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ABSTRACT: The Cellular Automata method has been used to simulate the pattern formation  

of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic 

Cellular Automata approaches have been considered and two different methods for obtaining  

the probabilities in the microscopic approach have been mentioned. The results show the tendency 

of the system towards the more stable phase in both microscopic and macroscopic cases. It is shown 

that the fluctuation effect plays an important rule in the microscopic approach while it is negligible 

in the macroscopic case. 
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INTRODUCTION 

Reaction-Diffusion Systems (RDS) are mathematical 

models that describe how the concentration of one or more 

substances which distributed in space changes under  

the influence of two processes: local chemical reactions 

in which the substances are converted into each other,  

and diffusion which causes the substances to spread out  

in space. As this description implies, RDS are naturally 

applied in chemistry. However, the equation can also describe 
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dynamical processes of non-chemical nature. Examples 

are found in biology, geology, physics, and ecology. 

Mathematically, RDS take the form of semi-linear 

parabolic partial differential equations. The most simple 

reaction-diffusion equation concerning the concentration 

u of a single substance in one spatial dimension is [1], 

2
t xu D u R(u)∂ = ∂ +     (1) 
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where D is a diagonal matrix of diffusion coefficients and 

R accounts for all local reactions. If the reaction term 

vanishes, then the equation represents a pure diffusion 

process. The solutions of reaction-diffusion equations 

display a wide range of behaviors, including the formation  

of travelling waves and wave-like phenomena as well as 

other self-organized patterns like stripes, hexagons or 

more intricate structures [2]. In recent times, RDS have 

attracted much interest as a prototype model for pattern 

formation. It has also been argued that reaction-diffusion 

processes are an essential basis for processes connected 

to morphogenesis in biology and may even be related to 

animal coats and skin pigmentation [3-7]. Another reason 

for the interest in reaction-diffusion systems is that 

although they represent nonlinear partial differential equation, 

there are often possibilities for an analytical treatment [8-12]. 

In some cases, RDS include sophisticated differential equations, 

and analytical methods could not lead to results. So, 

numerical and simulation methods may be used [8,11]. 

Cellular Automata (CA) is one of the simulation methods 

that seems to be a good candidate for description of RDS. 

The CA are discrete dynamical system, i.e. space, time,  

and the states of the system are discrete. Each point  

in a regular spatial lattice, called a cell, can have any  

one of a finite number of states. The states of the cells  

in the lattice are updated according to a local rule. That is, 

the state of a cell at a given time depends only on its own 

state and the states of its nearby neighbors at the previous 

time step. All cells on the lattice are updated synchronously. 

Thus the state of the entire lattice advances in discrete 

time steps. The theory of cellular automata is immensely 

rich, with simple rules and structures being capable of 

producing a great variety of unexpected behaviors.  

Von-Neumann was one of the first people to consider such  

a model, and incorporated a cellular model into his 

"universal constructor" [13]. Comprehensive studies of 

the cellular automata have been performed by S. Wolfram 

starting in the 1980s [14,15].  

In this paper, both microscopic and macroscopic CA 

approaches are used to simulate the Schlögl model  

as a bistable reaction-diffusion system. In the next section, 

the Schlögl model is introduced and after that, the CA 

methods for simulation of the Schlögl model are 

described. Finally, the results of the microscopic and 

macroscopic approaches are shown and compared with 

each others. 

The Schlögl Model 

In physics, for an ensemble of particles, the bistability 

comes from the fact that its free energy has three critical 

points. Two of them are minima and the last is  

a maximum. By mathematical arguments, the maximum 

must lie between the two minima. By default, the system 

state will be in either of the minima states, because that 

corresponds to the state of lowest energy. The maximum 

can be visualized as a barrier. The Schlögl model is an 

example of a bistable system first introduced by Schlögl [16]. 

In a series of papers, Schlögl introduced two models  

for a chemical bistable system [16-18]. One of the models 

is described by 

1

1

k

k
A 2X 3X

−

→+ ←                                                          (2) 

2

2

k

k
B X C

−

→+ ←  

where A, B, and C are chemical species that are assumed 

to be in abundance and kept constant by appropriate 

feeding. Only X is allowed to vary. Note that this 

assumption about the species A, B, and C is only 

admissible in a mesoscopic setting, where the mean field 

equations are valid. These simplifications are not valid in 

low dimensional simulations of hard-spheres on a lattice [19]. 

Denoting the concentration of X by x, one could obtain 

the mean field rate law 

[ ] [ ] [ ] 2 3
2 2 1 1f (x) k C k B x k A x k x− −= − + −                  (3) 

For appropriate values of the parameters, this third 

order polynomial has three real roots 1 2 3x x x≤ ≤  and 

can be written as 

( ) ( )( )( )1 2 3f x k x x x x x x= − − − −�                               (4) 

It follows that the states x1 and x3 are stable steady 

states, and x2 is an unstable steady state. 

 

Cellular Automata Model 

A CA model for simulation of RDS consists of  

a combination of two different parts, a diffusion step and 

a reaction step [20]. To clarify the separation into two 

steps, the reaction-diffusion equation could be discretized 

as follow (for one-variable system), 

( )
( ) ( )( )2

x r, t
D x r, t f x r, t

t

∂
= ∇ +

∂
                                 (5) 
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( ) ( ) ( )2x r, t t x r, t tD x r, t+ ∆ = + ∆ ∇ +                            (6) 

( )( ) ( )2tf x r, t O t∆ + ∆  

On the other hand, to be able to call the simulation 

method a cellular automaton, and to use a lookup table 

instead of calculating a nonlinear reaction term, the 

variables could be discretized. There are two different  

CA approaches for simulation of a reaction-diffusion system. 

The microscopic approach is used when microscopic 

fluctuations play an important rule in the system.  

In contrast, a macroscopic approach is used when 

fluctuations are not important. In this section, each 

method is shortly described.  

 

Microscopic approach:  

Molecules are considered as point particles. Particles 

move on the lattice with discrete velocities, that is, they 

move at discrete time steps from a cell to one of the 

neighboring cells as dictated by particle velocities. Each 

cell of the lattice possesses five channels where particles 

can reside, and an exclusion principle forbids more than 

one particle to reside in any channel. It also forbids more 

than one particle with the same velocity in each cell.  

Fig. 1 shows one cell with all possible particles in different 

velocities. The time evolution of particles occurs at 

discrete time steps based on the rule of the automata 

(operator �) which can be separated into three basic 

operations: Propagation P, Redistribution R, and 

Chemical Transformation C. 

C R Pε = ⋅ ⋅                                                                      (7) 

During the propagation, each particle moves from its 

channel to the corresponding channel of a neighbor cell 

as dictated by the particle velocity. In this step,  

the number of particles and their momentum are conserved. 

In the redistribution step, the velocity configuration  

is randomly shuffled in each cell. This operation conserves 

the number of particles in each cell but the momentum  

is not conserved. The momentum changes can be viewed 

as elastic collisions between particles. These two operations 

are considered as the Diffusion part. During the chemical 

transformation (or the Reaction part), particles are created 

or annihilated at each cell based on probabilities which 

are derived from reaction equations. There are two 

different approaches for obtaining the probabilities:  

First approach is used when the detailed mechanism 

of a system is known. In this case, one could obtain  
 

 

 

 

 

 

 

 

 

 

 

Fig. 1: A given cell with all possible particles with different 

velocities (c5 is the halt state or zero velocity). 

 

probabilities according to these equations (obtaining 

these equations are shown in details in [21]), 

( ) ( )
j
i

1jnr
ij j

i ji i j
kj 1 k 1 k i

m m
g h k m

−

− υ

= =

� � �− υ � ��
� �α = υ − υ − +� � �� � αα − υ � 	� � 	


� ∏  (8) 

j
i

1jn
i

j j
kk 1 k i

m m
k m

−

−−
υ

−
=

�� �− υ � � �
� � � �� � αα − υ � 	 �� 	 �

∏  

and, 

( ) ( ) ( )i i ig p ,
β

α = β − α α β�                                          (9) 

( ) ( )p , 1 p ,
β
β≠α

α α = − α β�                                               (10) 

where � and � are particle numbers in a cell before 

and after a reaction, respectively, ( )ig α  is the average 

value of particles transformation in � configuration, 

( )p ,α β  is the probability of the transformation of  

� particles to � particles, m is the number of channels 

(here 5), � and k are the reaction stoichiometry  

and reaction rate coefficients, respectively, r is the number 

of the reactions, and h is a normalization coefficient. 

The second approach is used when the mechanism of 

a reaction is not fully understood. In this case, one could 

use these equations [21], 

{ } ( ) ( ) ii

n
m

i iix
ii 1

m
p x 1 x

−αα

=

� �
α = −� �

α� 	
∏                              (11) 

( ) ( ) { } ( )i i xf x g p
α

= α α�                                             (12) 
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Where f(x) is the macroscopic reaction rate. By 

calculation of ( )ig α  from Eq. 12, one could obtain the 

probabilities based on Eqs. 9,10. 

 

Macroscopic approach 

In this approach, for the diffusion step ( DΦ ), each 

variable x(r,t) is an integer number in the range [0, M] 

whereas M is called the canal number. In each time step, 

the value of a given cell is added to those of its neighbors. 

After that, the result is distributed equally within the cell 

and its neighbors. So, the lattice will possess a uniform 

distribution of particles. There are also other approaches 

which use different algorithms for the diffusion step (see 

for example [20, 22, 23]).  

The second step of the cellular automaton simulates 

the reaction part. The operator for the reactive part  

is defined as [20], 

( )( ) ( ) ( )( )R 0c x r, t x r, t tf x r, tΦ = + ∆                         (13) 

It is important to verify that the CA steps respect the 

discretization, i.e., the outcome of an operation on the 

integer variables is also an integer. As it was mentioned, 

the diffusion operator DΦ  acts on a field of integers  

in the range [0, M] to give a field of integers in the range  

[0, c0M], where c0 is the number of neighbors and the cell 

itself. The non-normalized result is also an integer, now 

in the range [0, c0M]. The normalization, i.e., the 

multiplication by 1/c0 necessary to bring the range back 

to [0, M], does not preserve the cell values as integers. 

So, some mechanism has to be introduced to ensure that 

the result of the reaction step is an integer in the 

permitted range. Therefore, it is needed to use another 

operator TΦ  for truncation. This operator takes the real 

numbers which result from operator RΦ  and produces an 

integer. The Probabilistic Minimal Noise Rule (PMNR)  

is used for rounding off numbers [20], 

( )
[ ] ( )

[ ] ( )
T

x with probability 1 p
x

x 1 with probability p

� −�
Φ = �

+�

               (14) 

[ ]( )p x x= −  

where [x] denotes a floor function. Therefore,  

a complete dynamics of a system in a macroscopic CA 

approach will be given by T R DΦ Φ Φ . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The graph of energy versus a variable (here x in eq. 

16) based on Eq. 16. 

 

RESULTS  AND  DISCUSSION 

The Schlögl model (Eq. (2)) could be separated in four 

pre-reaction terms (here means four elementary reactions), 

1 1k k
2x 3x ; 3x 2x−′ ′

→ →                                    (15) 

2 2k k
x 0 ; 0 x−′ ′

→ →  

where [ ]1 1k k A′ = , 1 1k k− −′ = , [ ]2 2k k B−′ = , and 

[ ]2 2k k C−′ = . A special case is considered where 

1k 0.07′ = , 1k 0.1−′ = , 2k 0.01075′ = , and 2k 0.000375−′ = . 

Using these values, Eq. 3 could be written as, 

( ) ( )( )( )f x k x 0.5 x 0.15 x 0.05= − − − −                      (16) 

For determining stable and unstable concentrations, 

one could use the graph of energy versus concentrations 

( )E f x dx= −�                                                              (17) 

As it is shown in the Fig. 2, the system consists of one 

more stable (minimum energy with greater negative 

value, x=0.5), a less stable (minimum energy with 

smaller negative value x=0.05), and an unstable phase 

(maximum of the graph x=0.15). So, a system in  

an unstable phase tends toward a more stable phase. 

First, the microscopic approach for the Schlögl model 

was considered. A two-dimensional square lattice with 

periodic boundary condition was used. Each cell  

was contained five channels for particles with different 

velocities and the Von-Neumann neighbors were 

considered. The diffusion part (Propagation and 

Redistribution steps) were done as it was described in the 
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Table 1: The probabilities for the microscopic CA approach based on the first method. 
��

���
��� 0 1�� 2 3�� 4 5 

0 0.998125 0.001875 0 0 0 0 

1 0.01075 0.987375 0.001875 0 0 0 

2 0 0.0215 0.941625 0.036875 0 0 

3 0 0 0.08225 0.810875 0.106875 0 

4 0 0 0 0.243 0.545125 0.211875 

5 0 0 0 0 0.201875 0.798125 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: The microscopic CA simulation of the Schlögl model 

based on the first probability calculation method (a 500×500 

two-dimensional square lattice, initial state: x=0.15, k=0.1, 

after 1000 time steps). 

 

previous section. For the reaction part, the first method 

was considered. According to pre-reactions, more or  

less than one unit particle transformation is forbidden  

(i.e. 
j j

i i i i 1
−β − α = υ − υ = ± ). So, a general equation 

could be obtained for the probabilities based on Eqs. (8), 

(9) as follow, 

( ) ( ) ( )( )( 1 2 1,p , r r+ −
α+ βα β = α + α δ +                             (18) 

( ) ( )( ) )( )1 2 1, ,mr r 1− +
α− β αα + α δ − δ +  

( ) ( ) ( ) ( )( )1 1 2 2 ,mr r r r+ − + −
α− α + α + α − α δ  

where 

( )
( )

1 1

m 1
r hk

m 1
+

α α −
′α =

−
                                               (19) 

( )
( ) ( )

( )( )

2

1 1

m 1 2
r hk

m 1 m 2

−
−

α α − α −
′α =

− −
 

( ) ( )2 2 2 2r hk , r hk+ −
−′ ′α = α α =  

1h m −ν= , and i, jδ  is the kronecker’s delta function. 

The given probabilities based on Eqs. 18, 10 for this case 

are shown in Table 1. 

For the Schlögl model, if a system starts from  

an unstable concentration (x=0.15), it tends toward more 

stable phases (x=0.05 and x=0. 5), as it was mentioned 

before. This case was simulated using the microscopic 

CA and the result is shown in Fig. 3. The bright and dark 

regions show x=0.5 and x=0.05 concentrations, 

respectively. The detailed algorithm of the microscopic 

CA method for the simulation of the Schlögl model  

is given in the Appendix A. 

In the next step, a simulation was done to show which 

concentration is more stable. So, for the initial state, half 

of the lattice was covered with x=0.5 while the rest of the 

lattice was included with x=0.05. The results are shown 

in Fig. 4 which show x=0.5 has more stability. 

As it was mentioned, there are two different methods 

for obtaining probabilities. In the next simulation,  

the second method for the reaction part was considered. So, 

for the Schlögl model, a new probability table was used 

based on Eqs. 9-12. The results are given in Table 2.  

The CA simulation process is the same as the first method 

(the detailed algorithm is given in the Appendix A).  

A simulation was done to show the difference between 

these two methods. As it is obvious in Fig. 5,  

the difference is negligible, even though it is more 

considerable in the regions between two phases (x=0.05 

and x=0.5) where the velocity of the movement phases 

plays an important rule. 

For the macroscopic simulation of the Schlögl model, 

a two-dimensional square lattice with periodic boundary 

condition was considered. The Moore neighbors were 

used for each cell and the canal number was 55.  

The initial state was consisted of a lattice with unstable phase 

(dark color, x=0.15). The diffusion part was done based 
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Table 2: The probabilities for the microscopic CA approach based on the second method. 
��

���
� 0 1 2 3 4�� 5 

0 0.998125 0.001875 0 0 0 0 

1 0.008875 0.991125 0 0 0 0 

2 0 0 0.984625 0.015375 0 0 

3 0 0 0 0.975375 0.024625 0 

4 0 0 0 0.031125 0.968875 0 

5 0 0 0 0 0.201875 0.798125 

 

 

t = 0 
 

t = 1000 

Fig. 4: The microscopic CA simulation of the Schlögl model based on the first probability calculation method  

(a 150×150 two-dimensional square lattice, k=0.1, initial state: half of the lattice=0.5, the rest of the lattice=0.05). 

 

 
Second method��

 
First method 

Fig. 5: The difference between two methods of obtaining the probabilities for the microscopic CA of the Schlögl model  

(a 150×150 two-dimensional square lattice, k=0.1, initial state: half of the lattice=0.5,  

the rest of the lattice=0.05, after 1000 time steps) 

 

on the value of a given cell and those of its neighbors. 

After that, the reaction part was done according to Eq. (13), 

while the results were rounded off based on Eq. (14).  

The detailed algorithm of the macroscopic CA method is given 

in the Appendix B.  The results are shown in Fig. 6 in which 

one could see the formation and growth of the more stable 

concentration (bright color, x=0.5) during the automat. 

To show the competition of two stable phases,  

a symmetric case of the Schlögl model was considered 

where x2 - x1 = x3 – x2  in Eq. (4). So, the parameters 

x1=0.1, x2=0.5, and x3=0.9 were chosen. The stability 

graph for this case is shown in Fig. 7 which shows one 

unstable phase (x=0.5) and the same stability for  

two phases (x=0.1, x=0.9). For the macroscopic simulation 
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t = 0 

 
t = 400 

 
t = 500 

 
t = 600 

 
t = 1000 

Fig. 6: The macroscopic simulation of the Schlögl model (a 200×200 two-dimensional square lattice, k=0.8, 

 initial state: x=0.15, �t=0.4, canal number=55). 
 

 
t = 0 

 
t = 300 

 
t = 500 

 
t = 1000 

Fig. 8: The macroscopic simulation of the Schlögl model for the symmetric case  

(a 200×200 two-dimensional square lattice, k=0.4, initial state: x=0.5, �t=0.2, canal number=55). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The graph of energy versus x for Eq. (4) in a symmetric 

case. 

 

of this case, a lattice was covered with the unstable phase 

(x=0.5) as the initial state. Other simulation parameters 

were the same as before. The results are shown  

in Fig. 8 in which one could see the formation and growth 

of two stable concentrations (x=0.1, x=0.9) during the 

automata. 

Figs. 6 and 8 imply the macroscopic simulation does 

not include the fluctuations of the system, as it  

was mentioned in the previous section. 

 

CONCLUSIONS 

The pattern formation of the Schlögl model based on 

microscopic and macroscopic CA approaches has been  
 

considered. Two different methods for obtaining the 

probabilities of a microscopic approach were mentioned. 

It was shown that the results are very similar to each 

other while there is a little difference in the regions 

between two stable phases, as the velocity of the 

movement phases plays an important rule. It was also 

shown the tendency of the system towards the more 

stable phase. For the macroscopic simulation, two 

different models have been considered. The same results 

of the tendency towards the stability were given. 

Moreover, the results imply the fluctuations effect in the 

microscopic approach, even though it is negligible in the 

macroscopic case. There are many cases which could be 

considered for the simulation of the Schlögl model such 

as movement of one phase among another phase, 

calculation of the velocity of the movable phase, etc. 

Some of these cases are of our interest and will be 

presented in near future. 
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Appendix A 

The microscopic CA algorithm for the Schlögl model; 

Definition of the lattice 

Definition of the initial state and boundary condition 

Definition of the functions for the Propagation (P) and  

      Redistribution (R) steps 

Beginning of the Automata 

� Doing of the Propagation step based on its function 

� Doing of the Redistribution step based on its function 

� Doing of the Reaction part based on the probabilities 

(Tables 1 or 2) 

(The automata will be done till the end of the time steps) 

End of the Automata 

Drawing the concentrations graphs of the system 

 

Appendix B 

The macroscopic CA algorithm for the Schlögl model; 

Definition of the lattice 

Definition of the initial state and boundary condition 

Beginning of the Automata 

� Choose all cells one by one  

� The diffusion step will be done by knowing the 

state of a given cell and those of the neighbors 

� The reaction will be done based on Eq. 13 and 

the results will be rounded off according to Eq. 14 

(The automata will be done till the end of the time steps) 

End of the Automata 

Drawing the concentrations graphs of the system 
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