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ABSTRACT: A method based on Electrical Capacitance Tomography (ECT) and an improved 
Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of  
oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills 
are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is 
introduced to solve the difficult problem of parameters selection in LS-SVM then. In the measurement 
process, the flow pattern of oil-gas two-phase flow is identified by using fast back-projection image 
reconstruction and a fuzzy pattern recognition technique and the void fraction is computed using 
the void fraction model corresponding to the identified flow pattern. Experimental results 
demonstrate that both the improvement of LS-SVM and the parameter optimization are effective. 
The results also show that the real-time performance of the proposed void fraction measurement 
method is good, and the measurement precision can satisfy the application requirement. 
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Least Squares Support Vector Machine (LS-SVM), Real-Coded Genetic Algorithm (RC-GA). 
 
 

INTRODUCTION 
Two-phase flow exists widely in industries such as 

chemical, petroleum and power. Void fraction is one of 
the important parameters of oil-gas two-phase flow.  
The on-line void fraction measurement is of great importance 
for safety, environmental protection and energy conservation 

in industry. However, the flow characteristics of  
two-phase flow are far more complicated than those of 
single phase flow, owing to the phase interface and relative 
velocity in the two-phase flow. On-line void fraction 
measurement has become a key problem in the two-phase 
flow research field and this problem has not been solved 
well till now [1,2]. 

The technology of Electrical Capacitance Tomography 
* To whom correspondence should be addressed. 
+ E-mail: Pengzr@mail.lzjtu.cn 
1021-9986/10/1/41       10/$/3.00 

 (ECT), with the features of simplicity, non-intrusiveness, 
low cost, and fast speed, has gained some achievements 
in the void fraction measurement of two-phase flow. 
However, in conventional void fraction measurement 
methods based on ECT, the void fraction values are 
estimated by the cross-sectional images of the voidage 
distribution of two-phase flow. A high quality image is 
necessary to determine the precise void fraction. While 
reconstructing a high quality image needs a complex and 
time-consuming image reconstruction algorithm,  
this method cannot satisfy the real-time requirement of 
the measurement [1,2]. 

Support   Vector  Machine  (SVM),  a  novel  machine  
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learning method with high generalization ability, 
developed by Vapnik and his co-workers, has been 
successfully used in many applications including pattern 
recognition, function estimation and financial time series 
forecasting [3-5]. Least Squares Support Vector Machine 
(LS-SVM), a new version of SVM, has the features of 
simplicity, high efficiency and quick convergence [4].  
At present, some drawbacks still exist in LS-SVM.  
When these drawbacks are overcome, LS-SVM will be 
more suitable for the modeling of void fraction 
measurement of two-phase flow, which is essentially a 
function estimation problem. 

The goal of the present work is to propose a new 
method for on-line void fraction measurement of oil-gas 
two-phase flow. In this method, ECT sensor is used to 
obtain capacitance measurement information. The flow 
pattern is identified by combining fast ECT image 
reconstruction with fuzzy pattern recognition. An improved 
LS-SVM is applied to establish the void fraction measurement 
models corresponding to different flow patterns.  
In the practical measurement process, the flow pattern of 
oil-gas two-phase flow is identified by using fast  
back-projection image reconstruction and fuzzy pattern 
recognition techniques first, and then the void fraction is 
computed by using the void fraction model corresponding 
to the identified flow pattern. 

 
EXPERIMENTAL  SECTION 
Experimental Set-Up 

Fig. 1 shows the void fraction measurement system, 
which mainly consists of a 12- electrode ECT sensor,  
a data acquisition and signal processing unit and  
a computer. In this figure, the computer is not displayed. 
Fig. 2 shows the 12-elcotrode capacitance sensor.  
Fig. 3 shows the more detailed structure of the ECT 
sensor, which consists of 12 electrodes mounted on  
the outside of an insulating pipe, projected guard electrodes, 
screen, and insulating pipeline. The insulating pipeline  
of the capacitance sensor is made of  plexiglass.  Its  inner 
diameter is 50mm and its thickness 4 mm. The length of 
each electrode is 60mm and the width of each electrode 
13.0 mm. The capacitance sensor converts the distribution 
of the two-phase flow medium in the pipeline to the 
capacitance output of the capacitance sensor [2,6]. 

Fig. 4 shows the capacitance data acquisition and 
signal processing unit. This unit measures the capacitance 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1: Void fraction measurement system. 1- Data acquisition 
& signal processing unit,  2- 12- electrode ECT sensor. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2: 12-Elcotrode capacitance sensor. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3: Schematic diagram of 12-elcotrode capacitance sensor. 
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Fig. 4: Schematic diagram of data acquisition & signal 
processing unit. 
 
between all possible combination pairs of the 12 electrodes, 
converts the measured capacitance into a digital signal, 
and sends the data to the image reconstruction computer. 
The capacitance-to-voltage (C/V) conversion circuit  
(the capacitance measurement circuit) in the capacitance 
data acquisition and signal processing unit, has high data 
acquisition speed, wide dynamic range, stray-immunity, 
and low base-line drift [2,6]. 

Channel selection, output of ADC and the gain setting 
of PGA are controlled by a microcontroller. The results 
of analog-to-digital conversion are sent to the image 
reconstruction computer by the micro-controller via  
the serial communication module. 

 
Measurement  Principle 

The void fraction measurement principle is as follow. 
Each phase (component) of two-phase flow has its own 
permittivity (dielectric constant), which is different from 
that of the other phase. The change of void fraction and 
its distribution leads to the alteration of equivalent 
permittivity of two-phase flow and further results in the 
variation of capacitance measurement values. By measuring 
the capacitance changes between all possible combination 
pairs of the electrodes of capacitance  sensor,  the  change 
of two-phase flow void fraction and its distribution can be 
obtained [2]. Taking the 12-electrode ECT system as an 

example, there are 66 ( 2
12C =  12 (12 1) / 2 66× − = ). 

Capacitance measurement values between all possible 
combination pairs of the electrodes of capacitance sensor. 
Since   the  capacitance  measurement  values  reflect  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Flow pattern of oil-gas two-phase flow in horizontal 
pipeline [1]. 
 
change   of  void   fraction  of  two-phase  flow,  the  void 
fraction value β can be essentially regarded as a function 
of capacitance measurements: 

( )1,2 1,3 11,12f C ,C ,...,Cβ =                                               (1) 

Due to complex relationship between permittivity and 
capacitance measurement values, there is no analytical 
solution to Eq. (1). 

Flow pattern of two-phase flow is a three-dimensional 
flow phenomenon. There exist many kinds of flow 
patterns such as bubble flow, stratified flow, plug flow 
and annular flow as shown in Fig. 5. The flow pattern  
has great influence on the void fraction measurement.  
It is very difficult for single void fraction model to 
perform the void fraction measurement under different 
flow patterns. Meanwhile, despite the complexity of two-
phase flow, the void fraction is a cross-section parameter, 
which represents the ratio of the gas concentration to the 
total gas-liquid concentration. At a certain moment,  
the cross-section flow pattern only takes on one of the 
flow patterns (stratified flow, bubble flow, and annular 
flow), which are shown in Fig. 6. Therefore, this work  
adopts the improved LS-SVM to establish void-fraction 
measurement    model     corresponding    to    the     three 
cross-section flow patterns mentioned above.  
Thus, the influence of the flow pattern on the void fraction 
measurement is overcome to a great degree. The main 
idea for void fraction measurement in this work is shown 
in Fig. 7. The ECT capacitance sensor obtains the 66 
capacitance   values   and   sends  them  to  the  computer.  
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Bubble flow             stratified flow             annular flow 
 

Fig. 6: Cross-section flow pattern in horizontal pipeline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Void fraction measurement process of two-phase flow. 
 
The  linear  back   projection   algorithm   is   adopted   to 
reconstruct the cross-section image of two-phase flow in 
pipeline. The fuzzy pattern recognition technique  
is combined with the reconstructed image to identify  
the flow pattern (More detailed information about flow 
pattern identification can be found in reference [7]).  
The normalized capacitance measurement values are  
the input of the established void fraction model. The void 
fraction is computed using the void fraction model 
corresponding to the identified flow pattern. Thus,  
the online void fraction measurement is realized. 
 
VOID  FRACTION  MEASUREMENT  MODELING 

In this section, a brief description of regression  
LS-SVM is given, followed by the improvement of  
LS-SVM and the Real-Coded Genetic Algorithm (RC-GA) 
is applied to the optimal parameter selection in LS-SVM. 
Then, the simulation is conducted to validate the 
improved LS-SVM and the proposed parameters 
optimization method. Finally, the modeling process for 
the void fraction measurement is provided in detail. 

Regression LS-SVM 

Support Vector Machine (SVM) has been used as  
a method for classification and for function approximation. 
In this paper, void fraction measurement is essentially  
a function approximation problem. SVM has the 
remarkable characteristics such as good generalization 
ability, the absence of local minima, and sparse 
representation of solution. Another key characteristic of 
SVM is that training SVM is equivalent to solving a 
linearly constrained quadratic programming problem so 
that the solution of SVM is always unique and globally 
optimal. Least Squares Support Vector Machine  
(LS-SVM), a modification of SVM, adopts the least 
squares linear system as its loss function and therefore 
solves a set of linear equations. LS-SVM also has good 
convergence and high precision. Hence, this method is 
easier to use than Vapnik’s SVM (standard SVM). 

Given l training data (C1,β1),..., (Cl,βl) where the input 
Ci∈R66 is the 66 normalized capacitance values and  
the output βi∈R is the void fraction value of two-phase 
flow the void fraction regression problem can be 
represented as the regression LS-SVM form [4]: 

l
T 2

i
i=1

1 1min J(w,ξ)= w w+γ ξ
2 2∑                                        (2) 

subject to 

( )T
i i iw C b , i 1, 2...,1β = ϕ + + ξ =                              (3) 

Where J is the risk function or object function; 
( )ϕ ⋅ represents a high dimensional feature space, which 

is nonlinearly mapped from the input space; γ is the 
regularization parameter; ( )1 2 l, ,...,ξ = ξ ξ ξ  is the error 

vector; w and b are weight vector and bias term, 
respectively. 

 
Construct the Lagrangian 

( ) ( )L w,b, , J w, b,ξ α = ξ −                                             (4) 

( ){ }
l

T
i i i i

i 1
w C b

=

α ϕ + −β + ξ∑  

where αi ∈ R is the Lagrange multiplier, which can be 
positive or negative in the LS-SVM formulation. From 
the optimization conditions, the following equations must 
be satisfied: 

   

Obtain 66 capacitance values by ECT sensor

Image reconstruction by LBP algorithm 

Flow pattern identification through fuzzy 
pattern recognition technique 

 

Voidage value 
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( )

( )

l

i i
i 1

l

i
i 1

i i
i

T
i i i

i

L
0 w C

w

L
0 0

b
L

0

L
0 w C b 0

=

=

⎧ ∂
= → = α ϕ⎪ ∂⎪

⎪ ∂⎪ = → α =
⎪ ∂
⎨
∂⎪ = → α = γξ⎪ ∂ξ⎪

⎪ ∂
= → ϕ + −β + ξ =⎪ ∂α⎩

∑

∑
                        (5) 

With i=1,2,3,...,l. Eliminating w and ξ, the following 
matrix equation is obtained: 

T0 l b 0
1

l I

ν

ν

⎛ ⎞
⎡ ⎤ ⎡ ⎤⎜ ⎟ =⎢ ⎥ ⎢ ⎥⎜ ⎟ α βΩ+ ⎣ ⎦ ⎣ ⎦⎜ ⎟γ⎝ ⎠

                                                (6) 

Where β=[β1,…, βl] is the void fraction vector, with 
lν=[1,...,1], α=[α1,..., α]. Mercer’s condition is applied 
within the matrix Ω: 

( ) ( ) ( )T
ij i j i j i j i jC C K C ,CΩ = β β ϕ ϕ = β β                      (7) 

Where K(Ci,Cj) is a Kernel function satisfying 
Mercer’s conditions. There are several Kernel functions 
such as linear Kernel function, polynomial Kernel 
function and radial Kernel function (RBF). These typical 
Kernel functions are listed in Table 1. 

So far, the LS-SVM void fraction regression model  
is constructed as: 

( ) ( )
l

i i
i 1

C K C,C b
=

β = α +∑                                              (8) 

 
Improvement of LS-SVM 

As mentioned above, LS-SVM outperforms the 
standard SVM. But LS-SVM also has two drawbacks. 

First, LS-SVM lacks sparsity. Compared with 
Vapnik’s SVM, the sparseness is lost in the LS-SVM 
case. SVM has the sparseness characteristic in the sense 
that many αI values are equal to zero. This is not the case 
in the LS-SVM because αi = γξi from the optimization 
conditions.     Suykens    et   al.  [8]   proposed  a  pruning 
procedure for LS-SVM: discard a relative number of  
the least meaningful data points, whose corresponding 
coefficients iα are set to zero; re-estimate the LS-SVM 

and “sparse” LS-SVM is obtained. 

Table 1: Typical Kernel functions. 

Kernel function Expression 

Linear Kernel T
iC C  

Polynomial Kernel ( )dT
i1 C C+  

RBF Kernel ( )2 2
iexp C C− − σ  

 
Second, LS-SVM has poor robustness. When  

LS-SVM is applied to practical industrial applications, 
many distribution factors must be considered, since these 
factors may contaminate the measurement data, and even 
result in outliers. If these outliers exist in the LS-SVM 
model, the model will have poor robustness and 
deteriorating generalization ability. Usually, the data 
points, if seriously polluted by noise, may have relative 
large αi values (support values). If these αi values are 
involved in an LS-SVM model, large training errors are 
inevitably produced and the generalization performance 
of LS-SVM is greatly limited.  

Therefore, an easy pruning method is put forward to 
impose sparseness on LS-SVM. The pruning procedure 
is: discard data points with either very large or relative 
small errors; re-estimate the LS-SVM model using the 
data points remaining so that a more “sparse” LS-SVM  
is obtained. The steps are set out in more detail below.  

STEP1: Set l the number of training data and k the 
number of testing data. 

STEP2: Given l training data, determine the parameters 
(regulation parameter γ and Kernel parameter(s) such as 
σ2 corresponding to the RBF Kernel function) in  
LS-SVM; obtain the LS-SVM model and evaluate the 
generalization performance of LS-SVM through k testing 
data. The generalization performance is evaluated using 
the following metric, namely, the Mean Square Error 
(MSE): 

( )( )
k

2
i i

i 1

1
MSE y f x

k 1 =

= −
− ∑                                        (9) 

where yi denotes the actual value and f(xi) denotes the 
regression value from LS-SVM model. 

( )i i
i

i

y f x
e 100% , i 1,2,..., l

y
−

= × =                      (10) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Iran. J. Chem. Chem. Eng. Peng, Zhenrui and Yin, Hong Vol. 29, No. 1, 2010 
 

46 

STEP4: Sort all the ei; discard m data points 
corresponding to too small relative errors and n data 
points corresponding to too large relative errors. 

STEP5: Retain l-m-n data points and set l⇐l-m-n. 
STEP6: Go back to STEP1 and re-train LS-SVM on 

the reduced training data set, unless the MSE degrades. 

 
RC-GA based parameters selection 

The problem of parameter selection in SVM is 
encountered while using SVM. The training errors and 
generalization performance of SVM are directly affected 
by the selected parameters. The selection of the Kernel 
function and its parameters directly influences the 
generalization performance of LS-SVM, i.e. the precision 
of void fraction measurement in our context. However,  
it is difficult to select the proper parameters (Kernel 
parameters and regulation parameter) in LS-SVM. 
Therefore, many scholars do some research to solve  
the difficult problem of parameters selection. However, 
the grid-search method, which is time-consuming and 
laborious, is still preferred in practice [9]. This is only 
suitable for selection of few parameters selection because 
this approach does not perform well when more than 
three parameters are involved. Genetic Algorithm (GA) 
has greatly global search ability in optimization problem. 
We can regard the parameters selection in LS-SVM  
as an optimization problem. So it is potentially useful for 
us to use GA as a LS-SVM parameter optimization tool. 
Real-Coded Genetic Algorithm (RC-GA) offers advantages 
over the commonly used binary GA - it has a stronger 
searching ability; the coding is closer to the natural 
description of the problem; it does not need to convert 
from chromosome to phenotypes. So the efficiency of GA 
is increased [10]. Hence, in this paper, the LS-SVM 
parameters selection is regarded as an optimization 
problem and RC-GA is employed to search for the  
LS-SVM optimal parameters. Using the LS-SVM with 
the RBF Kernel function as an example, LS-SVM  
has regulation parameter γ and Kernel function parameter σ2. 
The parameter optimization problem can described as: 

( )2min f , min (MSE)γ σ =                                          (11) 

lower upper

2 2 2
lower upper

Subject to
γ ≤ γ ≤ γ⎧⎪
⎨
σ ≤ σ ≤ σ⎪⎩

                                 (12) 

The procedure for LS-SVM parameter optimization  
is described in more detail below. 

STEP1: Set l the number of training data and k the 
number of testing data. The training data determine the 
improved LS-SVM model, while the testing data evaluate 
generalization performance. 

STEP2: Set the initial parameters: the maximum 
generation max_gen, the number of individual in the 
initial population numJind, crossover probability Pc, 
mutation probability Pm, generation counter gen_counter, 
generation error ε. 

STEP3: Randomly generate num_ind individuals (The 
chromosome is composed of γ and σ2) to constitute the 
initial population and employ real coding. 

STEP4: Train the improved LS-SVM model and 
compute the individual generalization performance metric 
MSE (i), i=1,2,…,k. 

STEP5: If the termination criterion is satisfied, go to 
STEP7. Otherwise, set gen-counter⇐gen-counter+1 and 
go to STEP6. 

STEP6: Select an individual by employing the 
stochastic universal method; employ crossover and 
mutation operators to generate a new population; convert 
MSE (i), i=1,2,…,k to the individual fitness; go back to 
STEP4. 

STEP7: Determine the optimal parameters combination 
(γ,σ2), which corresponds to the individual with min 
(MSE (i)), i=1,2,…,k. 

Since the GA is a stochastic search algorithm, it is 
difficult to formally specify convergence criteria as for 
the gradient method. As the fitness of a population may 
remain static for a number of generations before a 
superior individual is found, the application of 
conventional termination criteria becomes problematic. 
Hence, in this context RC-GA is terminated either after a 
pre-specified number of generations max_genor after min 
(MSE) < ε (Because the fitness function is computed 
through the linear transform of min (MSE), min (MSE) 
corresponds to the fitness value of the fittest individual). 
 

Simulation validation for the improved LS-SVM and 
RC-GA parameter optimization method 

To validate the  success  of  the  improvement  of   
LS-SVM and the effectiveness of the RC-GA method for 
LS-SVM parameters  optimization,  simulations  were 
conducted in MATLAB 7.1. MSE of the testing data was 
used as the generalization ability index of LS-SVM. 
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Table 2: MSE comparison between two LS-SVMs when no 
outlier exists. 

No Original LS-SVM Improved LS-SVM 

1 0.00898 0.00708 

2 0.04821 0.04517 

3 0.07699 0.07509 

4 1.63071 1.47484 

 
In our study, four functions were considered. The first 

is the since function: 

[ ]sin(x)
y sin c(x) , x 10,10

x
= = + ξ ∈ −                  (13) 

This function is often used in the literature: [3, 4, 8]. 
The second function has also been used in the 

literature [11] and is defined as: 

( )( )( )1 2y(x) 10.391 x 0.4 x 0.5 0.36= − − + + ξ            (14) 

with   [ ] [ ]1 2x 0,1 , x 0,1∈ ∈  

The third function has also been used in the literature [11] 
and is defined as: 

y(x) 1.9= ×                                                                   (15) 

( )( ) ( )( )i 22x x
1 21.35 e sin 13 x 0.6 e sin 7x−+ − × + ξ  

with   [ ] [ ]1 2x 0,1 , x 0,1∈ ∈  

The fourth function has also been used in the 
literature [12] and is defined as: 

( ) ( )1 2 3 4 5y(x) 10sin x x 20 x 0.5 10x 5x= π + − + + + ξ  (16) 

with   [ ] [ ]1 2x 0,1 , x 0,1∈ ∈  

For each of the four functions above, the normally 
distributed noiseξ is added in the same way as in the 

corresponding literature. For each function, within the 
variable interval, 300 data points are generated from the 
function randomly. Among these data points, 270 data 
points, which are randomly selected, constitute the 
training data set. The other 30 data points constitute the 
testing data set. 

First, the generalization ability between the improved 
LS-SVM and the original LS-SVM is compared when no 
outlier exists. Table 2 lists the MSEs of the original LS-
SVM and the improved LS-SVM. 

Table 3: MSE comparison between two LS-SVMs when 
outliers exist. 

No Original LS-SVM Improved LS-SVM 

1 0.00898 0.00708 

2 0.04821 0.04517 

3 0.10905 0.07713 

4 5.02067 1.90825 

 
From Table 2, the MSEs in the improved LS-SVM 

are less than those in the original LS-SVM, which 
indicates that the improved LS-SVM helps to increase the 
generalization ability. 

Then, the generalization ability between the improved 
LS-SVM and the original LS-SVM is compared when 
outliers exist. Outliers in training data set are created  
in the same way as those in literature [4]. Table 3 lists 
MSEs of the original LS-SVM and the improved  
LS-SVM, respectively. 

From Table 3, after adding outliers, the MSEs in the 
improved LS-SVM are reduced to a great extent, which 
further indicates that the improvement is effective. It also 
shows that the improvement can eliminate the outliers  
as well as help to increase the generalization ability and 
robustness of LS-SVM. 

 
Void fraction measurement modeling 

Different Kernel functions and their relevant 
parameters give regression LS-SVM different 
generalization abilities. Establishing the optimal LS-SVM 
model is to determine the optimal Kernel function and  
its relevant parameters so as to minimize the test error of 
LS-SVM model. This procedure is also called model 
selection. As for the case of void fraction measurement in 
our context, for each kind of flow pattern of two-phase 
flow, we use linear Kernel function, polynomial Kernel 
function and radial Kernel function as the Kernel function 
of the void fraction measurement model in turn, and 
determine the relevant parameters. Finally, we test  
the model performance through the independent testing 
data set and select the model which has the best performance 
under each flow pattern for the practical void fraction 
measurement application. 

In this work, the procedure for establishing  
the optimal void  fraction  model  involves  three  aspects: 
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Fig. 8: Flow chart for void fraction measurement 
modeling. 

 
the improvement of LS-SVM, the optimal selection of 
LS-SVM parameters and the selection of the Kernel 
function, as discussed above. The modeling process for 
void fraction measurement of two-phase flow is shown in  
Fig. 8. It is necessary to point out that we use the radial 
basis function as the  Kernel function  example  in  Fig. 8.  
The modeling procedures using the other Kernel 
functions are similar to that in Fig. 8. 

RESULTS  AND  DISCUSSION 
Because of the lack of any dynamic measurement 

method for the true void fraction value of two-phase 
flow, experiments were carried out by static experimental 
data to verify our proposed void fraction measurement 
method. Many void fraction measurement experiments of 
the three different cross-section flow patterns were 
conducted by simulating the two-phase flow. The media 
were diesel oil and air. The relative dielectric constant of 
oil is 2.56. The total data set was made up of 180 groups 
of data points from stratified flow, 169 from bubble flow 
and 120 from annular flow. According to the above 
modeling procedure of void fraction measurement,  
the optimal void fraction measurement model was 
established. The Kernel functions and their optimal 
parameters (regulation parameter γ and Kernel parameters) 
corresponding to different void fraction models under the 
three different flow patterns were obtained, as listed in 
Table 4. The maximum void fraction measurement errors 
(MaxE) under different flow patterns are also listed in 
Table 4. From Table 4, the maximum measurement errors 
are 3.9%, 5.3%, 4.4% corresponding to stratified flow, 
bubble flow, and annular flow, respectively. Fig. 9 shows 
the comparison between the measurement value of the 
void fraction and the actual void fraction value. 

The research results show that the maximum error of 
void fraction measurement is 6% within the void fraction 
range from 10% to 90%. This can satisfy the field 
application requirements. Compared with the conventional 
void fraction measurement method based on image 
reconstruction, the new method omits the complex image 
reconstruction process and only needs a rough  
cross-section image reconstruction by a simple and quick 
back projection algorithm to obtain qualitative flow 
pattern information. Thus, the new method is characterized  
by simple computation. The measurement time is within 
0.08 s. The real time performance is greatly improved.  
Because of adapting multiple void fraction measurement 
models for the different flow patterns, the new method 
effectively overcomes the influence of flow patterns  
on the void fraction measurement. 

 
CONCLUSIONS 

Compared with commonly used void fraction methods 
based on ECT, the proposed method effectively overcomes 

Start

Set aside 1 data points for training dataset and k data  
points for testing dataset, set initial parameters of  

RG-GA, t=0 

 
 

Randomly produce N individual to constitute the initial 
population (γ and σ2 are real-coded) 

 

Establish N LS-SVM models from training dataset and 
compute indices: MSE(i)(i=1,2,…,N) 

Yes

N 

 

Perform selection, crossover and mutation to produce new 
population 

 

t=t+1 

 

Obtain the optimal parameters (γ and σ2) determined by 
min MSE (i) 

 

Apply the improvement method to abandon training data 
points 

NO 

 

Determine the final LSSVM voidage measurement model 

Termination condition satisfied? 

 

Convert MSE (i) into fitness (i) 

End 
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Table 4: Kernel functions and their parameters of void fraction models at three different flow patterns. 

Flow pattern ( )r riK C C,  Kernel parameters γ MaxE / % 

Stratified flow 
2

r ri

2

C C
exp

− −

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 σ2 = 26 2.1 3.9 

Bubble flow 
2

r ri

2

C C
exp

− −

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 σ2 = 42 5.8 5.3 

Annular flow ( )T
r riC C  __ 0.5 4.4 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Experimental results. 

 
the influence of flow patterns on the void fraction 
measurement results by invoking the LS-SVM void 
fraction model corresponding to a certain flow-pattern. 
Compared with the previous time-consuming image 
reconstruction model, the real-time performance is greatly 
improved and the measurement time is only 0.08 s. 

Also, an easy, sparser, LS-SVM is proposed.  
This simplifies the mode structure of LS-SVM and 
improves the robustness of the LS-SVM model.  
We regard the LS-SVM parameter selection as  
an optimization problem. By virtue of the strong global 
searching ability of RC-GA, the optimal parameter 
combination is determined. This parameter optimization 
method possesses the universality. 
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Nomenclatures 
l                                   The number of  training data points 
α                                                           Void fraction value 
βi                                   The coefficient of support vectors 
γ                                                        Regulation parameter 
γlower                                                  The upper  bound of γ 
σ2

lower                                              The lower bound of σ2 
C                                      Capacitance measurement value 
σ                        Parameter of radial basis Kernel function 
b                                                                           Bias term 
MSE                                                      Mean Square Error 
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