ρ
 

C C T T r C
C,in C

j C Heat,C

dT F K A (T T )
(T T )

dt V V C
−

= − +
ρ

                     (12) 

where Tr and Tc  are reactor and jacket temperatures. 
To model pH variation, it is assumed that the 

microorganisms produce acid (HA) and a base (BOH)  
is used for neutralization and pH control. x1 and x2  
are defined as given below:  

[ ]1x HA A−⎡ ⎤= + ⎣ ⎦                                                        (13) 

[ ]2x BON [B ]+= +                                                       (14) 

Material balance on A and B yields:  

e1
1 1,gen

Fdx
x x

dt V
= − +                                                    (15) 

b b e2
2

F (F F )dx
x

dt V V
+

= α −                                             (16) 

Where Fb is the base flow rate and xl,gen is given by: 
2

gen
1,gen gen

a

H
x H

k
= +                                                    (17) 

Hgen is the rate of hydrogen production by 
microorganism obtained from the following equation: 

x X
gen

x / H

c
H

Y
μ

=                                                                (18) 

The reactor pH is related to x1 and x2  through 
neutrality condition as given below: 

a W

PH
1

2(PK PH) PK PKPH

x 10 x
1 10 10 10 β− −−

− + +
+ +

                 (19) 

PH PH
w10 k 10 0− − =  

For detailed information the readers are referred to 
articles in which the details of the modeling approach 
have been expressed [17, 18]. 

Model parameters are presented in Table 2. For this 
system, three PI controllers are used to control 
temperature, product (ethanol) concentration and pH of 
the reactor by manipulating coolant flow rate, flow of the 
substrate entering the reactor and the input flow rate of 
the base. The measurements singles in the process have 
been all corrupted by zero mean white noises. 
Furthermore, it is assumed that the controllers are always 
working appropriately and no fault occurs in their 
operation. 

Faults are divided in two groups based on the level of 
deviations from their corresponding normal values.  

The 1st group: 
Minimum deviations from normal conditions: 
F1 1% decrease in the feed temperature (Tin) 
F2 1% increase in the glucose concentration in the 

feed flow (Cs, in) 
F3 5% increase in the coolant input temperature (Tc, in) 
F4 0.5% decrease in the heat transfer coefficient (KT) 
The 2nd group: 
Maximum deviations from normal conditions: 
F1   20% decrease in the feed temperature (Tin) 
F2   20% increase in the glucose concentration in the 

feed flow (Cs, in) 
F3 15% increase in the coolant input temperature (Tc, in) 
F4 20% decrease in the heat transfer coefficient (KT) 
It is assumed that the following variables are 

measured for process fault diagnosis: 
1. Coolant flow rate (Fc) 
2. Feed flow rate (Fi) 
3. Base flow rate (Fb) 
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Table 2: Parameters of the process model. 

A1 = 9.5*108 
3COH = 0.485 

3CaCOm =100 g 

A2 = 2.55*1033 HHO = 0.941
 2MgClm =100 g

 
Cheat,ag =  4.18 J.gr-1.K-1 2OK  = 8.86 mgr/l RSX = 0.607

 
Cheat,r =  4.18 J.gr-1.K-1 KP1 = 0.07 g/l Tin = 25 °C

 
CS,in=60 g/l KP = 0.139 g/l Tin,C = 15 °C 

Ea1 = 55000 j/mol KS = 1.030 g/l V = 1000 

Ea2 = 220000 j/mol KS1 = 1.030 g/l Vj =50 l 

HNa= -0.550 KT = 3.6*105 J.h-1.m-1.K-1 
2OY =0.970 mg/mg 

HCa= -0.303 Ka = 8.32*10-4 mol/l  ΔHr =518 kJ/mol
 

HMg= -0.314 Kb = 1.78*10-5 mol/l 
2Oμ  =500 h-1

 
HH = -0.774 KW = 10-14 mol/l μP =1.790 h-1

 
HCl = 0.844 mNaCl = 500 g ρr =1080 g/l

 
(k1a)0=38 h-1 Yx/H =9330 ρc =1000 g/l 

 
Table 3: Results of 1st group fault detection by conventional 
fuzzy system for single fault using three measured variables. 

Single fault Certainty factors Final results 

Normal [0.00   0.00   0.00   0.00] Normal 

F1 [0.74   0.00   0.67  0.72] F1,F3,F4 

F2 [0.01   0.80   0.00   0.01] F2 

F3 [0.65   0.00   0.69   0.67] F1,F3,F4 

F4 [0.64  0.00   0.66   0.66] F1,F3,F4 
 

The 1st group 
The results of conventional diagnosing fuzzy system 

and fuzzy-GA system for single faults are presented in 
Tables 3 and 4. 

The results indicate that the two proposed strategies 
can't diagnose the plant faults. The reason can be 
explained as follows: 

Variations of Tin, Tc,in or KT have similar effects on Fc 
and therefore their corresponding faults cannot be 
distinguished and hence cannot be detected. This is 
mainly due to the fact that the system responds similarly 
to these three different inputs. 

To solve this problem, temperature of outlet cooling 
water has been added to the measured variables. The 
rules which describe the faults of the plant can be stated 
as given in Table 5. 

The Single, double, triple, quadruple faults diagnosis 
results based on conventional fuzzy and fuzzy-GA system 
 

Table 4: Results of 1st group fault detection by fuzzy-GA 
system for single fault using three measured variables. 

Single fault Certainty factors Final results 

Normal [0.00   0.00   0.00   0.00] Normal 

F1 [0.86   0.00   0.68   0.73] F1,F3,F4 

F2 [0.00   0.86   0.00   0.01] F2 

F3 [0.43   0.00   0.77   0.64] F3,F4 

F4 [0.64   0.00   0.72   0.73] F1,F3,F4 
 
are given in Tables 6 and 7. As can be seen all faults have 
been detected correctly. It is due to the fact that after the 
outlet temperature of the cooling water is measured, there 
is a unique set of outputs for each set of inputs. 
Therefore, the proposed strategies can identify the faulty 
variables successfully. 

Figs. 5 and 6 show the average fitness and similarity 
ratio in each generation of GA until the algorithm 
converges to its final results.  

The selected parameters of each fuzzy set are listed in 
Table 8 and also the optimized membership functions of 
input variables are presented in Table 9. 

 
The 2nd group 

The diagnosis results based on conventional fuzzy and 
fuzzy-GA when Tc is added to the measurement variables 
are given in Tables 10 and 11. 
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Table 5: Rules that applied for fuzzy diagnosis bioreactor system. 

Number of rule Rule 

1 IF Fc is NL And Fi is Z And Fb is Z And Tc is PL Then F1 is NL 

2 IF Fc is PL And Fi is Z And Fb is Z And Tc is NL Then F1 is PL 

3 IF Fc is PL And Fi is NL And Fb is PL And Tc is NL Then F2 is NL 

4 IF Fc is NL And Fi is PL And Fb is NL And Tc is PL Then F2 is PL 

5 IF Fc is PL And Fi is Z And Fb is Z And Tc is Z Then F3 is PL 

6 IF Fc is NL And Fi is Z And Fb is Z And Tc is Z Then F3 is NL 

7 IF Fc is PL And Fi is Z And Fb is Z And Tc is NL Then F4 is NL 

8 IF Fc is NL And Fi is Z And Fb is Z And Tc is PL Then F4 is PL 

9 IF Fc is NS And Fi is Z And Fb is Z And Tc is PS Then F1 is NS 

10 IF Fc is PS And Fi is Z And Fb is Z And Tc is NS Then F1 is PS 

11 IF Fc is NS And Fi is NS And Fb is PS And Tc is NS Then F2 is NS 

12 IF Fc is PS And Fi is PS And Fb is NS And Tc is PS Then F2 is PS 

13 IF Fc is PS And Fi is Z And Fb is Z And Tc is Z Then F3 is PS 

14 IF Fc is NS And Fi is Z And Fb is Z And Tc is Z Then F3 is NS 

15 IF Fc is PS And Fi is Z And Fb is Z And Tc is NS Then F4 is NS 

16 IF Fc is NS And Fi is Z And Fb is Z And Tc is PS Then F4 is PS 

 
Table 6: Results of 1st group fault detection by conventional fuzzy system  when Tc is added to the measured variables. 

Final results Certainty factors Faults 

Normal [0.00   0.00   0.00   0.00] Normal 

F1 [0.82   0.02   0.01   0.04] F1 

F2 [0.00   0.76   0.00   0.00] F2 

F3 [0.00   0.03   0.85   0.01] F3 

F4 [0.00   0.03   0.04   0.83] F4 

F1,F2 [0.81   0.80   0.01   0.06] F1,F2 

F1,F3 [0.87   0.00   0.84   0.03] F1,F3 

F1,F4 [0.79   0.00   0.03   0.75] F1,F4 

F2,F3 [0.04   0.89   0.83   0.01] F2,F3 

F2,F4 [0.03   0.86   0.00   0.89] F2,F4 

F3,F4 [0.04    0.00   0.82  0.75] F3,F4 

F1,F2,F3 [0.83   0.81   0.85   0.06] F1,F2,F3 

F1,F2,F4 [0.85   0.84   0.04   0.79] F1,F2,F4 

F2,F3,F4 [0.03   0.87   0.86   0.85] F2,F3,F4 

F1,F3,F4 [0.84   0.00   0.83   0.81] F1,F3,F4 

F1,F2,F3,F4 [0.78   0.83   0.86   0.80] F1,F2,F3,F4 
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Table 7: Results of 1st group fault detection by fuzzy-GA system when Tc is added to the measured variables. 

Final results Certainty factors Faults 

Normal [0.00   0.00    0.00   0.00] Normal 

F1 [0.98   0.00    0.01   0.00] F1 

F2 [0.00   0.97    0.00   0.00] F2 

F3 [0.00   0.00    0.99   0.01] F3 

F4 [0.01   0.00    0.00   0.95] F4 

F1,F2 [0.95   0.92    0.01   0.00] F1,F2 

F1,F3 [0.95   0.00    0.93   0.02] F1,F3 

F1,F4 [0.97   0.00    0.01   0.94] F1,F4 

F2,F3 [0.00    0.96   0.99   0.02] F2,F3 

F2,F4 [0.00    0.98   0.00   0.96] F2,F4 

F3,F4 [0.00    0.00   0.95   0.98] F3,F4 

F1,F2,F3 [0.97    0.96   0.95   0.01] F1,F2,F3 

F1,F2,F4 [0.95   0.93   0.00   0.98] F1,F2,F4 

F2,F3,F4 [0.02    0.99   0.98   0.97] F2,F3,F4 

F1,F3,F4 [0.97    0.00   0.99   0.98] F1,F3,F4 

F1,F2,F3,F4 [0.97    0.96   0.95   0.98] F1,F2,F3,F4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The similarity ratio versus generation in the 1st group. 
 

The results show that the proposed methods are able 
to classify four single faults, six double faults, four triple 
faults and quadruple faults correctly. As can be seen the 
genetic fuzzy system diagnoses the faults more accurately 
than the conventional fuzzy system. 
 
CONCLUSIONS 

In this paper, two fuzzy diagnostic systems are  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The average fitness versus generation in the 1st group. 
 
proposed for a yeast fermentation reactor. The first one is 
a conventional fuzzy system, while the second one is  
a fuzzy system whose membership function parameters 
are optimized by Genetic Algorithm in order to improve 
its performance. It is shown that with three measured 
variables, the system is not detectable; therefore one more 
measurement has been added to make the system 
detectable. To test the performance of the proposed 
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Table 8: The selected parameters of membership functions for the input variables. 

The measured variable (Fc) The measured variable (Fi) The measured variable (Fb) The measured variable (Tc) 
Fuzzy set 

C σ C σ C σ C σ 

NS -5 50 -0.3 10 -3.5e-4 40 -0.5 10 

NL -11 20 -1 50 -5.7e-4 5 -1.8 20 

Z -1 5 0 8 0 12 0.25 3 

PS 3 20 0.5 50 4e-5 5 0.9 30 

PL 8 30 1 10 8e-5 10 1.8 15 

  
Table 9: The optimized parameters of membership functions for the input variables. 

The measured variable (Fc) The measured variable (Fi) The measured variable (Fb) The measured variable (Tc) 
Fuzzy set 

C σ C σ C σ C σ 

NS -0.55 42.66 -0.82 98.29 -5.1e-4 141.41 -0.49 39.31 

NL -7.78 36.31 -0.93 9.30 -5.7e-4 63.48 -1.93 124.74 

Z 1.12 33.19 -0.52 29.11 -3.1e-4 8.28 1.02 60.13 

PS 1.67 105.87 0.25 129.32 1.20e-5 19.64 1.34 130.48 

PL 2.84 87.08 0.87 23.28 3.97e-5 39.45 1.56 124.07 

 
Table 10: Results of 2nd group fault detection by conventional fuzzy system when Tc is added to the measured variables. 

Final results Certainty factors Faults 

Normal [0.00   0.00   0.00    0.00] Normal 

F1 [0.85   0.00    0.04   0.06] F1 

F2 [0.05   0.84    0.07   0.03] F2 

F3 [0.06   0.00    0.80   0.05] F3 

F4 [0.06   0.00    0.07   0.78] F4 

F1,F2 [0.81   0.79    0.06   0.08] F1,F2 

F1,F3 [0.85   0.00    0.81   0.00] F1,F3 

F1,F4 [0.82   0.00    0.05   0.86] F1,F4 

F2,F3 [0.04   0.88    0.85   0.07] F2,F3 

F2,F4 [0.08   0.81    0.05   0.79] F2,F4 

F3,F4 [0.04   0.00    0.80   0.83] F3,F4 

F1,F2,F3 [0.86   0.88   0.82    0.02] F1,F2,F3 

F1,F2,F4 [0.86   0.83    0.06   0.79] F1,F2,F4 

F2,F3,F4 [0.03   0.82    0.78   0.81] F2,F3,F4 

F1,F3,F4 [0.80   0.00    0.85   0.84] F1,F3,F4 

F1,F2,F3,F4 [0.83   0.79    0.82   0.78] F1,F2,F3,F4 
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Table 11: Results of 2nd group fault detection by fuzzy-GA when Tc is added to the measured variables. 

Final results Certainty factors Faults 

Normal [0.00   0.00   0.00    0.00] Normal 

F1 [0.99   0.00    0.00   0.00] F1 

F2 [0.00   0.97    0.00   0.00] F2 

F3 [0.01   0.00    0.96   0.01] F3 

F4 [0.01   0.00    0.02   0.95] F4 

F1,F2 [0.96   0.97    0.00   0.01] F1,F2 

F1,F3 [0.99   0.00    0.97   0.00] F1,F3 

F1,F4 [0.94   0.00    0.00   0.98] F1,F4 

F2,F3 [0.01   0.96     0.97  0.01] F2,F3 

F2,F4 [0.02   0.98    0.00   0.97] F2,F4 

F3,F4 [0.01   0.00     0.97  0.99] F3,F4 

F1,F2,F3 [0.97   0.94    0.95   0.01] F1,F2,F3 

F1,F2,F4 [0.95   0.98    0.02   0.92] F1,F2,F4 

F2,F3,F4 [0.01   0.96    0.98   0.95] F2,F3,F4 

F1,F3,F4 [0.96   0.00     0.97  0.98] F1,F3,F4 

F1,F2,F3,F4 [0.97   0.99    0.94   0.97] F1,F2,F3,F4 

 
diagnostic systems, deviations in opposite directions from 
the normal condition are applied to system variables. 
Simulation results indicate that all faults have been 
detected correctly.  The main advantage of the proposed 
scheme is the ability of detecting multiple faults. 
Comparison of two fuzzy systems (conventional fuzzy 
system and the genetic fuzzy system) reveals that both 
systems can diagnose the system faults, but the genetic 
fuzzy system diagnoses the faults with a higher certainty 
factor. 
 
Notation 
AT                                                     Heat transfer area, m2 
A1 , A2           Preexponential factors in Arhenius equation 
C            The parameter of Gaussian membership function 
Cheat,ag                  Heat capacity of cooling agent, J g−1 K−1 
Cheat,r               Heat capacity of mass of reaction, J g−1 K−1 
CHm            Concentration of inlet medium protons, mol/L 
cj      Concentration of ion j, j = Na, Ca, Mg, Cl, CO3, etc. 

2Oc          Oxygen concentration in the liquid phase, mg/L 

2
*
Oc                Equilibrium concentration of oxygen in the  

                                                              liquid phase, mg/L 

2
*
O ,0c                     Equilibrium concentration of oxygen in  

                                                           distilled water, mg/L 
C

P                               Product (ethanol) concentration, g/L 
cS                            Substrate (glucose) concentration, g/L 
cS,in                 Glucose concentration in the feed flow, g/L 
cX                                 Biomass (yeast) concentration, g/L 
Ea1, Ea2            Apparent activation energy for the growth,  
                                     respectively, denaturation reaction 
Fb                          Flow of base entering the reactor, L h−1 
FC                                           Flow of cooling agent, L h−1 
Fe                                  Outlet flow from the reactor, L h−1 
Fi                   Flow of substrate entering the reactor, L h−1 
Fj                                            The jth fuzzy output variable 
Hgen                                     The generation of hydrogen by  
                                                       micro organism, mol/L 
Hh                                         The hth output linguistic value 
Hi                                        Specific ionic constant of ion i  
                                           (i = Na, Ca, Mg, Cl, CO3, etc.) 
Ii                                                       Ionic strength of ion i  
                                           (i = Na, Ca, Mg, Cl, CO3, etc.) 
(k1a)                   Product of mass-transfer coefficient for  
                             oxygen and gas-phase specific area, h−1 
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(k1a)0                      Product of mass-transfer coefficient at  
                     20 °C for O2 and gas-phase specific area, h−1 
Ka                            The acid dissociation constant, mol/L 
Kb                            The base dissociation constant, mol/L 

2OK                          Constant of oxygen consumption, g/L 

KP               Constant of growth inhibition by ethanol, g/L 
KP1                          Constant of fermentation inhibition by  
                                                                        Ethanol, g/L 
KS               Constant in the substrate term for growth, g/L 
KS1                                  Constant in the substrate term for  
                                                       ethanol production, g/L 
KT                          Heat transfer coefficient, J h−1 m−2 K−1 
KW                         The water dissociation constant, mol/L 
M                              The number of output fuzzy variable 
mi                                              Quantity of inorganic salt i  
                                              (i = NaCl, CaCO3, MgCl2), g 
Mi                    Molecular/atomic mass of salt/ion i, g/mol 
N                                 The number of input fuzzy variable 
nAG                              The number of adjustable variables 
nFS                   The number of fuzzy sets for each variable 
nMV                                   The number of measured variable 

2Or                      Rate of oxygen consumption, mg L−1 h−1 

R                       universal gas constant, 8.314  J mol−1 K−1 
RSP                          Ratio of ethanol produced per glucose  
                                                 consumed for fermentation 
RSX                                Ratio of cell produced per glucose  
                                                          consumed for growth 
Si,j          The ith input linguistic value relevant to jth output 
Symi                                        The ith fuzzy input variables 
T                                                                              Time, h 
TC              Temperature of cooling agent in the jacket, °C 
Tin                                  Temperature of the substrate flow  
                                                   entering to the reactor, °C 
Tin,C                                      Temperature of cooling agent  
                                                     entering to the jacket, °C 
Tr                                        Temperature in the reactor, °C 
V                                   Volume of the mass of reaction, L 
Vj                                                   Volume of the jacket, L 
x1             The total concentration of the anion acid, mol/L 
x1,gen                            The generation of the anion acid by  
                                                       micro organism, mol/L 
x2           The total concentration of the cation base, mol/L 
x                               The deviation of the normal variable  

2OY               Yield factor for biomass on oxygen, mg/mg,  

                       defined as the amount of oxygen consumed  
                                                  per unit biomass produced 

x / HY          Yield coefficient of biomass per proton, g/mol 
 
Greek symbols 
α                        The total cation base concentration in the  
                                                                 base flow, mol/L 
ΔHr                                      Reaction heat of fermentation,  
                                                           kJ/mol O2 consumed 
σ            The parameter of Gaussian membership function 
μ                           The degree of the membership function 

2Oμ        Maximum specific oxygen consumption rate, h−1 

μP                       Maximum specific fermentation rate, h−1 
μX                                Maximum specific growth rate, h−1 
ρc                                          Density of cooling agent, g/L 
ρr                                Density of the mass of reaction, g/L 
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