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ABSTRACT: In this contribution, linearized dynamic model of Cumulative Mass Fraction (CMF) 
of Potassium Nitrate-Water Seeded Continues Mixed Suspension Mixed Product Removal (CMSMPR) 
crystallizer is approximated by a simplified model in frequency domain. Frequency domain model 
simplification is performed heuristically using the frequency response of the derived linearized 
models data. However, the CMF frequency response of the original model is obtained versus  
three input variables encompass seeding mass flow rate, inlet liquid volumetric flow rate and jacket 
temperature with emphasis on minimum model simplification assumptions. Results show that  
the simplified CMF frequency response predicts system dynamics and covers all system 
characteristics as well as the main complex model. 
 
 
KEY  WORDS: Cumulative Mass Fraction (CMF), CMSMPR crystallizer, Frequency response, 
Simplified model. 
 
 

INTRODUCTION 
Crystallizers are one of most important equipments 

widely used in separation processes for production of 
pure materials and high-value products in process 
industries. In crystallization, achievement to appropriate 
Particle Size Distribution (PSD) is one of the important 
challenges for chemical engineers. Continual variations  
in PSD, affects physicochemical and mechanical properties 
of materials and complicates the design and operation of 
downstream process units, resulting in reduction in the 
efficiency of the whole plant. Complications in crystallizers 
mainly arise from unknown and transcendental dynamic 
behavior of mathematical model of system especially  
in population balance models. 
 
 
 

As a process system, crystallizers can be considered 
as a particulate system comprised of continuous and 
dispersed phases [1]. Mathematically, particulate process 
systems are subset of hyperbolic integro-differential 
equations. Integral terms appear in energy, material and 
population balance equations. The integro-differential 
equations are the sources of interesting and problematic 
dynamic behavior in continuous processes. This behavior 
includes open-loop instability, long period oscillations, 
and slow damping of disturbances [2]. 

It is fully realized that the problem of synthesizing  
and implementing high-performance models for recognition  
of particulate process dynamics to achieve appropriate  
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PSD has significant industrial value. So, different models 
for controlling particulate systems to achieve desired 
product specifications have been developed. Panagiotis et al. [3] 
in an excellent review have provided detailed discussions 
of the existing results on control of particulate processes 
using population balance models and present an overview 
of future research directions in this field in the context of 
chemical, materials and biological process systems.  

In spite of various methods available for improving 
control of particulate processes, there are few comprehensive 
studies on consideration of dynamic characteristics of these 
systems. Actually, the population balance or equivalently 
PSD is the origin of distributed parameter nature of  
the system which results in mathematical complications 
in the dynamics of the process. Nevertheless, this subject 
restricted high accurate dynamic analysis of particulate 
processes but many researchers tried to overcome this 
limitation in their researches.   

First attempts to explain dynamic characteristics of 
crystallizers started in the early 1960s by Sherwin [4] and 
Randolph [5]. They considered cycles in fines removal 
and product removal crystallizer and effects of these 
phenomena on stability of process. Yin et al. [6] have 
investigated stability and dynamics of linearized model of 
a continuous crystallizer with a size-dependent crystal 
growth rate. They have shown that instabilities are 
possible over certain ranges of kinetic, physical, and 
operational parameters. Motz et al. [7] and Vollmera & 
Raisch [8] have designed stabilizing feedback controller 
based on stability analysis of simple model crystallizer 
transfer function by using H∞ theory. Their model only 
describes the plant behavior but is not capable of 
predicting effects of changes in crystallizer design or 
operating conditions. Béla et al. [9] considered dynamic 
behavior of isothermal CMSMPR based on the moment 
equations model. They observed bifurcation behavior, 
quasi periodic oscillations, period doubling cascades  
to chaos and noise driven oscillations by applying 
external and internal periodic forcing to the system. 
Moldoványi et al. [10] analyzed controllability and 
observability of MSMPR crystallizer as well as the 
coupling between the inputs and the outputs by 
simulation using the linearized moment equation  
model. They showed that the crystallizer is a nonlinear 
MIMO system with strong coupling between the state 
variables.  

Some of the studies on dynamics of particulate 
processes, especially crystallizers, are developed on the 
basis of frequency response evaluation. One of the 
excellent works regarding recognition of dynamic 
behavior of particulate processes and their stability is by 
Ramanathan [2], which has been done in Laplace domain. 
Ramanathan [2] analyzed stability and dynamic behavior 
of some particulate processes including fluidized bed 
calciner and isothermal CMSMPR. He discusses in detail 
about dynamic characteristics of these models, 
considering the zeroes and poles location in process 
transfer function and effects of them on system stability 
and frequency response. Because of complicate models 
that such processes are included, Shirvani et al. [11,12]  
in a heuristic method, developed a simplified model for 
statement of complex transfer function models in 
frequency response domain. They have shown that 
frequency response data of a process system provides 
excellent recognizable information about structure of  
a lumped process system as well as a distributed process 
system such as the crystallizer systems which can be 
detected clearly in a heuristic manner. The simplified 
structure model was validated for continues isothermal 
crystallizer and rotary cement kilns.  

In this paper it was tried to make use of the heuristic 
frequency domain model simplification and parameter 
identification method of Shirvani et al. [11,12] for 
obtaining simplified transfer function models of 
CMSMPR crystallizer process for the following input 
variables and CMF as the output of the system.  

1) Seeding mass rate ( inm ) 

2) Inlet volume molar rate ( L,inQ ) 

3) Jacket temperature (Tjacket) 
The paper is organized as follows. In Part A 

mathematical dynamic model of the process for both 
dispersed phase (solid phase) and continues phase (liquid 
phase) using population, mass and energy balances  
is presented. In Part B after rigorous linearization of the 
derived model, system frequency responses for the above 
mentioned input variables is obtained and then simplified 
transfer function models using the resulted frequency 
response information of the rigorous model is derived 
using heuristic identification method of Shirvani et al. [12] 
for determining structures as well as the parameters  
of the simplified models. 

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

Iran. J. Chem. Chem. Eng. Frequency Domain Model Simplification of ... Vol. 31, No. 3, 2012 
 

63 

PART  A  :  MODELING 
Model Development 

Modeling of the particulate system within a continuous 
crystallizer can be decomposed into two parts according 
to Fig. 1. The first is a binary mixture in continuous 
liquid phase involving dissolved crystals (solute (A)) and 
solvent (B). This phase determines nucleation and growth 
rate of crystals in crystallization process and has main 
effect to achieve appropriate PSD. The second  
is dispersed solid phase consisting individual crystals.  
In this phase generated crystals growth will be corresponding 
to degree of supersaturation that exert by liquid phase.  
In the following, mathematical modeling of both dispersed 
phase and Liquid phase for CMSMPR will be derived.  
 
Modeling of dispersed phase 

Modeling of PSD in dispersed solid phase needs  
to make use of population balance approach. For more 
information concerning this approach the reader  
is referred to textbook by Ramkishna [13]. This approach 
provides number density function F(L, t)  that can be written 
as follows: 

at in out dis
(GF)F F F F F

t L
± −∂∂

= − + + − −
∂ ∂

                                 (1) 

In Eq. (1) the term on the left hand side represents  
the accumulation of crystals with size L. The first term  
on the right hand side represents the convective transport  
in the direction of the property coordinates L due to crystal 
growth, where G is the crystal growth rate. The term atF±  

denotes source and sink terms due to particle attrition. 
The terms inF  and outF  denote the fluxes of inlet and  

the outlet particle number.  Finally, it has to be taken into 
account that small crystals may dissolve and thus vanish 
from the population under certain operating conditions. 
This particle number flux is denoted by disF− . Eq. (1) is 

very comprehensive and we need to take some 
assumptions for analytical solution of governing 
equations to represent the crystallizer linearized dynamics 
of the process. The assumptions are: 

1) The term atF±  can be neglected due to low agitation 

and low concentration of crystal particles. 
2) Crystals are supposed not to dissolve in mother 

liquid. This means that system is always in supersaturation 
conditions. So, the term disF−  is assumed to be zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Continuous crystallizer. 
 

3) Crystal growth rate is only a function of super-
saturation. Because of crystal length independency, this 
type of growth rate can be used in solution of governing 
equations by moment method.. 

4) Primary nucleation occurs only at L=0. 
5) With the perfect agitation assumption, particle 

number density function in the withdrawn stream of 
crystallizer is assumed to be equal to the particle number 
density function inside the crystallizer. 

The growth rate term G of the crystals is defined with 
different models [14]. In this study Miller [15] correlation 
for growth term in KNO3-H2O is used. He interpreted  
this term as a function of super-saturation as following: 

qˆG k Sg=                                                                         (2) 

L,A L,A,sat

L,A,sat

ˆ ˆC C
Ŝ

Ĉ

−
=  

In this equation kg and q are constants, Ŝ  is  
the super-saturation fraction. Ĉ L,A and Ĉ L,A,sat are the solute 
concentration and the solute saturation concentration, 
respectively. Ramkrishna [13], Rojkowski [16] introduced 
initial and boundary conditions for population balance 
equation. Miller [15] developed a new model for boundary 
condition by using some simplifications as follows: 

0 p
0 b 3

B ˆ ˆF(L 0, t) B k S
G

= = → = μ                                (3) 

where B0 is the primary nucleation rate that provides 
total number of nuclei generated at L=0. The symbols  
kb and p are constants and 3μ̂  is the third moment of 
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Table 1: Nucleation and growth parameters [15]. 

Parameter Value Unit 

kg 5.8889×10-5 m/sec 

q 1.32 - 

kb 3.1859×108 kg solvent/(m3sec) 

p 1.78 - 

 
PSD per kilogram of solvent. The growth and nucleation 
parameters for KNO3-H2O crystallization system  
are evaluated by Miller [15] and are listed in Table 1.  
In this study the boundary condition that was defined  
in Eq. (3) is used for modeling. 

Based on the assumption 5, the following relation 
holds for the particle number flux due to product 
removal: 

L,in

F(L, t) VF (L, t)out Q
= → τ =

τ
                               (4) 

Where symbols τ, V and L,inQ  are the crystallizer 

residence time, the volume and the inlet liquid volumetric 
flow rate, respectively. The initial condition for Eq. (1)  
is defined as: 

F(L, t 0) 0= =                                                                  (5) 

Eqs. (1) - (5) are mathematical description of  
the dispersed solid phase S, for continues crystallizer.  
The next subsection deals with the modeling of the continuous 
liquid phase. 

 
Modeling of continuous phase 

The fundamental balance equations for the continuous 
liquid phase are components mole balance for dissolved 
crystals (component A) and solvent (component B). 
During the crystallization it is assumed that the content of 
liquid phase is ideally mixed and formed crystals are 
solvent free (pure component A). Therefore, mole 
balances for continuous phase are: 

A,in A,out
L,A

nu gr
dn

n n n n
dt

= − − + −                                    (6) 

B,in B,out
L,Bdn

n n
dt

= −  

The first term in the right hand side of solute 
component balance nun  shows the total molar exchange 

flux between the solid and the liquid phase due to 
primary nucleation rate. This term, on basis of fourth 
assumption does not affect on balance equation and is put 
equal to zero. The second term grn  shows the total molar 

exchange flux between the solid and the liquid phase  
due to growth rate and can be derived as: 

( )
Lv

gr 0

3k s 2L GF L, t dL
Ms

n ∞ρ
= ∫                                       (7) 

The symbols, vk , sρ  and Ms  are the volume shape 

factor, the solid density and the molar mass of solid 
phase, respectively. The terms A,inn  and B,inn  are  

the inlet molar flow rate of components A and B, 
respectively. The terms A,outn  and B,outn  denote  

the outlet molar flow rate of components A and B. They 
are defined based on the assumption (5) as a following: 

L,A L,B
A.out B.ou

n n
n n t,= =

τ τ
                          (8) 

The initial conditions for Eq. (6) are defined  
as follows: 

L,A L,A L,B L,B0 0
,n (t 0) n n (t 0) n= = = =                        (9) 

The symbol 
0,ALn  and 

0,BLn respectively are the initial 

number of solute and solvent moles in crystallizer.  
In crystallization process, because of dependence of 
super-saturation on temperature, furthermore exothermic 
nature of crystallization process and also influence of 
jacket temperature on crystallizer contents temperature, 
Eqs. (1) and (6) should be coupled with energy balance. 
In the next section energy balance will be derived as  
one of the governing equations. 

 
Energy balance 

In crystallization process, product quality has high 
dependency to amount of nucleation and growth rate.  
On the other hand these parameters are severely functions 
of crystallizer temperature. Thus, temperature behavior 
should be considered in analysis of processes dynamics. 
For consideration of crystallizer temperature behavior, 
energy balance should be coupled with component mole 
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balances and population balance. For CMSMPR 
crystallizer energy balance is as following: 

cr
cr p,cr crystal gr

dT
n c H n

dt
= −Δ × +                                      (10) 

p,in in crA,in B,in cool stirrerc (n n ) (T T ) Q W+ × − + +  

cr cr0
I.C. T (t 0) T= =  

The symbols ncr and cp,cr are total mole numbers and 
heat capacity of crystallizer contents and the symbols 
ΔHcrystal and cp,in in the right hand side are heat produced 
due to crystallization and heat capacity of total inlet 
components, respectively. In this study because of low 
effect of crystals on crystallizer and inlet flow heat 
capacity, the terms cp,cr and cp,in are considered to be only 
a function of solution heat capacity. The symbol Qcool is 
the amount of heat that transfers between crystallizer and 
coolant and is calculated as: 

cool jacket crQ UA (T T )×= −                                             (11) 

The terms UA and Tjacket are the overall heat 
coefficient and the jacket temperature, respectively. The 
energy dissipation rate of the stirrer Wstirrer is correlated 
by Gahn & Merssman [17] and is given by: 

3 5
stirrer L stirrer stirrerW 0.3 dρ ω=                                            (12) 

where Lρ , stirrerω  and stirrerd  are liquid density, 

angular speed and diameter of stirrer. In this contribution 
we suppose that coolant temperature does not change 
during the operation. So, the energy balance for coolant  
is not needed. Eqs. (1) - (10) are dynamic model description 
of a CMSMPR system. 

To solve and simulate the developed model, KNO3-H2O 
system is selected. In the next section physical and 
chemical properties of this system accomplished by 
operational conditions will be presented. 
 
Physical properties and geometries 

The required physical and all geometrical parameters 
and operational conditions for the process selected in  
this paper are taken from Gerstlauer et al. [18] and Miller [15]. 
Heat of crystallization and solubility of KNO3 in  
water are respectively: 

2
crystal L,A L,A

ˆ ˆH 20484 22173.1 C 23881 CΔ = − + × + ×          (13) 

2
L,A,sat cr crĈ 0.1286 0.00588 T 0.0001721 T= + × + ×  

Table 2: Physical properties for potassium nitrate (KNO3) and 
water (H2O) [18]. 

Parameter Value Unit 

kV 6/π  - 

MA , MS 101.103×10-3 kg / mol 

MB 18.0152×10-3 kg / mol 

ρB 987 kg / m3
 

ρS 2109 kg / m3 

 
Table 3: Operating conditions for the continuous Crystallizers 
[18]. 

Parameter Value Unit 

V 3105.7 −×  m3 

ωstirrer 650 Cycle/min 

dstirrer 0.1 m 

cin,A 
3104.3 ×  mol/m3 

xL,A,in 0.0683 - 

0in jacket crT ,T ,T  298.15 K 

xL,A,0 xL,A(Tcr) - 

seed,inm  0.005 kg/s 

 
All the other physical parameters and required 

operating conditions are listed in Tables 2 and 3. 
 
Simulation 

Solution of governing equations is performed by  
the use of moment method. The moment method converts 
integro-differential PDE form of population balance 
model to a set of ODE equations. Shervin et al. [4] 
suggested this method for population balance models 
when growth term either is not a function of crystal 
length or is a first order function of the length. In this 
paper because of independence of growth rate to the 
crystal length and also dependence of nucleation term  
to third moment, method of moment has been selected for 
solution of governing equations. By applying this method 
to Eqs. (1), (6) and (10) the governing equations  
are defined as following: 
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( )0
V 3 0 0,in 0

d
1 k B

dt
μ

= − μ × +μ −μ τ                            (14) 

1
0 1,in 1

d
G

dt
μ

= ×μ +μ −μ τ  

2
1 2,in 2

d
G

dt
μ

= ×μ +μ −μ τ  

3
2 3,in 3

d
G

dt
μ

= ×μ +μ −μ τ  

A,L V s
2 A,in A,out

s

dn 3k
G n n

dt M
ρ

= − × ×μ + −  

cr V s
cr p,cr cr 2 cool stirrer

s

dT 3k
n c H G Q W

dt M
⎛ ⎞ρ

= −Δ × × ×μ + +⎜ ⎟
⎝ ⎠

 

Where μi is the ith moment and is defined as: 

L i
i 0

L F dL∞μ = ×∫                                                          (15) 

Where μ0 , μ1 , μ2 and μ3,  are the number, the length, 
the surface and the volume of total crystals, respectively. 
Symbols 0,in 1,in 2,in, ,μ μ μ  and 3,inμ  are the crystallizer 

inlet moments and calculated by moment definition  
as following: 

L i
i,feed in0

L F dL∞μ = ×∫                                                  (16) 

The inlet stream PSD is assumed to be equally 
distributed between Lin,min and Lin,max and is evaluated as: 

in
in 4 4

v s in,max in,min

m
F 4

k (L L )
= × ×

ρ −
                               (17) 

( )in,min in,maxHeaviside (L L ) Heaviside (L L )− − −  

Where inm  is the inlet mass flow rate of particles. 

The set of ordinary differential equations in Eq. (14)  
is solved by using the fourth order of Runge-Kutta 
numerical method in four different inlet conditions 
presented in Table 4. Simulation results are shown  
in Figs. 2 and 3. These figures respectively show first 
moment behavior and solute A concentration with 
crystallizer temperature versus time for presented systems 
in Table 4. 

In crystallizer modeling using a simple algebraic 
model for description of population density function F 
behavior, provides reduction in computational time for 
the system. In this contribution Log-Normal (L-N)  
 

Table 4: Systems conditions. 
 

inm , (kg / s)  3
inQ (m / s)  Tcr(K) 

System 1 0 4.17×10-6 289 

System 2 0.001, (Lin,min=50 μm and 
Lin,max=160 μm.) 4.17×10-6 289 

System 3 0 6.17×10-6 289 

System 4 0 4.17×10-6 288 

 
distribution function has been used for calculation of 
population density function F. This function provides  
a reliable model for prediction of size distribution on basis 
of moments values [19]. The Log-Normal distribution 
function is described by: 

( )
( )

2

L N 2

ln L ln u1F (t,L) exp
2 L ln 2 ln

−

⎛ ⎞−
⎜ ⎟= × −
⎜ ⎟π σ σ⎝ ⎠

          (18) 

Where u is the geometric mean number and σ is the 
geometric standard deviation. Applying the L-N 
distribution to the moment relation, Eq. (15), the relation 
between each moment is represented by expression: 

( )
2 2i

i
iu exp ln
2

⎛ ⎞
μ = σ⎜ ⎟

⎝ ⎠
                                               (19) 

The characteristic parameters u and σ of L-N 
distribution can be derived by use of first order and 
second order moments as: 

2
1 2

2
12

u(t) , (t) exp ln
⎛ ⎞⎛ ⎞μ μ⎜ ⎟= σ = ⎜ ⎟⎜ ⎟μμ ⎝ ⎠⎝ ⎠

          (20) 

Now by evaluation of u and σ, L-N distribution 
function F can be evaluated. Fig. 4 demonstrates 
evaluated population density by L-N distribution function 
in steady state condition for presented systems in Table 4. 
In operational conditions of systems 1,3 and 4 which 
there is not any particle in feed, there are wide range of 
PSD in the crystallizer and outlet flow. On the other 
hand, when specified crystal particles are inserted in the 
feed stream, system 2, we will have a narrow PSD during 
crystallizer operation. Such different behavior in PSD 
between systems 1, 3 and 4 with the system 2 is 
obviously due to presence of crystals in feed stream. 
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Fig. 2: Simulation results of first moment for presented systems in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 : a)  KNO3 concentration CL,A in four different operational conditions presented in Table 4,  
b) crystallizer temperature Tcr in four different operational conditions presented in Table 4. 

 
With a specific amount of particles in the feed stream,  

the driving force, i.e., supersaturation in crystallizer  
is significantly decreased for growth of particles and 
prevents from high nucleation rate during crystallizer 
operation. This is because of higher sensitivity of growth 
term on supersaturation with respect to nucleation term.  

It should be mentioned that, owing to presence  
of noticeable number of particles in feed stream,  
in the system 3 (the system which includes inserted 
particles in the feed stream) and division of driving  
force between these crystal particles, we have small shift in 
PSD of product stream with respect to feed stream PSD.  
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Fig. 4: PSD at steady state condition (ts=1000 sec) for 
presented systems in Table 4. 
 

In the other three systems, i.e., systems 1, 3 and 4, 
growth and nucleation kinetics are relatively in equal 
competition for consuming the crystallizer super-saturations. 
So there is a wide range of PSD in these systems. 

According to the simulation results, Fig. 2 through 
Fig. 4, the selected parameters for investigating system 
behavior represent considerable effect on system 
dynamics, especially on PSD of the product. So, these 
parameters can be selected as manipulating variables for 
controlling system to achieve desirable product.  

One of the most important problems in control  
of crystallizers is the choice of an appropriate criterion 
for measurement of PSD. Utilizing direct methods  
for PSD measurement need expensive image processing 
equipment that is not a reasonable way for PSD counting. 
The best way to solve this problem is to select an indirect 
criterion for evaluation of PSD such as CMF. The CMF 
is a suitable criterion that is widely used in industry for 
determining particle size distribution. Unlike the other 
parameters for evaluating PSD, such as nuclei density, 
the CMF does not require to count particles within 
different size fractions. Measurement of the CMF 
requires separating the sample into a few fractions and 
weighting them. This operation can be automated with 
existing solid handing equipments like sampling, 
classifying (sieve or cyclone) and automated weighting 
devices [2]. The dimensionless CMF above the cut point 
size is defined as: 

( )

( )
c

c

3
L

c
3

sL

L F L, t dr
M

L F L, t dr

∞

∞
=
∫
∫

                                                (21) 

Where symbol  Lc  and st  are the cut-point size and 

system steady state time, respectively. In this study the 
system reached to steady condition at st 10000 sec≈ . 

In part B of the paper due to importance of CMF 
dynamic behavior in control of crystallizer, frequency 
response of linearized CMF transfer function  
is presented. A heuristic frequency domain model 
simplification method developed by Shirvani et al. [12]  
is used for predicting simplified structure of CMF transfer 
functions of the crystallizer from the frequency response 
data of the original linearized model. This method, 
because of recognition of higher important terms  
in crystallizer dynamic and simplicity in its form, 
increases control system performance during disturbances 
rejection. Results show excellent ability of the simplified 
models in describing the dynamics of the system. 

 
PART B 

In this part after providing a brief overview about 
dynamic characteristics of particulate processes, 
linearization of governing Eq. (14) and the population 
balance Eq. (1) around steady state point is presented. 
Subsequently, regarding different input variables, CMF 
transfer function is derived. Finally, using frequency 
response data of the main derived linearized CMF 
transfer function, the simplified transfer functions for 
description of CMF variations with respect to different 
input variables is obtained. 

 
Dynamic of particulate processes 

The dynamics of a large class of process systems have 
been modeled by hyperbolic partial differential equations. 
Particulate processes are one subsets of this class that 
have complex behaviour in control problems [2]. 

In Laplace domain, theses processes have transfer 
function with infinity of zeros that may locate partially or 
totally in right half or left half of the complex plane.  
In the case of appearance of right half plane zeros larger 
phase lags results in difficulties in controlling the system. 
Particulate processes transfer function in some 
operational and system physical conditions do not exhibit 
the exact delayed response characteristic of lumped 
parameter systems with time delay. This is due to the 
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above mentioned characteristic of location of zeros.  
Some of these transfer functions exhibit non-minimum 
phase behavior and if they are included in  
closed-loop control system yields oscillatory responses 
with poor performance and poor stability with PID 
controllers [2]. 

According to Ramanathan [2], systems with complex 
transfer functions that appear in hyperbolic process 
systems can be approximated very well with appropriate 
and simple transfer functions. Shirvani et al. [12] 
developed a heuristic and appropriate method in 
frequency domain to determine the structure of complex 
model as the main characteristic of the model does not ommit. 
In the next subsection this method is used to  
identify the simplified transfer functions for CMSMPR 
crystallizers. 

 
Model linearization and CMF transfer function 

In this part, CMF transfer functions of crystallizer  
as an appropriate criterion for survey of system  
behavior is selected. For evaluation of CMF  
in Laplace domain, the sets of Eq. (1) and Eq. (14)  
should be linearized at the steady state point.  
In the linearized model of Eq. (1), population balance 
density function at steady state point should be 
approximated by a function such that analytical 
integration of linearized model becomes possible. In this 
study the first order Gaussian model is used for 
prediction of population balance density function  
in steady state condition because of its ability to show PSD 
as well as L-N function. The general form of Gaussian 
model is given by: 

2n 1
i

i
ii 1

L b
Gaussian a exp

c

+

=

⎡ ⎤⎛ ⎞−⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑                                (22) 

where a is the amplitude, b is the centroid (location),  
c is related to the peak width, n is the number of peaks  
to fit and 81 ≤≤ n . In this work only at n=0 analytical 
solution of linearized Eq. (1) is possible. The other 
parameters of Gaussian equation are evaluated by fitting 
the model on L-N distribution function at steady sate 
point. Table 6 shows model parameters. 

Laplace transform of linearized Eq. (1) gives: 

F(L,s)G F(L,s) s
L

∂
× = − × −

∂
                                         (23) 

L,in L,in,s
s in

Q Q
F (L) F(L,s) F (L,s)

V V
⎛ ⎞

× + × +⎜ ⎟⎜ ⎟
⎝ ⎠

 

3 (s)
B.C F(0,s)

G
μ

→ =  

where, 

2
1

s 1
1

L b
F (L) a exp

c

⎡ ⎤⎛ ⎞−⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                                         (24) 

where Fs and Qin,s respectively are the PSD and the 
inlet volumetric flux at steady sate point. In Eq. (23), 
because of the boundary condition dependence to 3 (s)μ , 

linearized form of Eq. (14) should be solved analytically 
in Laplace domain. So, 3 (s)μ  is obtained as:  

( )
6

i i
i L,in i in

i 0
3 7

i
i

i 0

( s ) Q (s) ( s ) m (s)
(s)

( s )

=

=

′α × + α ×
μ = +

′′′α

∑

∑
         (25) 

5
i

i jacket
i 0

7
i

i
i 0

( s ) T (s)

( s )

=

=

⎛ ⎞
′′α ×⎜ ⎟⎜ ⎟

⎝ ⎠

′′′α

∑

∑
 

Where , ,′ ′′α α α  and ′′′α  are constant and dependent 
on operating point of linearization. Due to large size and 
complex and form of the achieved equation it is presented 
as a generalized equation for further simplification. 

The CMF transfer function is obtained by Laplace 
transform of Eq. (21) as a following: 

( )

( )
c

c

3
L

c
3

sL

L F L,s dr
M (s)

L F L, t dr

∞

∞
=
∫
∫

                                            (26) 

By substitution of obtained 3μ  in Eq. (14) and analytical 

solution of F in Eq. (23) and substitution F in Eq. (26), 
CMF transfer function will be evaluated. This transfer 
function has long terms and is very complicate. General 
form of obtained CMF transfer function is as following: 
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( )

( )

k n
j

j i
u j 1i 1 i

c inqm
w 1 p

p
p 1l 1 l w

a s exp( s)

M (s) Q (s)

b s

==

=

==

⎡ ⎤⎡ ⎤
⎢ ⎥× τ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦= × +⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑∏
∑

∑∏
 (27) 

( )

( )

k ' n
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inqm
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a s exp( s)
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′′
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′′ == ′ ′
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⎢ ⎥⎢ ⎥⎣ ⎦ × +⎢ ⎥
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k n
j

j i
u j 1i 1 i

jacketqm
w 1 p

p
p 1l 1 l w

a s exp( s)
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′′ ′′
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′′ ′′
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′′
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′′
′′== ′′ ′′
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∑∏
∑

∑∏
 

Where a,a ,a , b, b ,b , ,′ ′′ ′ ′′ ′τ τ  and ′′τ  are constants. 
Results of accurate CMF transfer function have been 
shown in Fig. 6. In this figure CMF frequency responses 

for inlet volume fluxes, inQ , Fig. 5-a; inlet seeding  

rate inm , Fig. 5-b; and jacket temperature, Tjacket,  
Fig. 5-c are depicted. Regarding control problems,  
the complicate model in Eq. (27) reduces the ability  
of controller for fast reaction to disturbance input  
to the system. This is because of long time needed  
for numerical solution of Eq. (27). This problem 
especially is because of existence of integral terms  
in governing equations and when accurate models  
for description of physical and chemical phenomena  
are assumed, sorely reduces controller performance 
during operation. Therefore development of simple 
transfer function that has characteristics of complicate 
system but at a simple scheme can overcome  
such problems in control field. In the next section  
after linearized model validation with Miller [15] 
experimental data, complicated model Eq. (27) will be 
approximated by some appropriate simple structured 
models.  
 
Linearized Model Validation 

For validation of the linearized crystallizer model 
 we use Miller [15] batch crystallizer condition to validate 
the model. The operational conditions of batch MSMPR 
crystallizer have been presented in Table 5. In Fig. 6  
 

Table 5: Operating conditions for the batch Crystallizers [15]. 

Parameter Value Unit 

V 3105.7 −×  m3 

ωstirrer 475 Cycle/min 

dstirrer 0.1 m 

0jacket crT , T  305.1, 304.85 K 

nL,0 , nL,A,0 67.2, 5.42 mol 

seedm  
0.005 

equally distributed for L ∈ [190 µm; 
210 µm] 

kg 

 
Table 6:  Gaussian model parameters. 

Parameter Value(with 95% confidence bounds)  

a1 8.085×1010 , (7.943×1010  , 8.228×1010) 

b1  1.434×10-4 ,  (1.423×10-4, 1.444×10-4) 

c1 7.353×10-5 , (7.203×10-5, 7.503×10-5) 

R-square = 0.9691 

 
the second moment values for experimental data  
and linearized model have been presented during 
crystallizer operation time. It can be seen rather  
good agreement between linearized model and 
experimental data. 
 
Model simplification 

In the previous sections perfect model of CMF 
transfer function as a general form was presented. 
According to Ramanathan [2] complicated models of 
hyperbolic transfer functions can be approximated with 
simple transfer functions. Shirvani et al. [12] developed 
the heuristic method of identifying simplified models  
in frequency response domain. The rules and relationships 
for estimating the simplified model parameters have been 
presented in their paper.  

For evaluation of simplified model, CMF transfer 
function should be evaluated with respect to each input 
variables. By applying simplified model theory
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 

Fig. 5:  CMF frequency response of simplified model and original complex model with respect to (a) inQ , (b) inm , (c) Tjackat. 
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Fig. 6: Linearized model result (____) vs. experimental date (●) [15]. 
 
the simple model of CMF transfer function with respect 

to inQ  is as following: 

in jacket
c m T 0M = = =                                                           (28) 

in
(500 s 1)3.9 Q (s)

(2577 s 1)(3246 s 1)
⎛ ⎞× +
− × ×⎜ ⎟× + × +⎝ ⎠

 

Fig. 5-a shows frequency response of simplified 
model Eq. (28) in comparison to the complex model,  
Eq. (27). The simplified model of CMF transfer function 
with respect to is: 

in jacket
c Q T 0M = = =                                                            (29) 

6 1.33

3.7 0.8
3 10 ((370 s) 1)

((0.15 s) 1)((2898 s) 1)

−⎛ ⎞− × × × +
×⎜ ⎟× + × +⎝ ⎠

 

( )0.8
in((33 s) 1) exp( 1958 s) m (s)× + × − × ×  

Fig. 5-b shows simplified model results of  
Eq. (29) with Eq. (27) and finally simplified model of 
CMF transfer function with respect to jacketT  is presented 

in Eq. (30) and the results is depicted in Fig. 5-c:   

in seed
c Q m 0M = = =                                                            (30) 

5 1.5

8
3.8 10 ((666 s) 1)

(3246 s 1)((2570 s) 1)

−⎛ ⎞− × × × +
×⎜ ⎟× + × +⎝ ⎠

 

jachet0.65
exp( 1950 s) T (s)

(11 s 1)((10 s) 1)
⎛ ⎞− ×

×⎜ ⎟× + × +⎝ ⎠
 

In Eqs. (28) through (30) simple form of CMF 
transfer functions have been obtained using the dominant 

gain transfer function simplification of complicated 
transfer function models for each input variables, 

in inQ , m  and Tjacket. Afterwards, constants and powers 

have been modified to best fitting for each equation by 
least square method. Now, after evaluation of CMF 
transfer function with respect to individual input 
parameters, general form of CMF transfer function will be 
available by summation of right hand side of Eqs. (28) - (30). 
This transfer function provides an applicable and  
simple form of CMF dynamic behavior for analysis of 
system controllability during the process. 
 
CONCLUSIONS 

The method of simplification study of complex transfer 
function can provide a reliable technique for prediction of 
complex process nature. This method by recognition of 
the most important poles and zeroes of complex models, 
develop a simple model that contains dynamic 
characteristics of the system as well as main model.  

The CMF transfer function of CMSMPR crystallizer 
which is one of the numerous complex transfer functions 
was studied in this paper. The developed simplified 
model for CMF provided system dynamic with respect to 
input parameters for recognition of influence of important 
parameters in dynamic behavior of CMSMPR crystallizer. 
Also this simplified scheme will provide high ability  
to take appropriate decision for choice of control method 
therewith decrease computation time. Results showed that 
the explanation of complex dynamic of CMF in CMSMPR 
with utilization of simplified method theory is an 
appropriate procedure to increase the controllability of 
developed complex process.  The future works in concern 
with this study may focus on application of resultant 
model of CMF transfer function for controlling CMSMPR 
crystallizers to achieve desired particle size distribution. 
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