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ABSTRACT: An adaptive version of growing and pruning RBF neural network has been used  

to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and 

Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network 

with growing and pruning capabilities is introduced to carry out on-line model identification.  

An Unscented Kalman Filter (UKF) algorithm with an exponential time-varying forgetting factor 

has been presented to enable the neural network model to track any time-varying process dynamic 

changes. An adaptive NMPC has been designed based on the sequential quadratic programming 

technique. The paper makes use of a dynamic linearization approach to extract a linear model  

at each sampling time instant so as to develop an adaptive LMPC. The servo and regulating 

performances of the proposed adaptive control schemes have been illustrated on a non-linear 

Continuous Stirred Tank Reactor (CSTR) as a benchmark problem. The simulation results demonstrate 

the capability of the proposed identification strategy to effectively identify compact, accurate and 

transparent model for the CSTR process. It is shown that the proposed adaptive NMPC controller 

presents better improvement with faster response time for both servo and regulatory control 

objectives in comparison with the proposed adaptive LMPC, an adaptive generalized predictive 

controller based on Recursive Least Squares (RLS) algorithm and well-tuned PID controllers. 
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INTRODUCTION 

Model Predictive Control (MPC) approaches have been 

recognized as the accepted standard to cope with some  

of the difficult control problems in process industry [1,2]. 

Their ability to handle input and output constraints, time 

delays, non-minimum phase behaviour and multivariable 

systems have made them very attractive to the industrial 

users. The core of all MPC algorithms is the moving 

horizon strategy. An identified process model is used  

 

 

 

to predict the future response and then, the control action 

is optimally determined so as to obtain the desired 

performance over a finite time horizon. Thus, the choice 

of process model representation is a crucial and important 

issue in MPC. Most of the predictive controllers still  

use an explicit linear model of the process to be controlled. 

In practice, however, most of the industrial processes 

posses severe non-linear dynamics. This makes the linear  
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controller to be less effective or even detrimental when 

the process operates over a wide range of operating 

conditions leading to time-varying model structures and 

parameters in an unknown manner. Adaptive control 

strategy is an interesting idea to cope with such difficult 

model uncertainties by providing the ability to track 

variations in process dynamics. Most adaptive control 

techniques, however, are based upon a fixed linear 

process model structure whose parameters are only free 

to be tuned to any possible process dynamic changes. 

This approach may have limited success because any 

structural dynamic changes should be adapted via  

the model parameters tuning. 

Neural Networks (NN) have shown to have good 

approximation capability for modelling non-linear 

systems. A large number of predictive control schemes 

have been developed based on multi-layer neural network 

models since 1990. Classical neural networks have been used 

for the identification tasks [3-5], often as a part of 

adaptive predictive control schemes [6, 7]. However, 

there is no general procedure to choose the required 

number of layers and neurons to achieve an accurate 

approximation in a given control problem. The usual 

practice is to use enough neurons to capture the complexity 

of the underlying process dynamic without having the 

NN overfit the training data. For nonlinear black box 

identification, however, there is no guarantee that  

the fixed number of assumed neurons can cover the process 

operating range. Radial Basis Function (RBF) neural 

networks have been popularly used in many control 

applications in recent years. This is due to their ability  

to approximate complex non-linear mappings directly from 

the input-output data with a simple topological dynamic 

structure. Combining this network with self-generating 

network algorithms offers an attractive approach to make 

efficient adaptive neural network which can adjust  

its dynamic structure complexity to varying non-linear 

process dynamic without requiring a prior knowledge.  

Several self-generating network algorithms, such as 

Resource Allocation Network (RAN) and minimum RAN 

have been proposed in the literature for training RBF 

neural networks [8,9]. In recent years, difficult methods [10-12] 

have been proposed in which sequential learning 

algorithms are used. Huang et. al. [13] proposed a simple 

sequential learning algorithm with network Growing and 

Pruning (GAP) capabilities based on the relationship between  
 

the significance of a neuron and the required model 

accuracy for RBF networks, referred to as GAP-RBF.  

The original GAP-RBF algorithm has been modified 

in this paper to enhance its performance for on-line 

identification of non-linear systems. The new modified 

GAP-RBF (MGAP-RBF) neural network is used as  

a generic model for on-line identification of non-linear 

systems. The Unscented Kalman Filter (UKF) estimation 

algorithm has been introduced as a new learning 

algorithm to recursively updates the free parameters of 

the MGAP-RBF neural network. An exponential 

forgetting factor scheme has been included in the  

UKF algorithm to enable its tracking feature against  

any possible time-varying system dynamic change. 

This paper proposes two indirect adaptive predictive 

controllers based on the MGAP-RBF neural network.  

An adaptive Non-linear MPC (NMPC) has been developed 

without restricting the process model to linear dynamics. 

The second proposed predictive controller is based on the 

popular Generalized Predictive Control (GPC) strategy. 

Finally, the performances of the proposed adaptive 

predictive controllers are illustrated on a simulated  

non-linear Piovoso CSTR. 

The paper is organized as follows. First, the on-line 

non-linear system identification using the MGAP-RBF 

neural network is presented. Second, the proposed NMPC 

and GPC controllers are developed by employing the 

identified MGAP-RBF model. The remainder of the paper 

is devoted to demonstrating the servo and regulatory 

performances of the proposed adaptive predictive 

controllers on CSTR benchmark simulation problem. 

 

Dynamic Non-linear System Identification 

GAP-RBF Algorithm 

GAP-RBF neural network is based on the Gaussian 

RBF neural networks. The output of a Gaussian RBF 

network with K hidden neurons can be described  

as follows: 

K

n k k n

k 1

f (x ) (x )
=

= α φ�                                                     (1) 

where xn is the input vector of the network, αk  is  

the connecting weight of the kth hidden neuron to the output 

neuron, and k n(x )φ  denotes a response of the kth hidden 

unit to the input vector xn, defined by the following 

Gaussian function: 
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2

n k
k n 2

k

x
(x ) exp

� �− µ
� �φ = −
� �σ
� �

                                         (2) 

where µk and σk refer to the centre and width of the 

kth hidden neuron respectively, and .  indicates the 

Euclidean norm. 

During the sequential learning process of GAP-RBF, 

a series of training samples (xn,yn) , n =1,2,… are 

randomly drawn from a range X with a sampling density 

function of P(X) and presented one-by-one to the 

network. Each training samples would trigger the action 

of adding a new hidden neuron, pruning the nearest 

hidden neuron, or adjusting the parameters of the nearest 

hidden neuron, based on only the significance of the 

nearest hidden neuron to the training sample. This is  

in contrast with the MRAN learning algorithm [9] in which 

all the neurons will be checked for adding, pruning and 

adjusting purposes. This results in a reduction in the 

overall computations and thereby increasing the learning 

speed. The significance of the kth hidden neuron  

is defined as [13]: 

l
k k

sig

(1.8 )
E (k)

S(X)

σ α
=                                                    (3) 

where l is the dimension of the input space ( lx ∈ℜ ), 

and S(X) denotes the estimated size of the range X where 

the training samples are drawn from. 

For both growing and pruning, it is shown that [13] 

one needs to check only the nearest neuron based on the 

following Euclidean distance to the current input data xn 

for its significance: 

n nr n k
k

x min( x )), k 1,...,K− µ = − µ =                        (4) 

where µnr is the centre of the hidden neuron which  

is nearest to xn. 

The learning process of GAP-RBF begins with  

no initial hidden neurons similar to MRAN. As new 

observation data (xn,yn) are received during the training, 

some of them may initiate new hidden neurons based  

on the growing criteria. However, the newly added 

neuron may have insignificant contribution to the overall 

performance of the whole network, and hence this neuron 

should not be added at all. Therefore, GAP-RBF uses  

the following enhanced growing criterion for each  

new observation data (xn,yn) to prevent adding insignificant 

neuron leading to a smooth growing process: 

n nr n

n min

l

n nr n
min

x

e e

(1.8 x e )
e

S(X)

�
	

− µ > ε	
	

>

	

κ − µ	
>	

�

                                        (5) 

where xn is the latest input received, µnr is the centre 

of the hidden neuron nearest (in the Euclidean distance ) 

to xn. emin is the desired approximation accuracy and εn is 

a threshold to be selected appropriately. If the growing 

criteria (5) are satisfied for a new observation, a new 

significant neuron K+1 will be added and the parameters 

associated with the new hidden neurons are taken  

as follows: 

K 1 n

K 1 n

K 1 n nr

e

x

x

+

+

+

�α =
	
µ =

	σ = κ − µ�

                                                      (6) 

where en = yn -  f(xn). 

In this case, all the other present neurons (k =1,…, K) 

will remain as significant and their parameters will be 

unchanged. Thus, pruning checking need not be done 

after a new neuron is added. However, if a new 

observation (xn,yn) arrives and the growing criteria (5)  

is not satisfied, no new neuron will be added and only the 

parameters of the nearest neuron ( nr nr nr, ,α µ σ ) will be 

adjusted using the EKF or UKF learning algorithm. Then, 

the significance of the nearest (i.e., most recently adjusted) 

neuron is checked via the following pruning criterion: 

l
nr nr

sig min

(1.8 )
E (nr) e

S(X)

σ α
= <                                      (7) 

If the average contribution made by the nearest 

neuron in the whole range X is less than the expected 

accuracy emin, it is taken as insignificant and should be 

removed. As discussed, at any time instant, only the 

single nearest neuron needs to be adjusted or needs to be 

checked for growing and pruning. 

The complete description of the GAP-RBF learning 

algorithm [13] can be summarized as follows: 
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Given an expected desired accuracy emin for each 

observation data (xn,yn), where l
nx ∈ ℜ , do the following 

steps: 

Compute the overall network output: 

K
2

n k n k2
kk 1

1
f (x ) exp x

=

� �
= α − − µ� �

σ� �
�                            (8) 

where K is the number of hidden neurons. 

Calculate the parameters required in the growth criterion: 

n
n max minmax{ , }, (0 1)ε = ε γ ε < γ <                                (9) 

n n ne y f (x )= −  

where εmin and εmax are minimum and maximum 

distance thresholds, respectively. 

Apply the growth criterion for adding neurons: 

If  n mine e>  and n nr nx − µ > ε  and 

l

n nr n min(1.8 x ) e / S(X) eκ − µ >   

Allocate a new hidden neuron K + 1 with: 

K 1 ne+α =                                                                      (10) 

K 1 nx+µ =  

K 1 n nrx+σ = κ − µ  

Else 

Adjust the network parameters nr nr nr, ,α µ σ  for the 

nearest neuron only, using the EKF algorithm. 

Check the pruning criterion for the nearest (nrth) 

hidden neuron: 

If l
nr nr min(1.8 ) / S(X) eσ α < , remove the nearest 

(nrth) hidden neuron and do the necessary changes in the 

EKF algorithm. 

Endif 

Endif 

 

MGAP-RBF  ALGORITHM 

The original GAP-RBF algorithm has been modified 

as follows to enhance its capabilities for on-line system 

identification applications: 

• Enhancing the smooth creation of the neurons. 

• Enhancing the pruning criterion to prevent probable 

oscillation in the number of created neurons. 

• Utilization of the UKF estimation algorithm  

to adjust free network parameters. 

• Utilization of a time-varying forgetting factor 

scheme to maintain a desired parameter tracking capability. 

The proposed modifications can be described in the 

following two sections: 

 

a) The Modified Growing and Pruning Criteria 

In order to have smoothly output response and avoid 

oscillation, the mechanism of adding and pruning should 

be allowed to change smoothly. The rate of adding  

or pruning of neurons can be controlled with threshold 

values of en and εn. Selection of these values depends on 

the complexity of the system, input data for identification 

and the required accuracy for the model. But the most 

important and effective factor is the persistent excitation 

(PE) property of the input data. If the input data have 

enough degree of PE, smooth and accurate output can be 

obtained with suitable adjustment of the threshold values. 

But, if the inputs do not possess PE property, which may 

occur for instance in the case of closed-loop identification, 

then tuning the threshold values can not help and hence 

some desired modifications on the growing and pruning 

criteria will be necessary. 

In on-line applications, identification usually starts 

with not exact prior knowledge about the network 

structure and parameters. Thus, it is a better approach  

to allow the identification algorithm to adapt its modeling 

process with an initial higher increase in its rate of 

neurons growth in order to improve such uncertain 

circumstances in the beginning as fast as possible. Then, 

as the identification process continues on and the input 

data is more prone to lose its richness property (PE),  

it would be logical to decrease the modeling sensitivity 

by lowering the rate of neurons growth. However, 

evaluating the original GAP-RBF algorithm [13] and its 

application reported in [10-14] demonstrates that the 

neurons are added hardly in the start of the modeling 

process. This can cause large initial errors in the 

identification and the EKF learning algorithm may not be 

able to estimate parameters properly under such under-

parameterized situation. As the rate of neuron creation in 

GAP-RBF can be controlled by εn (Eq. (9)), the following 

exponential time-varying pattern is proposed to make  

a gradual evolution of εn from an initial higher sensitivity 

εmin to a final lower sensitivity εmax: 

n /
n min max min( )(1 e )− τε = ε + ε − ε −                               (11) 
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where τ is the time-constant parameter that can be 

used to control the time rate evolution of εn . 

Another problem is due to probable oscillation in the 

number of created neurons which can cause big errors  

in the identification results. This phenomenon can occur 

in on-line identification especially when the number of created 

neurons are small and the input data have small degree  

of PE, too. These detrimental effects can be improved  

by changing the pruning criterion (Eq. (7)) as follows: 

l
nr nr min(1.8 ) / S(X) eσ α < β                                         (12) 

in which a new pruning factor ( 0 1< β ≤ ) has been added. 

 

b) The UKF Learning Algorithm 

The original GAP-RBF algorithm uses the Extended 

Kalman Filter (EKF) as its parameters adjusting 

algorithm. In practice, however, the use of the EKF has 

two well-known drawbacks: 

• Linearization can produce highly unstable filters  

if the assumptions of local linearity are violated. 

• The derivation of the Jacobian matrices is nontrivial 

in most applications and often lead to significant 

implementation difficulties. 

To address these limitations, Julier & Uhlmann [11,15]  

developed the UKF algorithm. 

Let the process to be estimated and the associated 

observation relationship be described by the following 

non-linear state space model: 

k 1 k k kx f (x ,u ) w+ = +                                                   (13) 

k k ky h(x ) v= +  

Where xk represents the hidden states, uk is the vector 

of known exogenous inputs, and yk represents the vector 

of noisy measured outputs. The random variables wk and 

vk represent process and measurement noises, respectively. 

Instead of linearizing these non-linear model 

equations using Jacobian matrices in the EKF, the UKF 

uses a “deterministic sampling” approach to calculate the 

mean and covariance estimate of  Gaussian random state 

variables (xk) with a minimal set of 2L+1 sample points 

(L is the state dimension), called as sigma points.  

The results are accurate to the third-order (Taylor series 

expansion) for Gaussian inputs for all non-linearities. 

Whereas, the linearization approach of the EKF 

results only in the first-order accuracy. 

The UKF algorithm can be implemented by the 

following steps: 

1. Initialize with some initial guesses for the state 

estimate (x0) and the error covarince matrix (P0), defined as: 

0 0x̂ [x ]= Ε                                                                    (14) 

T
0 0 0 0 0ˆ ˆP [(x x )(x x ) ]= Ε − −  

For k {1,..., }∈ ∞ , (E[.] denotes the expected value). 

2. Calculate the sigma points: 

k 1 k 1 k 1 k 1 k 1 k 1ˆ ˆ ˆx x P x P− − − − − −
� 
χ = + γ − γ� �                   (15) 

where 2 (L k) Lλ = α + −  and Lγ = + λ  are scaling 

parameters. 

3.  Time update equations: 

[ ]*
k|k 1 k 1 k 1f , u− − −χ = χ                                                    (16) 

2L
(m) *

k i,k|k 1i

i 0

x̂ W−
−

=

= χ�                                                    (17) 

2L
T(c) * * w

k i,k|k 1 k i,k|k 1 ki

i 0

ˆ ˆP W x x R− − −
− −

=

� 
 � 
= χ − χ − +� � � ��      (18) 

where { }(m)
iW  and  

(c)
iW  are sets and scalar weights, 

R
w
 is process noise covariance, and 

k|k 1 k k k k kˆ ˆ ˆx x P x P− − − − −
−

� 
χ = + γ − γ
� �

                             (19) 

k|k 1 k|k 1h[ ]− −Υ = χ                                                          (20) 

2L
(m)

k i,k|k 1i

i 0

ŷ W−
−

=

= Υ�                                                    (21) 

4. Measurements update equations: 

k k

2L
T(c) v

y y i,k|k 1 k i,k|k 1 ki

i 0

ˆ ˆP W y y R− −
− −

=

� 
 � 
= Υ − Υ − +� � � ��  (22) 

k k

2L
T(c)

x y i,k|k 1 k i,k|k 1 ki

i 0

ˆ ˆP W x y− −
− −

=

� 
 � 
= χ − Υ −� � � ��           (23) 

k k k k

1
k x y y y

P P−Κ =                                                            (24) 

k k k k kˆ ˆ ˆx x (y y )− −= + Κ −                                                (25) 

k k

T
k k k y y kP P P−= − Κ Κ                                                   (26) 
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In on-line identification, the estimation learning algorithm 

should be fast enough to adapt the identification model to any 

possible time-varying dynamic changes in the process. 

The covariance matrix can be initialized with a large 

value. This option, however, causes rapid fluctuations  

in the initial neural network parameters estimates and 

hence endangers the estimator convergence. Besides, 

choosing small initial covariance matrix will make the 

estimator adaption very slow. On the other hand, when 

the process dynamic changes, some of the previous 

estimation information will lose its accuracy as far as the 

new process dynamic is concerned. Thus, there should be 

a means of draining off old information at a controlled 

rate. One useful way of rationalizing the desired approach 

is to modify the covariance matrix update relationship  

(Eq. (27)) as follows: 

k k

T
k k k y y k kP (P P ) /−= − Κ Κ η                                          (27) 

Where ηk behaves as the forgetting factor concept  

in the usual recursive least squares (RLS) algorithm 

which undergoes the following time-varying evolution: 

t /
k k 1 k 1 k(1 )(1 e ) , 0 1− δ

− −η = η + − η − < η ≤                 (28) 

where t  is the recursive time interval that is spent  

in the UKF learning algorithm to estimate the GAP-RBF 

neural network free parameters with fixed structure. 

Thus, t is reset to zero when any network structural 

change occurs, i.e., neuron creation or pruning, occurs. 

This scheme maintains a desired parameter adaptive 

capability in the UKF algorithm whenever process 

dynamics undergoes a time-varying change. Because,  

ηk start with a lower initial value to accelerate the 

parameter estimation. Then, its value is changed 

exponentially with a desired time-constant (δ) to a higher 

final value to assure the estimator convergence property. 

 

ADAPTIVE NEURAL-BASED MODEL PREDICTIVE 

CONTROLLERS 

In this section, two adaptive versions of neural-based 

MPC controllers are proposed. Both controllers utilize the 

MGAP-RBF neural network as the generic non-linear 

model of the process to be controlled. 

 

a) System Dynamic Model 

The MPC methodology requires a suitable dynamic 

model capturing all the salient features of the system  

to be controlled in order to predict its response with 

reasonable accuracy over a finite time horizon. 

One standard model structure that has been used for 

non-linear identification is the following general  

Non-linear Auto-Regressive with eXogenous (NARX) 

input  equation, recommended by Narendra et al. [16]: 

y(t) f[y(t 1), y(t 2),..., y(t n),u(t),..., u(t m)]= − − − −  (29) 

where y(t) and u(t) are, respectively, the system 

output and input; n and m are the corresponding time lags 

of {y(t)} and  {u(t)}; and f(.) is an unknown non-linear 

function to be identified. The MGAP-RBF neural 

network is used in this paper to approximate  

the non-linear function f(.) at each sampling time, employing 

nX [y(t 1), y(t 2), ..., y(t n), u(t), ..., u(t m)]= − − − −   

as the network input vector. The network parameter learning 

is implemented in the on-line identification phase with 

the proposed UKF estimation algorithm. 

 

b) Adaptive Neural-Based NMPC Controller 

The proposed NMPC controller utilizes the identified 

MGAP-RBF neural network to predict the system output 

over the finite prediction horizon. The output prediction 

is then used by a numerical optimization program  

to determine the desired control sequence at every sampling 

instant that minimizes the following general cost function 

to take the controlled system to a desired operating point 

(us, xs ,ys)  specified by steady-state economic objectives: 

N M 1
q q

s PR
j 1 j 1

J y(t j) y u(t j)
−

= =

= + − + ∆ + +� �                    (30) 

M 1
q

s Q
j 1

u(t j) u
−

=

+ −�  

where P,Q and R are weighting matrices; N and M 

define prediction and control horizon, respectively. 

The minimization is subject to the follofwing 

operational constraints: 

y y(t j) y , j 1, N≤ + ≤ ∀ =                                      (31) 

u u(t j) u , j 1,M 1≤ + ≤ ∀ = −  

u u(t j) u , j 1,M 1∆ ≤ ∆ + ≤ ∆ ∀ = −  

This general optimal control formulation problem can 

be written as the following non-linear programming 
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problem for the proposed NMPC controller with 

T T T Tw [u x y ]=  as the design parameter vector: 

w

min J(w)                                                                       (32) 

subject to: c(w)=0,     g(w) ≤ 0 
 

where the equality constraint vector c corresponds to  

the model constraints f(x,u) = 0, y – h(x) = 0 and has nc  

components, while the inequality canstraint vector g 

relates to Eq. (31) and has ng components. 

This finite horizon constrained optimization problem 

is solved using Sequential Quadratic Programming (SQP) 

method [17,18]. This method allows to mimic Newton’s 

method for constrained optimization just as is done for 

unconstrained optimization. At each iteration,  

an approxiamtion is made of the Hessian of the Lagrangian 

function 1 2L(w, , )λ λ  = J(w)  + T
1 c(w)λ + T

2 g(w)λ  

( cn
1λ ∈ℜ and gn

2λ ∈ℜ  are the Lagrange multipliers )  

to generate a Quadratic Programming (QP) subproblem 

as follows: 

( )T T n
k k

d

1
min J(w ) d d B d , d

2
∇ + ∈ℜ                       (33) 

Subject to the linearized constraints: 

T
k kc(w ) c(w ) d 0+ ∇ =                                                (34) 

T
k kh(w ) h(w ) d 0+ ∇ ≤                                                (35) 

where 2
k ww 1 2B L(w, , )= ∇ λ λ  is a positive definite 

approximation of the Hessian matrix of the Lagrangian 

function. This QP subproblem is then solved at each 

iteration by the projection method used in the MATLAB 

optimization toolbax to obtain a new search direction 

vector as T T T T
k u x yd [d d d ]= . 

The vector is used in wk+1 = wk + αk dk to converge  

to the original optimization problem solution. 

 

c) Adaptive Neural-Based GPC Controller 

Real-time dynamic optimization using a non-linear 

model may give rise to computational difficulties. Therefore, 

an alternative predictive control approach is presented  

in this section which reduces the computational burden. 

The proposed LMPC controller is based on the well-

known GPC strategy [19] which has received a lot of 

attenion from both industry and academia. A MGAP- RBF 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Predictive control scheme based on non-linear models. 

 

neural network is identified on-line to incorporate any 

system nonlinearity to considerable accuracy from 

empirical input-output system data. The identified model 

is then linearized around the actual system operating 

point at each sampling time instant. The resulting time-

variant linear model is utilized to design the GPC 

controller. Fig. 1 shows the basic concept of predictive 

learning control strategy based on dynamic linearization 

of the MGAP-RBF neural network. 

 

Dynamic Linearization 

Base on the updated MGAP-RBF neural network, 

linear models can be extracted at each sampling time 

instant. In contrast with classic linearization which is only 

performed in equilibria along the static input-output 

mapping, the system in linearized at each time instant 

regardless of whether the system is in a steady or  

in a transient state. 

Hence, actual information about the system dynamics 

is available in all states of operations. As a result,  

the objective is to calculate the time-variant parameters 

ai(t) and bi(t) in the following general ARX model: 

1 2 n 1
1 2 n

1 2 n 1
1 2 n

b z b z ... b z B(z )
G(z, t)

1 a z a z ... a z A(z )

− − − −

− − − −

+ + +
= =

+ + + +
        (36) 

for arbitrary system states. 

The free model parameters can be obtained using  

a first-order Taylor series approximation of the non-linear 

MGAP-RBF model: 

k (t)

y(t)
a (t) |

y(t i)
χ=χ

∂
= −

∂ −
                                              (37) 

k (t)

y(t)
b (t) |

u(t i)
χ=χ

∂
= −

∂ −
                                              (38) 

GPC System 

Linear Model 
Neural Network 

 Model 

Dynamic 

Linearization 

yd 

y u 
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Knowing that the detailed MGAP-RBF network 

structure and parameters of the mapping y = f(xn)  

are available at each sampling time instant via the 

identification procedure. This allowes the linear model 

parameters ai(t) and bi(t) to be easily calculated using  

the chain rule of the gradient algorithm. 

 

GPC Control Problem Formulation 

GPC control strategy exploits a particular kind of 

linear system model called as Controlled Auto-Regressive 

Integrated Movin Average (CARIMA) model given by: 

1 1 1 e(t)
A(q )y(t) B(q )u(t 1) C(q )− − −= − +

∆
                   (39) 

where A(q
-1

), B(q
-1

) and C(q
-1

) are polynomials in the 

backward shift operator q
-1

 and ∆=1-q
-1

 represents  

the differencing operator. e(t) is an uncorrelated random 

sequence, u(t) and y(t) denote the input and output, 

respectively. For simplicity, the C(q
-1

) polynomial  

is chosen to be 1. It is noted that if C(q
-1
) can be truncated,  

it can be absorbed into A(q
-1

) and B(q
-1

) polynomials. 

Now, a prediction of the system output, given 

measured output up to time t and control input u(t+i) for 

i 1≤ − , is: 

1 1
j jŷ(t j | t) G (q ) u(t j d 1) F (q )y(t)− −+ = ∆ + − − +        (40) 

where j denotes the number of future time steps being 

predicted, 1 1 1
j jG (q ) E (q )B(q )− − −= , and 1

jE (q )−  results 

from a recursive solution of the Diophantine relation: 

1 1 j 1
j j1 E (z )A(z ) z F (z )− − − −= +�  

Hence, Ej and Fj are polynomials uniquely difined, 

given 1A(q )−  and the integer j. 

The GPC control law can be derived by minimizing 

the following cost function: 

[ ]
2

1

N
2

1 2 u

j N

ˆJ(N , N , N ) ( j) y(t j | t) w(t j)
=

= δ + − + +�       (41) 

[ ]
uN

2

j 1

( j) u(t j 1)
=

λ ∆ + −�  

where N1 and N2 are the minimum and maximum costing 

horizons, Nu is the control horizon, ( j)δ  and ( j)λ   

are weighting sequences and w(t+j) is the future reference 

trajectory. 

Minimizing Eq. (41) yields the following incremental 

control vector: 

T 1 TU (G G I) G (w f )−∆ = + λ −                                      (42) 

where: 

2w [w(t 1)w(t 2)...w(t N )]= + + +                                (43) 

2f [f (t 1)f (t 2)...f (t N )]= + + +                                     (44) 

2 2 2 u

0

1 0

0

N 1 N 2 N N

g 0 0

g g 0
G

g

g g g− − −

� 

� �
� �
� �

= � �
� �
� �
� �
� �� �

�

�

� � � �

�

                                  (45) 

with f(t+j) being those components of ŷ(t j | t)+  

which are known at time t as the system free response. gi 

are elements of the polynomial 1
iG (q )−  itself obtained 

from the recursive Diophantine relation. Thus, at each 

sampling interval the parameters of the CARIMA model 

are first estimated via the linearization of the identified 

MGAP-RBF neural network in Eqs. (37) and (38). Then, 

the estimated parameters are utilized in the GPC controller 

design phase. Finally, the first element of the calculated 

incremental control vector in Eq. (42) is implemented  

to accomplish a receding horizon optimization procedure. 

 

SIMULATION  STUDY 

This section presents a set of simulation experiments 

on Piovoso CSTR to demonstrate the performance of: 

• The proposed on-line system identification approach 

to model a highly non-linear and time-varying CSTR 

benchmark process. 

• The proposed adaptive NMPC and LMPC 

controllers to achieve servo and regulatory objectives. 

 

A. Piovoso CSTR 

Process Description 

Piovoso CSTR- The reactor considered in this 

example is a CSTR [22] in which the reactor temperature 

controller is cascaded to the coolant temperature loop.  

It is assumed that the reactor composition is not available 

as an on-line measurement and no observer is constructed 

to estimate it. An irreversible first-order reaction 
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proceeding in the CSTR, which has the following 

dimensionless mass and energy balances forming the 

state equations: 

( )1 2
1 a 1

2

dx x
x D 1 x exp

xdt 1

� 
� �
� �� �

= − + −� �� �
+� �� �γ� �� �

                    (46) 

( ) ( )2 2
2 a 1 c 2

2

dx x
x BD 1 x exp y x

xdt 1

� �
� �

= − + − + β −� �
+� �γ� �

(47) 

where x1 is the composition and x2 the temperature 

and yc the cooling jacket temperature. 

As only the temperature is measurable, the output 

equation is given by: 

y=x2 

The parameters used for this model are given in Table 1. 

The response of the CSTR with initial condition  

x0 = [0.9996, 10.8] and zero input (yc) is illustrated in Fig. 2. 

 

Identification Study 

CSTR output for zero input and initial condition 

x0 =[0.9996,10.8] by adding noise to it, presents  

in Fig.12. This noisy output should be identified by 

MGAP-RBF-UKF. The identification results illustrated in 

Fig. 4 and Fig. 5. The time-history profiles of neuron 

updating progress are shown in Fig. 5. 

In the case of non-zero input, the input sequence that 

presents in Fig. 6 used to excite the process. 

Figs.7 and 8 illustrate the obtained on-line 

identification results. It is noted that the GAP-RBF 

approach uses the EKF estimation algorithm while the 

proposed MGAP-RBF approach is based on the UKF 

algorithm. The simulation tests were run under similar 

initialized conditions, given by: 

max 0.91ε = , min 0.001ε = , 0.1κ = , 0.95γ = , 

emin=0.001, mine 0.001′ =  Number of inputs = 4 (u, y-1, y-2, y-4). 

Network model accuracy in terms of Integral of 

Square Error (ISE) measure (ISE for GAP-RBF is 0.2646 

while ISE for MGAP-RBF is 0.0747). 

 

Implementation of the Proposed Adaptive MPC Controllers 

The proposed adaptive neural-based NMPC and 

LMPC controllers were used to control the temperature x2  
 

Table 1: Nominal   Piovoso CSTR Operating Condition. 

Nominal CSTR Operating Condition 

Da = 0.085 γ = 20.0 

B = 22 β = 3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The response of the CSTR with initial condition  x0 = 

[0.9996,10.8] and zero input (yc). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Real (dashed line) and clean (solid line) CSTR output. 

 

of the CSTR process and the results were compared  

to those obtained using a well-tuned conventional  

PID controller. In all simulation tests, the initialized 

parameters of the MGAP-RBF were set to the same 

values mentioned in part (A.2). The neural network input 

vector was selected as: 

nX [y(t 1), y(t 2),..., y(t n), u(t),..., u(t m)]= − − − −     (48) 

The settings  of the NMPC and GPC controller were: 

N1 =1, N2 =15, Nu=7, R=1, P=1, Q=0.01, δ =1, λ =0.8. 
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Fig. 4: Approximated network (dashed line) and real output 

(solid line) for MGAP-RBF-UKF output networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Neuron updating progress for MGAP-RBF-UKF 

output network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Input sequence for identification procedure. 

Moreover, the NMPC constraints were enforced  

as following: 

0.6×setpoint < y <1.5×setpoint  , u∆ <40  ,  -15<u<15 

Fig. 9 illustrates the setpoint tracking performance  

of the NMPC, LMPC or GPC, RLS-GPC  

(i.e., identification by RLS method combined with the GPC 

control strategy) and PID controllers. The PID parameters 

were set to Kc =10,  TI = 0.053 min
-1

, TD = 0.0012 min
-1 

by the IMC method and then fine tuned by Simulunk 

Response Optimization blockset of MATLAB. The 

parameters of the RLS-GPC were set to: N1 =1, N2 =5, 

Nu=6, δ =1, λ =0.68. For illustrating the performane of 

controllers more precisely; the constraint of NMPC and 

GPC controllers are imposed to the PID controller. 

The result of PID controller performance has been 

shown in Figs. 9, 10. Fig. 11 showes the disturbance 

rejection performances of NMPC, GPC, RLS-GPC and 

PID controllers to 2 unit step changes made in the 

temperature x2 of the CSTR. As shown, adaptive GPC 

exhibits a faster response toward the steady-state setpoint. 

In the mentioned method, the SQP algorithm has been 

implemented via the function “fmincon” in MATLAB 

Optimization Toolbox. It has been found that the average 

time needed to calculate the solution during each 

sampling time was 0.1 minute. Of course, more 

computationally efficient codes are likely to be produced 

for this specific real-time problem rather than the general-

purpose code provided through the “fmincon” function. 

Comparing the simulation results indicates the 

superiority of the adaptive neural-based GPC controller  

in this case study. These demonstrate the effectiveness  

of the dynamic linearization approach adopted  

in the proposed adaptive GPC controller. 

The resulting controller scheme is much simpler than 

the proposed adaptive NMPC controller in terms of the 

required computational complexity. Nevertheless,  

it should be noted that the computational burden of the 

RLS-GPC controller is much lower than the proposed 

neural-based MPC methods. 

Obviously, the RLS-GPC approach is simpler than  

the proposed adaptive GPC in both identification and 

control methodology. But, it was practically observed that 

the approach was not able to present a good performance  

in this case study to cope with the constraint boundries 

enforced on the control action by changing its controller 

parameters (N1, N2, Nu, δ , λ ). 
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Fig. 7: Approximated network (dashed line) and real output (solid line). (a) and (b) are GAP-RBF-EKF  

and MGAP-RBF-UKF output networks, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Neuron updating progress. (a) and (b) are GAP-RBF-EKF and MGAP-RBF-UKF neuron updating progress, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Setpoint tracking performances of neural network-based predictive controllers, RLS-GPC and PID.  

(a) times from 0-1.8. (b) times from 1.8-6.5. 
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The PID controller is non-adaptive and hence has  

a very simple structure, being able to present good 

performance results. But, in the presence of noise and 

operational constraints, it can not perform well. 

The performed simulation studies show that the 

average time needed to calculate the solution during each 

sampling time was 0.01 minute. This makes it  

as a suitable and feasible conntrol approach in most  

real-time process control applications. 

 
CONCLUSIONS 

Two adaptive neural-based LMPC and NMPC 

controllers have been developed for non-linear systems. 

The developed controllers utilize the MGAP-RBF  

as an on-line neural-based identification strategy which 

incorporates the UKF learning algorithm with an 

exponential time-varying forgetting factor scheme  

to update the adaptive network structural and parametric 

variables. The model identification strategy needs  

no priori knowledge to start with and can adjust its dynamic 

structure complexity to varying non-linear system dynamics. 

The simulation studies demonstrate the capability of 

the proposed identification strategy to effectively identify 

compact, accurate and transparent model for a non-linear 

CSTR benchmark problem. 

It was observed that the UKF learning algorithm leads 

to better accuracy in comparison with the EKF algorithm 

due to utilization of a deterministic sampling approach  

to calculate mean and covariance terms. This makes the 

UKF algorithm to perform better in the face of process 

and measurement contaminating noises. 

The developed adaptive neural-based MPC controllers 

differ from the conventional neural-based controllers 

because the identified network structure is very simple, 

having limited adaptive neurons in the hidden layer. This 

simplicity makes the controller design and 

implementation much easier than the classical approaches 

based on the fixed network structures including less 

significant neurons. The adaptive neural-based NMPC 

controller was introduced as a non-linear predictive 

control approach which utilizes the MGAP-RBF neural 

network as an explicit non-linear model of the controlled 

process. This led to a non-linear constrained optimization 

problem. The SQP method, which mimics Newton’s 

approach, was used to generate the control solution.  

To reduce the computational burden, an alternative adaptive  
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Control action u imposed by controller to coolant 

valve with the same constraints on PID. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11:  (a) Disturbance rejection performance for 2 unit 

change in the temperature x2 of the CSTR. (b) Control action 

u imposed by controller to coolant valve. 
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Fig. 12: Neural network-based predictive controllers setpoint 

tracking performances with imposing the same noise on PID. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Varying of neural network coefficient � when the 

number of neurons is constant in identification process. 

 

neural-based LMPC controller was proposed based on the 

well-known GPC framework. The GPC controller uses  

a dynamic linearization approach to extract a linear  

time-variant model from the most recent identified 

MGAP-RBF neural network around the actual system 

operating point at each sampling time instant. The ability 

of the resulting neural-based GPC controller to control 

the non-linear and time-varying CSTR process behaviour 

does not appear to suffer as a result of its linearized  

model simplicity. 

In comparison with the LMPC, RLS-GPC and the 

well-tuned PID controllers, the NMPC controller showed 

better improvements with faster response time for both 

servo and regulatory objectives. However, it is noted that  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Varying of neural network coefficient µ when the 

number of neurons is constant in identification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Varying of neural network coefficient � when the 

number of neurons is constant in identification process. 

 

the computational burden of  the RLS-GPC controller is 

much lower than the presented neural-based LMPC and 

NMPC methods. But, practical simulation studies 

revealed that the RLS-GPC approach was not able  

to present a good performance to cope with the constraint 

boundries enforced on the control action by changing  

its controller parameters (N1, N2, Nu, δ , λ ). Futhermore, 

the PID controller has a very simple non-adaptive 

structure which makes it practically attractive due to less 

computational demanding. But, its tuning requires 

expertise and can not perform well in the presence of 

noise and operational constraints. 
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