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ABSTRACT: A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes 
being imposed by control input constraints. The proposed methodology uses a combination of Feedback 
Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the 
transformed process will be dependent on the actual evolving states, making their incorporation in the 
design context a non-trivial task. A feasible direction method has been integrated in the design procedure 
based on active set technique to resolve the challenging constraint–based FLMPC problem.  
The formulated FLMPC design method is utilized to develop a FTC scheme by providing a set of backup 
control configurations for a CSTR benchmark process. The successful performance of the proposed  
FTC methodology has been demonstrated via a category of common fault scenarios by exercising an 
arbitrary replacement of control configurations through a supervisor to maintain the CSTR operation  
at an unstable desired steady-state point. 
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INTRODUCTION 
Considerable effort has been devoted to development 

of Fault Tolerant Control (FTC) systems for chemical plants 
to minimize their susceptibility against potential failures  
in their operations and equipments. If no corrective action  
is accommodated to counteract the consequent degradation 
effects due to these occurring failures, serious impacts will 
ultimately influence the overall plant safety and productivity. 
Thus, it is crucially desirable to explore for FTC schemes  
 
 
 
 

to avoid disaster upon a fault occurrence and yet minimize 
plant performance against its invertible degradation, 
leading to smooth repair to nominal operation. 

Over the last decade, FTC has been received a 
significant amount of attention. The proposed methods 
can be categorized within the robust and reconfiguration-
based approaches. Robust control approach essentially 
relies to the robustness of the control strategy to tolerate  
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faults which are being treated as disturbance for some 
prescribed degree. This passive approach, however, is not 
effective to deal with some faults which significantly 
erode the available control action, leading to closed-loop 
stability problem. Another motivating FTC approach 
attempts to reconfigure a process control structure upon 
detection of a fault in order to preserve closed-loop 
system stability and performance [1-6]. Apposed  
to the passive methods, the key elements of this approach 
include multiple control configurations with well-defined 
regions of closed-loop stability and a supervisor to enable 
switching between faulty and well-functioning control 
configurations. However, this approach is restricted  
to the assumption of availability of sufficient backup or 
redundant control configurations to be appropriately 
activated so as to preserve closed-loop stability  
at nominal equilibrium point. Therefore, the approach may 
exhibit some potential disadvantages. The main issue 
concerns the critical reliance of its successful operation 
upon the existence of adequate number of backup control 
configurations. At the time any failure occurrence, it is 
probable that the states of system to be out of stability 
regions. Therefore, no backup control configuration  
can be accommodated to maintain the stability of the closed-
loop system. This has motivated the research work in this 
paper to address this issue by devising a FLMPC control 
strategy to design each backup control configuration. 
This can lead to a more reliable condition in which  
a supervisor is able to take a proper action following  
the observation of a failure occurrence. The proposed approach 
can provide different back up control configuration 
options without doubting about their stability 
considerations. Thereby, the supervisor can select  
the most suitable control configuration in the case of any 
probable failure to realize a FTC objective while being 
assured that any possible imposed restriction has already 
been managed via the FLMPC design scheme.  

The rest of the paper has been configured into four 
sections. In Theoretical Section, the proposed FLMPC 
technique is presented to develop a constrained nonlinear 
control system. Next section addresses the stability 
analysis of the developed control system. The proposed 
FTC control methodology is implemented in Case Study 
Section on a continuous Stirred Tank Reactor (CSTR) 
benchmark to evaluate its performance. Finally concluding 
remarks are summarized in conclusions section. 

THEORETICAL  SECTION 
This section is devoted to design and development of 

the proposed FLMPC controller for constrained  
nonlinear systems in the context of control input 
constraint. 
 
Development of FLMPC Controller 
Process description 

Consider the class of continuous-time, single-input 
nonlinear process with  input constraint,  described  by  
the  following affine state-space model equations: 

}{

kk k

k,min k k,max

x(t) (x(t)) (x(t)) u (t)

y(t) h(x(t))

u u u ,k 1,2,..., l

gf⎧ = + ⋅
⎪

=⎨
⎪ ≤ ≤ ∈⎩

                              (1) 

Where nx(t) R∈  denotes the vector of state variables 

and ku (t)  indicates the constrained manipulated input 

associated with the kth control configuration being confined 
between k,minu  and k,maxu  as the respective lower and 

upper constraints. ( )kf .  and ( )kg .  represent the vector 

field functions, constituting different configurations for 
different manipulated inputs belonging to each value of 

}{k 1, 2,..., l∈  and ( )h .  is the output function. Functions 

( )kf . , ( )kg .  and ( )h .  are assumed to be sufficiently 

smooth on their domains of definition.  
For simplicity of representation, the subscript k, 

indicating the kth control configuration, is neglected  
in the subsequent sections. 
 
Full state feedback linearization 
It is considered that the nonlinear process in Eq.(1) is 
observable and all the states measurements are available. 
The first step in the controller design involves the 
application of full state feedback linearization technique 
to introduce a new input variable v and a nonlinear 
transformation that uses state feedback to compute  
the original input u(.) as follows [7,8]: 

r 2
i

i f 1
i 0

2 g f 1

v L
u

L L

=

=

− β ε
=

β ε

∑
                                                          (2) 

Where the relative degree of the system has been 
assumed to be r = 2 for sake of simplicity. The notion 
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i
fL h  denotes a lie derivative of order i of a scalar 

function ( )h .  with respect to the vector function ( )kf . . 

f gL , L  and T
1 2[ , ]ε = ε ε  show the parameters of the 

resulting linear state-space model, given by: 

1 2 f 1 g 1

2 f 2 g 2 g 2

1

L , L 0

L L .u,L 0,

y h(x)

ε = ε = ε ε =⎧⎪
⎨ε = ε + ε ε ≠⎪⎩
= = ε

                                     (3) 

This linearization strategy makes the system 
described by Eq.(1) behaves linearly from the new input v 
to the output y, represented by: 

2
2 1 0

y 1
v S S
=
β +β +β

                                                       (4) 

Where  β0 , β1 and β2 indicate tunable parameters that 
can be selected arbitrary to force the linearized system  
to be stable. It is of considerable importance to assess which 
systems can be input-output linearizable whose necessary 
and sufficient conditions for the existence of a feedback 
control law have already been presented in [9]. 

Substituting Eq.(2) in Eq.(3) yields the following 
discrete-time state-space based on a suitable sampling time: 

(k 1) A. (k) B.v(k)
y(k) C. (k)
ε + = ε +⎧
⎨ = ε⎩

                                        (5) 

 
Where 

0 1

2 2

0 1
A

⎡ ⎤
⎢ ⎥
⎢ ⎥= −β −β⎢ ⎥
⎢ ⎥β β⎣ ⎦

       1

2

0
B

⎡ ⎤
⎢ ⎥= −β⎢ ⎥
⎢ ⎥β⎣ ⎦

        C [1 0]=  

 
Model predictive control 

The linearized system can be controlled through  
an MPC algorithm, formulating in discrete-time by solving 
an online finite horizon optimal control problem at each 
sample time k, being specified by the following objective 
function: 

p
2

j 1
J ( j)[y(k j | k) w(k j | k)]

=

= δ + − + +∑                         (6) 

m 1
2

j 0
( j) v (k j)

−

=

γ Δ +∑  

Where p and m indicate prediction and control 
horizons, respectively. δ, γ represent the respective 

vectors of output error  and input-rate weights with 
appropriate dimensions. w(.) denotes the future trajectory. 

Solution of the foregoing MPC problem leads to  
the following control decision vector at each time step: 

V(k | k) [v(k | k) ... v(k m 1| k)]′= + −                        (7) 

Therefore, a state feedback control law is obtained by 
implementing only the first calculated input i.e. v(k)= v(k | k), 
and then resolving the control problem at the next time 
step with new state measurements x(k+1). The actual 
input u(k)  is finally calculated from v(k) via the Feedback 
Control Law (FCL) described in Eq.(2).  
 
Handling system input constraints 

The optimization problem in Eq.(6) should be solved 
subject to system input constraints of the form: 

min maxv (k j | k) v (k j | k) v (k j | k)+ ≤ + ≤ +                 (8) 

( )0 j m 1≤ ≤ −  

The input constraints in Eq.(8) can be determined by 
mapping the original system constraints on u(k) into the 
feedback linearized space using the nonlinear 
transformation relationship, given in Eq.(2), yielding : 

 

2 g f

2
min iu i f

i 0

L L h(x(k j | k)).u

v (k j | k) Min
L h(x(k j | k))

=

β +⎧ ⎫
⎪ ⎪

+ = ⎨ ⎬
+ β +⎪ ⎪

⎩ ⎭
∑

          (9) 

2 g f

2
max iu i f

i 0

L L h(x(k j | k)).u

v (k j | k) Max
L h(x(k j | k))

=

β +⎧ ⎫
⎪ ⎪

+ = ⎨ ⎬
+ β +⎪ ⎪

⎩ ⎭
∑

 

 

Where min maxu u u≤ ≤  and x(k j | k)+  represents  

an estimate of the future state vector x(k j)+  whose non-trivial 
solution in the control context has been addressed in [10]. 

A much simpler approach can be realized on the basis 
of using inputs calculated at the previous time step  
to approximate the future constraints, yielding [10]: 

V(k | k 1) [v(k | k 1) ... v(k m 2 | k 1) 0]′− = − + − −   (10) 

This approach makes it feasible to calculate u(k 1)−  
from the first input of V(k-1|k-1) which is already 
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available from the previous time step optimization. 
Meanwhile, the control sequence at the current time step 
in Eq.(10) can be estimated using the remaining inputs of  
V(k-1|k-1). 

The current measurements x(k) can then be used  
to calculate the transformed state variable (k)ε  The result 

can be employed as initial to estimate predicted values of 
the transformed state variables with the input sequence 
V(k | k 1)−  to yield: 

ˆ ˆ(k j | k) A. (k j 1 | k) B.v(k j 1| k 1)

ˆ(k | k) (k);0 j (m 1)

ε + = ε + − + + − −⎧⎪
⎨
⎪ε = ε ≤ ≤ −⎩

    (11) 

Where ˆ(k j | k)ε +  denote predicted state vector 

associated to linearized system. This enables the 
calculation of the upper and lower limits of system input 
constraints in Eq.(9) using the predicted state values. 

The preceding procedure is repeated at the next time 
step with the input sequence )|( kkV and the new 

measurement x(k 1)+ . The resulting linear MPC problem 

is said to be feasible [10] if there exists a feasible input 
sequence V (k | k), implicating that all the sequence 
elements remain within the input constraints in Eq.(8). 

 
Solution of the constrained optimization problem using 
feasible directions method 

Consider an optimization problem which is defined 
via solution of the following cost function (J) subject  
to the given set of constraints: 

c

1J v .H. v E . v f
2

s.t. A . v a

⎧ ′ ′= Δ Δ + Δ +⎪
⎨

Δ ≤⎪
⎩

                                         (12) 

Where Ac and a represent a n m×  matrix and a n 1×  
vector, respectively. vΔ  indicates the control input vector 
having a dimension of m 1× . 

The optimization problem can be solved using  
an active set method realized through feasible directions [11]. 
The key idea behind this method is to minimize  
the cost function (J) by moving from a feasible point  
to an improved feasible point until the optimum is reached. 

For this purpose, the given constraint set in Eq.(12)  
is divided into active constraint set ( c1 1A . v aΔ = ) and 

inactive constraints set ( c2 2A . v aΔ < ). Then, cost 

function (J) can be minimized along an improved feasible 
direction (Sk) with a suitable step length (λk), giving: 

Δv(k+1)= Δv(k)+λk.Sk                                                  (13) 

Via satisfying the following two conditions: 
(i) kJ( v(k)).S∇ Δ < 0 indicating that the cost function 

is minimized along Sk, leads to the following selection: 

kS P. J( v(k))= − ∇ Δ                                                       (14) 

Where P is a positive definite matrix. 
(ii) c1 kA .S 0≤  to guarantee that the new point is 

feasible. To satisfying this condition, P can be defined as:  

( ) 1
c1 c1 c1 c1P I A A A A−′ ′= −                                            (15) 

The value of λk can be computed from  
λk = Min(λmax, λopt) where λmax indicates the 
maximum possible λ to ensure the new point remain 
within feasible region, determined by: 

2 j c2 j k
max j

c2 j k

a A v
Min

A S
− ⋅Δ

λ =
⋅

                                      (16) 

Where c2 jA  and 2 ja  denote the rows of the inactive 

constraint set and the bound set, respectively. optλ  is  

the value of λ which minimizes the cost function via 

k 1 kdJ( v ) / d 0+Δ λ = , leading to the following solution : 

K k K
opt

K K

S H v E S
S H S

′ ′− ⋅Δ + ⋅
λ =

′ − ⋅
                                       (17) 

Fig. 1 shows the descriptive flowchart of the adopted 
method. As shown, solution to the optimization problem 
is terminated via ‘maxiter’ or η test observation. 
‘maxiter’ defines the maximum number of iterations and 
η denotes a threshold parameter [11]. When Sk is found  
to be equal to zero and the active constraints set exists, 
the minimum is verified based on Kuhn-Tucker criterion. 
Therefore, Lagrange function is defined as 

( )c1 k 1L J W A v a′= − Δ −  where Lagrange multiplier (W) 

is computed by kdL / d v 0Δ =  , giving : 

k c1J( v ) A .W 0′∇ Δ − = ⇒                                              (18) 
1

c1 c1 c1 kW (A A ) A . J( v )−′= ∇ Δ  
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Fig. 1: Flowchart of Feasible Directions Method. 

 
This criterion implies that vΔ  is minimum provided 

that coefficients W to be non-positive [11]. 
 

STABILITY  ANALYSIS 
It can be shown that global asymptotic stability  

is ensured under the following assumptions: 
Assumption1: The nonlinear algebraic equation  

u(k)= φ( x(k),v(k)) has a unique solution for all nx(k) R∈   

and all ( )v k R∈ . 

Assumption 1 can be held provided that the nonlinear 
system possesses a well defined relative degree 
throughout the state space. 

Assumption 2: There exists a globally defined 
diffeomorphism ε(k)=ψ(x(k)) such that the nonlinear 
dynamic is transformed to the linear form. 

This means that function ψ (.) should be invertible 
and inverse of ψ(.) to be sufficiently smooth. 

Since the goal is to achieve full state stabilization, 
process output can selected arbitrary such that function  
ψ (.) to be diffeomorphism. 

When following two conditions are satisfied, then 
there exist a diffeomorphism function ψ(x(k)) with 
relative degree n for system represented by Eq.(1). 

I) the matrix G(x) = [ g(x), adfg (x), … n 1
fad g(x)− ]  

to be full rank in Ω region that is  in a neighborhood of 
operating point. 

II) the set {g(x), adfg(x), …, n 2
fad g(x)−  } to be 

involutive in Ω region. 
Where fad g(x)  is defined by adfg(x) = [g,g](x) and 

[f,g](x) is expressed as Lfg(x)-Lgf(x) and 
k k 1
f fad g(x) f ,ad g(x)−⎡ ⎤= ⎣ ⎦ . 

Assumption3: internal dynamic of the process  
should be stable. This assumption is not relevant for the cases 
in which internal dynamic don't exist due to using  
the full state feedback linearization technique. 

Assumption4: it is necessary that all the elements of 
input sequence V(k|k-1) to be satisfied in (8) for all k 1≥ . 

Theorem: when the above assumptions are satisfied 
and MPC problem is feasible for all 1≥k , then x(k) = 0 
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is treated as a globally asymptotically stable fixed point 
of the closed-loop system comprising Eqs. (1), (2), (8) 
and (9). 

Proof: since MPC problem is feasible in k=0, so MPC 
solution is feasible for all 0≥k  by virtue of assumption 4. 

Supposing that the cost function is Ĵ(k)  for the input 

sequence defined by V(k|k-1), the elements of this 
sequence, represented by v̂(k j k)+ , together with  

the state variables ˆ(k j k)ε +  can be derived by Eq. (11). 

Now, it is possible to show that ˆ(k j k)ε +  is equal to 
(k j k 1)ε + − . For this purpose, (k k 1)ε −  can be solved 

directly via Eq.(11) using v(k 1 k 1)− −  as the control 

input. On the other hand, u(k 1 k 1)− −  can uniquely be 

obtained through Eq.(2) on the basis of assumption 1 
using the same control input. Having x(k)  and (k)ε  as 
already known via Eq(1) and assumption2, it can be 

concluded that ˆ(k k 1) (k k)ε − = ε . This consequently 

leads to ˆ(k j k 1) (k j k)ε + − = ε +  for all values of j 1≥  

and ˆv(k j k 1) v(k j k)+ − = +  for j 0∀ ≥ . Assuming that 

the control horizon is taken to be equal to prediction 

horizon, the cost function Ĵ(k) , corresponding to a 

Multi-Input, Multi-Output (MIMO) process, can be 
expressed as follows: 

m 1

j 0

ˆ ˆ ˆJ(k) [( (k j k) (k j k)
−

=

′= ε + δε + +∑                              (19) 

m 1
2

j 0

ˆv̂(k j k) ] J(k) [( (k j k 1) (k j k 1)
−

=

′γΔ + ⇒ = ε + − δε + − +∑  

2v(k j k 1) ]γΔ + −  

Optimization at time k yields ˆJ(k) J(k)≤ .Thus, it can 
be written: 

ˆJ(k) J(k 1) J(k) J(k 1)− − ≤ − − =                                  (20) 
2(k 1) (k 1) v(k 1)′−ε − δε − − γΔ −  

The cost function J(k) is non-negative and deceasing 
with respect to time due to assumption of 0, 0δ ≥ γ ≥ . 
This implies that the sequence J(k) will be asymptotically 
converged to zero, requiring that klim v(k) 0→∞ = . 

Whereas the linearized process in Eq.(11) is stable due to 

considering βi tunable parameters, klim (k) 0→∞ ε =  will be 
satisfied. Accordingly, it can be deducted that 

klim x(k) 0→∞ =  using assumption 2. This is mainly due 
to the fact that stability is preserved under 
diffeomorphism. This theorem can hence be generalized 
to every point using transformation of coordinates, i.e. 

k slim x(k) x→∞ = . 

 
Implementation of the Proposed Fault Tolerant Control 

This section introduces the implementation of the 
proposed FTC scheme on a CSTR benchmark to explore 
its performances under two fault scenarios. 

 
CASE  STUDY 

In this paper, a Continuous Stirred Tank Reactor (CSTR) 
is utilized to illustrate the design and implementation of 
the proposed FTC approach. Three parallel irreversible 
exothermic reactions are carried out in reactor as 

3KA R⎯⎯→ , 2KA U⎯⎯→ , 1KA B⎯⎯→  where A is input 
reactant, B is the desired output and U, R represent 
undesired output. Input reactant A is fed to CSTR at flow 
rate F, molar concentration CA0 and temperature TA0.  
A jacket has been considered to provide heat transfer  
to reactor [4]. The nonlinear differential equations  
of the reactor can be described as:  

A0

3
i i

i0 A
P Pi 1

3
i

A0 A i0 A
i 1

6
A0 3

A0

dT F (T T)
dt Vol

( H ) E QK exp( ).C
.C RT .C .Vol

EdCA F (C C ) K exp( ).C
dt Vol RT

kj kmolQ 2.7 10 , C 4hr m

, T 100 k

=

=

⎧ = −⎪
⎪

−Δ −⎪+ +⎪ ρ ρ⎪
⎪ −⎪ = − −⎨
⎪
⎪

≤ × ≤⎪
⎪
⎪ ≤ °⎪
⎪⎩

∑

∑       (21) 

Where, CA, T, Q and Vol are inlet concentration, 
temperature of reactor , rate of heat input  to reactor  and 
volume of reactor, respectively.  Ei, ΔHi, Ki0 for i =1, 2, 3 
denote activation energies, the enthalpies and  
pre-exponential constant of three reaction, respectively. 
The parameters and operating conditions of the process 
have been summarized in Table 1. 
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Table 1: The parameters and nominal values of the process. 

F = 4.998 m3 / h 

Vol = 1.0 M3 

R = 8.314 kJ/kmol . K 

TA0 = 300.0 K 

CA0 = 4.0 kmol / m3 

ΔH1 = -5.0 × 104 kJ / kmol 

ΔH2 = -5.2 × 104 kJ / kmol 

ΔH3 = -5.4 × 104 kJ / kmol 

k10 = 3.0 × 106 h-1 

k320 = 3.0 × 105 h-1 

K30 = 3.0 × 105 h-1 

E1 = 5.0 × 104 kJ / kmol 

E2 = 7.53 × 104 kJ / kmol 

E3 = 7.53 × 104 kJ / kmol 

ρ = 1000.0 kg / m3 

cρ = 0.231 kJ / kg . K 

Ts = 388.57 K 

Cs
A

 = 3.59 kmol / m3 

 
The process with Q=0 has three equilibrium points  

in which two points are stable and the third point, specified 
by the equilibrium point ( S S

AT ,C )= (388.57°k, 3.5907 

kmol/m³), is unstable. The aim of controller design is  
to stabilize reactor operation around the unstable point and 
in the presence of faults. For this purpose, Q, TA0, CA0  
are considered as the three manipulated inputs to independently 
realize three possible control configurations. 
 
The design of control configurations 

As discussed, each of the three inputs Q, TA0, CA0  
can be utilized to stabilize the process. Hence, three 
constrained controllers should be designed independently 
to realize each possible control configuration.  When   
a failure occurs,  the supervisor can immediately activate 
any of the already designed control configurations. The 
three control configurations have been introduced 
individually in the following sections. Having determined 
the candidate backup control configuration, the corresponding 
FLMPC controller can be derived individually. The 
supervisor mechanism can then switch between any of 
backup control configuration arbitrarily to maintain the 
closed-loop stability in the event of failure. 

Q-control configuration 
In this section, the process is controlled through  

q-input. Hence, the affine model of CSTR can be presented as: 

(1) (1) (1)
A

T(t)
x(t) f (x) g (x).u (t), x(t)

C (t)
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

 

6
A (1)y C (t), u (t) Q, Q 2.7 10 kJ h= = ≤ ×  

3
i i

A0 i0 A
Pi 1

(1) 3
i

A0 A i0 A
i 1

( H ) EF (T T) K exp( ).C
Vol .C RT

f (x)
EF (C C ) K exp( ).C

Vol RT

=

=

⎡ ⎤−Δ −
− +⎢ ⎥

ρ⎢ ⎥= ⎢ ⎥−⎢ ⎥− −
⎢ ⎥⎣ ⎦

∑

∑
 

P(1)

1
.C .V olg (x )

0

⎡ ⎤
⎢ ⎥ρ= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The main objective is to control the output 
concentration y=CA(t) via full-state stabilization scheme. 
This choice yields a relative degree of  r = 2. 
 

TA0 -control configuration 
For this configuration, the process is stabilized by 

TA0-input. So, the CSTR affine model is described as: 

(2) (2) (2)
A

T(t)
x(t) (x) (x).u (t), x(t)

C (t)
f g ⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

 

A (2) A0 A0y C (t), u (t) T , T 100 k= = ≤  

f(2), g(2) are derived similar to the previous section. y=CA(t)  
is chosen as the output, yielding a relative degree of r = 2. 
 
CA0 -control configuration 

In this control configuration, CA0 is used to stabilize 
of the process, resulting into the following affine model 
with a relative degree of r = 2: 

(3) (3) (3)x(t) f (x) g (x).u (t)= +  

3
(3) A0 A0y T(t), u (t) C , C 4kmol m= = ≤  

3
i i

A0 i0 A
Pi 1

(3)
P

3
i

i0 A A
i 1

( H ) EF (T T) K exp( ).C
Vol .C RT
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Fig. 2: Closed-loop output trajectories (CA) with control input 
Q based on FLMPC controller (solid) and based on PID 
controller (dashed). 

As indicated, y = T(t) has been considered as the 
process output. 
 
Implementation and simulation of FTC controller 

In this section, the proposed FTC controller can be 
implemented on the CSTR benchmark process being 
simulated in the Matlab software environment. For this 
purpose, the following design parameters have been 
considered to realize the FTC controller: 

Tsp (Sampling Time) =0.05hr, m (Control horizon) =3,  
p (Prediction horizon) =20, Q (output error weight) =I,  
λ (input-rate weight) =1,   β0=1, β1=10, β2=2, (coefficients 
related to feedback linearization method) 

The control objective is to stabilize the CSTR process 
around its unstable steady state in the presence of faults. 
 

Healthy test scenario 
First, the CSTR process is assumed to be controlled 

under the Q-control configuration option. Fig. 2 illustrates 
the resulting Closed-loop output trajectories corresponding  
to T and CA together with the control effort representation.  
A comparative study has been conducted to demonstrate 
the efficiency of the proposed FLMPC controller with 
respect to a well-tuned PID controller. As shown, it can 
easily be observed that the FLMPC controller yields  
a much better response compared to the PID controller. 

Figs. 3 and 4 demonstrate the respective performance 
of the two alternatives TA0 and CA0 control configurations 
in the context of the proposed FLMPC control strategy.  
A white noise with variance of o.o4 has been included  
in Fig. 3 as process noise to explore the resulting 
performance under noisy condition. As illustrated,  
the CSTR process can successfully be controlled via  
each of these two control configurations. 

This is in contrast to the works reported in [4,5] where 
the same CSTR process has not been able to be controlled 
individually via TA0 and CA0 as manipulated inputs using 
a lyapunov-based control approach. 

The required computing time to implement the 
preceding FLMPC controller was found to be about  
two seconds. Thus, it can easily be observed that the proposed 
FLMPC controller is practically feasible, considering the 
three minutes sampling time of the CSTR process. 
 
Faulty test scenarios 

Two fault scenarios are adopted to evaluate the 
proposed FTC performance. For this test study, the 
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Fig. 3: Output response (T, CA) with manipulated input TA0 
under white noise with variance of 0.04 and no failure 
condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Output response (T, CA) with manipulated input CA0 
under condition no failure. 
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Fig. 5: Closed-loop output trajectory under conditions of failure in TA0 configuration with replacing CA0 backup configuration 
(solid) and without replacing backup configuration (dashed). 
 
process is first stabilized via TA0 control configuration. 
After 2 hours of startup, a fault is artificially introduced 
by gradual fixing of the manipulated input TA0 at 300K, 
as the process output is illustrated in Fig.5 by the dashed 
trajectory. Therefore, the supervisor should immediately 
activate the candidate backup control configuration  
to properly manage the CSTR operation. Otherwise,  
the induced failure causes the control system to operate  
in an open-loop manner, resulting into the convergent  
of the CSTR process operation to the stable equilibrium point, 
given by (T, CA) = (301K, 3.99kmol/m3). This is treated 
as an undesirable operating point due to its insufficient 
efficiency and low product concentration. At the time of 
failure event, the supervisor replaces TA0 backup 
configuration with CA0 backup configuration. Fig. 5 
clearly demonstrates the successful operation of the 
substituted CA0 backup control configuration to stabilize 
the CSTR operation at the desired unstable steady-state 
operating point, represented by the solid trajectories. 

In the second test scenario, a series of cascaded 
possible failures have been introduced in the CSTR 
operation. Fig. 6 illustrates the obtained results.  
As shown, the CSTR process is initially running normally 
under the control of Q-configuration strategy. After  
3 hours, the Q-configuration is impaired by fixing its 
manipulated input as depicted in Fig.6 (a). The supervisor 
switches the control to the TA0-control configuration  
as shown in Fig.6 (b). Figs.6 (d) and 6(e) show that the 
CSTR process states can be managed to be guided 
towards the desired equilibrium point at ( S S

AT ,C ) = 

(388.57°k, 3.5907kmol/m³).Then, the second failure is 
organized to be occurred after 6 hours of operation.  
As depicted in Fig. 6 (b), this failure is realized through 
fixing the manipulated input TA0. Afterwards, the CA0-
control configuration is immediately taken over the 
control responsibility by the supervisor decision,  
as represented in Fig. 6 (c). 

This is, in fact, the second switching action made by 
the supervisor to maintain the CSTR operation at the desired 
unstable steady-state point. Figs.6 (d) and 6(e) clearly 
illustrate the successful operation of the proposed FTC 
control methodology to robustly manage the overall CSTR 
control objective in the face of a cascade of occurred failures. 
Fig.6 (f) verifies the feasibility of the proposed FTC 
methodology to be implemented in practical applications, 
requiring computation time much less the sampling time.  
 
CONCLUSIONS 

Fault Tolerant Control (FTC) of nonlinear processes 
poses an open challenging issue especially when  
the process inputs face constraints. The proposed FLMPC 
methodology in this paper makes use of feedback 
linearization and model predictive control in an integrated 
framework to tackle this demanding control issue.  
For this purpose, an active set method has been incorporated 
to resolve the dependency of the transformed process 
constraints to the actual evolving process states. A CSTR 
benchmark process has been adopted to explore the 
performance of the proposed FLMPC methodology. Two 
sets of fault scenarios were organized to address the two 
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Fig.6:  Closed-loop output trajectories a Fault tolerant system with manipulated inputs under conditions of failure. 
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critical input constraints, corresponding to TA0 and Q 
control configurations. The obtained results demonstrated 
the successful activation of the proposed method  
to maintain the desired CSTR operation of an unstable 
steady-state point by replacing the candidate control 
configurations via the dedicated supervisor.   
 
Nomenclatures 
T                  Output temperature as the controlled variable 
CA           Effluent concentration as the controlled variable 
TS                                  Output temperature in steady state 

S
AC                            Effluent concentration in steady state 

Q      Rate of heat input to reactor as the manipulated variable 
CA0           Feed concentration as the manipulated variable 
TA0              Feed temperature as the manipulated variable 
Ei              Activation energy of three reactions (i=1, 2, 3) 
ΔHi                          Enthalpy of three reactions (i=1, 2, 3) 
Ki0   Pre-exponential constant of three reactions (i=1, 2,3) 
ρ                                           Density of fluid in the reactor 
Cp                                Heat capacity of fluid in the reactor 
Vol                                                         Volume of reactor 
F                                                              Flow rate of fluid 
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