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ABSTRACT: This paper presents an optimal integrated instrumentation sensor network design 
methodology for complex nonlinear chemical process plants using a Combinatorial Particle Swarm 
Optimiazation (CPSO) engine. No comprehensive sensor network design approach has been 
addressed yet in the literature to simultaneously incorporate cost, precision and reliability 
requirements for nonlinear plants. The presented approach attempts to accomplish this objective via 
enhancement of the estimation accuracy of the aimed instrumentation sensor network subject 
to desired cost, reliability and redundancy constraints. An Unscented Kalman Filter (UKF)-based 
data reconciliation algorithm has been developed to present evaluating measures through comparisions 
of the estimated and real variables in terms of Modified Root Mean Squared of Error (MRMSE), 
while CPSO maintains the provisions of the Network Fault Tolerence (NFT) including sensor netowrk 
reilability (R), strong and weak redundancy degrees (i.e., SRD and WRD). The developed CPSO 
engine searches in a diverse variety of possible sensor networks to adopt the most fitted one based 
on the imposed NFT and cost design constraints. The effective capabilities of the proposed design 
methodology has been illustrated in a simulated nonlinear Continuous Stirred Tank Reactor (CSTR) 
as a complex process plant benchmark. 
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INTRODUCTION 
Measurements of all process variables are not 

practically cost-effective and yet operationally feasible  
in complex industrial plants. Accordingly, only a limited 
number of process variables are decided to be measured 
directly and hence reconciliation techniques could be 
beneficial for estimating the non-measured variables 
using the process model dynamics. Generally, a sensor 
network design methodology mainly deal with location 
or/and precision of sensors in large-scale plants so that 
some desired criteria, viz: observability [1], precision [2, 3], 
reliability of estimation of variables [4,5] and gross and 
error detectability [6,7].  

 
 
 

Bagajewicz [8] used a tree type enumeration 
procedure to design a minimal cost network subject  
to constraints on precision, availability, resilience and error 
detectability. He proposed a design strategy that 
incorporates these criteria simultaneously for linear 
systems and suggested a MINLP to solve the problem. 
Further, Bagajewicz & Sanchez [9] showed that  
problem of minimizing the variance subject to cost 
constraint can be converted to the problem of minimizing 
the cost subject to the variance constraints via 
determining measurement locations in linear networks. 
Bagajewicz & Cabrera [3] presented a new MILP  
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formulation, replacing the previous tree search solution 
procedures for minimizing cost subject to explicit 
constraints of precision, error detectability, resilience and 
availability. Their method has been developed upon  
non-redundant linear systems and hence the resulting network 
evaluation was performed in steady state mode. Sen et al. [10] 
integrated graph theory and genetic algorithm concepts  
to develop a generalized sensor network design algorithm 
for non-redundant linear mass flow processes.  
In comparison with graph-theoretic algorithms [4],  
GA-based method provides near optimal solutions. 
Furthermore, in contrast with the previous methodologies 
which were able to design networks subject to one 
measure; general objective designs such as optimizing 
cost, estimation accuracy and network reliability ones 
could be addressed with this method. Bagajewicz et al. [11] 
developed an instrumentation network design scheme  
that could reflect the potential benefit of adding sensors 
in networks and used value and cost concepts separately 
for the integrated design, enabling to satisfy fault 
detection, material accounting and control criteria 
simultaneously. Kotecha et al. [12] proposed a duality 
between the precision and reliability problems for  
non-redundant sensor network design in linear processes. 
This method enables one to convert any reliability design 
measure to precision framework and use explicit 
optimization algorithm, which was already developed for 
precision-based design [3], to design sensor network  
in the precision domain, satisfying initial reliability 
requirements. As seen almost all the research performed 
in this field are limited to the non-redundant linear plants. 

Staroswieck et al. [13] addressed the problem of fault 
tolerant estimation and the design of fault tolerant sensor 
networks. They defined fault tolerance regarding to  
a principle that a given functional of the system state 
should remain observable when sensor failures occur.  
All sensor sets were shown in an automaton which contains 
all the subsets of sensors such that the estimation 
objective can be achieved. They introduced three criteria 
evaluating the system fault tolerance with respect to 
sensor failures when a reconfiguration strategy is used: 
(strong and weak) Redundancy Degrees (RD), sensor 
network Reliability (R), and Mean Time To Non-
Observability (MTTNO). Sensor networks are designed 
by finding redundant sensor sets whose RD and/or R 
and/or MTTNO are larger than some specified values. 
However, their regressive method works well on small 

designs, but in large-scale plants that have many sensor 
sets to be examined their method does not work well. 
Moreover, their optimized algorithm, which searches for 
a solution that satisfies design constraints and uses  
a minimum number of sensors in its topology, merely 
investigates existence of the sensors in the network and 
the variety of sensors, has not been considered. This 
method works well in one-sensor based designs. But, 
when it comes to designing of networks with multiple 
sensors available for measuring a variable, due to the 
drastic increase of number of possible solutions,  
the calculation effort highly increases and the presented 
algorithm fails. In addition, a main criterion in 
instrumentation design procedure, i.e. cost of instrumentation, 
has been neglected in this approach. 

Only a few works have addressed both type and 
location of sensors simultaneously; Muslin et al. [2] 
discussed both location and type of sensors in precise 
linear sensor network designs. If type of sensors is not  
a consideration in design procedure, number of possible 
networks that can be constructed via given set of sensors 
decrease drastically. Moreover, most of the current design 
formulas have used static reconciliation technique  
to estimate the variables. Implementing this type of 
reconciliation does not take much time in design. But  
in contrast with steady state reconciliation, dynamic data 
reconciliation techniques should be performed during  
a period of time and this consumes much time to be 
implemented. Employing the two mentioned issues, i.e. 
static reconciliation technique and neglecting the variety 
of sensor type in the design procedure can lead to  
a substantial saving of design time. Subsequently, 
designer can take advantage of the saved time in order to 
implement designs based on the enumeration methods. 
These methods try to examine all possible candidates 
based on a logical algorithm, and suggest the optimal 
solution whose optimality is guaranteed because of 
analytical behavior of the methods [3,9].  

In order to address the mentioned issues altogether,  
a new instrumentation design methodology for precise and 
fault-tolerant sensor networks which is more comprehensive, 
flexible and practical than other designs given in the 
literature has been presented in this article. In the 
proposed method, instead of following the analytical 
techniques which use a regular and determined approach 
to check all the possible nodes that fulfill the constraints, 
a modified and efficient search engine is used in order to 
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maximize the accuracy of the estimator, i.e. UKF, subject 
to fault tolerance and cost constraints. Different from 
enumeration based methods, the search engine does not 
examine all solutions to look for the most optimal one, 
this enables us to implement larger designs with more 
flexibility of using different types of sensor. The results 
of this paper has the potential to be used in the previous 
design works to improve the presented methods [14,15]. 

In this article, first procedure of precision assessment 
is provided via UKF as the data reconciliation technique 
used in this method. A brief introduction to the terms 
related to the fault tolerance capability of the networks, 
i.e. redundancy degrees and reliability of networks,  
is provided in the next section which is followed by  
the proposed comprehensive model and design algorithm 
procedure. The case study used in this paper, i.e. a CSTR, 
is introduced and the method is implemented on it in the 
next section. Then, some verifying tests for the results 
will be presented to validate the method performance. At last, 
in the conclusion section, two suggestions to complement 
this approach will be provided for future works. 

( )k 1 k k kx f x ,u w+ = +                                                    (1) 

( )k k ku g x v= +  
 
THEORITICAL  SECTION 
Precision assessment 

In this section, an optimized sensor network design  
is presented using UKF and CPSO and the presented method 
is tested on 15-state, nonlinear CSTR to illustrate the design 
procedure. The model of a non-linear system can be 
represented by following state and measurement equations: 

Where xk represents the unobserved state of the 
system, uk is a known exogenous input and yk is the 
observed output through measurement instruments. The 
process noise wk adds on the model equation and the 
measurement noise is represented by vk.  

The UKF algorithm uses a "deterministic sampling" 
approach to calculate the mean and covariance estimates 
of Gaussian random state variables (i.e., x) with  
a minimal set of 2L+1 sample points (L is the state 
dimension), called as sigma points, through the actual 
nonlinear system dynamics without any linear 
approximations. The UKF algorithm used in this paper  
is the one developed by Julier & Uhlmann [16]. 

To have an optimized sensor network, it should be 
determined which variables be measured and what 

sensors be utilized from the point of accuracy.  
The performance of each sensor network is dependant  
on the measurement noise covariance matrix (R) and  
the resulting observation function (g(xk)). R is related 
directly to the accuracy of sensors and g(xk) determines 
sensor locations in the network. Theses two functions 
represent the sensor network and hence, determine its 
topology. In most cases, abundant budget is not in hand 
to buy sensors; on the other hand, according to  
a conceptual understanding that says “the more expensive 
sensors you buy, the more efficient network you have”, 
more precise and consequently more expensive sensors 
have been always desired for a satisfactory 
instrumentation. To resolve this problem, the maximum 
cost is considered limited in the presented algorithm and 
a search is performed to seek for the most optimal 
network for the specified cost. Some metric to present the 
performance of each candidate network is required 
(which represents the precision in this literature). Hence, 
Modified Root Mean Squared Error (MRMSE) is 
introduced to evaluate each network topology as follows: 

n
2

j i j i
j 0i

c
j i

ˆ([x ] [x ] )
1MRMSE P

[x ] n
=

−

= =
∑

                   (2) 

where x represents the estimated value of variable  
x and n denotes the number of samples of variable xi 
recorded in a specified time range. 

k 1 k k kx Ax Bu w+ = + +                                                  (3) 

k k ku Cx v= +  

From the view of monitoring, all states and 

inputs/manipulates of the system should be measured or 
estimated; thus, it is wise to add the inputs/manipulates as 
new states to the original system states and design sensor 
network for the new system. Consider a typical linear 
time-invariant system like (3). 

To identify the state transition matrix, it is assumed that 
input variables during a given time period are correlated 
with the input during the previous time period as (4). 

k 1 k ku u w+ = +                                                               (4) 

Inputs are combined with states to form new states of the 
system x*=[x,u]`. New system parameters should be 
modified as follows: 
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u u u x

u u x x

n n n n

n n n n
I O

*
B A

+ +

+ +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                                                   (5) 

giving 

* * * *
k 1 k kx A x w+ = +                                                           (6) 
* * * *
k k ky C x v= +  

When steady state estimation is desired, this simple 
modification works well in linear systems. Likewise, this 
is true for non-linear systems providing that appropriate 
modifications are made. However; assumption (4) is not 
valid in dynamic data reconciliation case, since set points 
and consequently manipulates should be changed in order 
to observe dynamic behavior of the system. Therefore,  
in order to handle this in dynamic reconciliation, Eq. (4) 
should be replaced by appropriate control loop equation 
so that manipulated variables can be monitored and 
considered in instrumentation design. This procedure  
is demonstrated on a non-linear case study having three 
control loops (PI controllers) and subsequently three 
manipulated variables in following sections. 

In each Sensor Network Topology (SNT), measurement 
matrix, hk(xk,vk), should be modified properly to show 
which variables are measured and which are not. 
 
Fault tolerence assesment 
Minimality and redundancy 

Consider the continuous time deterministic system: 

( ) ( )( )x f x t ,u t=                                                           (7) 

( ) ( )( )y t g x t=                                                               (8) 

( ) ( )( )z t h x t=                                                               (9) 

where nx R∈  is the state vector, mu R∈  is the 
control input, py R∈  is the measurement vector, and 

qz R∈  is the functional of the state which is to be 
estimated. The inputs u(t) are assumed to be sufficiently 
differentiable and f, g, h are sufficiently smooth vector 
fields. Let J R⊆  be a subset of the system sensors, and 
introduce the notation obsv(z/J) where (for a given 
definition of observability): 

( )
1 if z is observable with J

obsv z J
0 otherwise
⎧

= ⎨
⎩

                   (10) 

Let 2R be the set of all subsets of R; then (10) induces 
a two- class partition: 

( ){ }R2 J R;obsv z J 1+ = ⊆ =                                       (11) 

( ){ }R2 J R;obsv z J 0− = ⊆ =  

The class 2R+ contains all the subsets of sensors by 
which z is observable, and it is assumed that RR 2 +∈ ; i.e. 
the system is observable by the whole set of sensors. 
Accordingly, minimal sensor set and redundant sensor 
sets are defined a following: A subset of sensors RJ 2 +∈  
is minimal, if 

Rk J k 2 +∀ ⊂ ∉                                                      (12) 

and a subset of sensors 2RJ +∈  is redundant, if it is not 
minimal. 
 
Interpretation of fault tolerence 

The interpretations of Minimum Sensor Set (MSS) 
and Redundant Sensor Set (RSS) are as follows: suppose 
that at a given time, the system is operating with a subset 
of sensors RJ 2 +∈  such that the functional z is 
observable (therefore, J is a MSS or a RSS). Assume that 
one or several sensor failures occur at time tf  so that the 
set of sensors J can be decomposed into the normal and 
the faulty ones: n fJ J J= ∪ . 

Therefore, the measurement equations can be written 

( ) ( )( )n ny t g x t=                                                         (13) 

( ) ( )( )f fy t g x t=                                                          (14) 

where yn (resp. yf ) represent the normal (resp. the 
faulty) outputs of the sensor network J and gn (resp. g)  
are the normal (resp. the faulty) measurement equations. 
The fault tolerance problem used in this paper can be 
interpreted as follows: the faulty sensors Jf are switched 
off, and the problem is to assess the possibility of still 
estimating the functional z by using the remaining set of 
sensors Jn which is indeed true, provided system is still 
observable. This method that is named reconfiguration 
strategy only needs fault detection and isolation (fault 
estimation is not necessary), and that the fault tolerance 
property is a structural one, since it is associated with 
triple (7), (13) and (14), it does not depend on the type of 
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fault which affects the sensors Jf, In this paper,  
we consider only the reconfiguration strategy. 

 
System redundancy degrees 

Let J I⊆  be any subset of the sensors, i.e. some state 
of the system instrumentation. Let K MSS(J)∈ , then the 
quantity |J\K| represents the maximal number of sensors 
which can be lost while z can still be estimated by K.  
In the ‘best’ situation, as many sensor losses as can be 
accepted. The weak redundancy degree evaluates the size 
of this ‘best’ situation. 

( )K MSS J
J min K

∈
−                                                             (15) 

The weak redundancy degree associated with the pair 
(z, J) is From the interpretation of WRD(z,J) it follows 
that the following statement is true: 

K MSS(J)
WRD(z, J) | J | min | K |

∈
= −                                     (16) 

J J such that | J ' | WRD(z, J) and J \ J ' MSS(J)′∃ ⊂ = ∈ (17) 

Of course, in many cases, z will no longer be 
observable after less than WRZ(z,J) sensors are lost. 

The strong redundancy degree SRD(z,J) evaluates  
the maximal number of sensors which can be lost while keeping 
z observable for sure (i.e. considering the worst case 
situation). This means that the following statement is true 

J J: | J ' | SRD(z, J) and J \ J ' RSS(J)′∀ ⊂ = ∈                (18) 

The strong redundancy degree associated with the pair 
(z,J) is 

J* RSS(J)
SRD(z, J) | J | max | J \ J* | 1

∈
= − −                              (19) 

 
Availabillity and the estimation service 

Let t0=0 be the time at which the system operation 
was started, and let J(t) be the subset of the non-faulty 
(available) sensors at time t. Let J0 =J(0), assuming such 
data to be available, the fault tolerance of the z-estimation 
process can be evaluated by the probability for  
the estimation of z to be possible during the given time 
interval [0,t] assuming that it was possible using the set  
J0 at time 0, R(z/J0). Let 0K J⊆  be any subset of sensors. 
The probability for the estimation of z to be possible 
during the time interval [0,t] using K is given by (20): 

R(z / K, t) P(z / K).R(K, t)=                                        (20) 

where P(z/K) = 1 if K is a MSS or a RSS and P(z/K) = 0 
otherwise, and R(K,t) is the reliability of the set of sensors K; 
which is defined as the probability that no sensor of K  
fails during the interval [0,t]. If sensor failures are 
independent, i.e. there is no common mode failure, one has 

k k
k K k K

R(K, t) R (t) (1 R (t))
∈ ∉

= −∏ ∏                                (21) 

Where Rk(t) is sensor k reliability. The reliability of 
such individual components is often modeled using  
the Poisson distribution: 

k tR (t) ek
−λ=                                                                (22) 

Where λk is sensor k failure rate, which is supposed 
to be constant. 

Now, considering the whole set J0; it follows from  
the fact that all its subsets K are exclusive, that  
the probability for the estimation of z to be possible during 
the time interval [0,t] is given by 

0

0
K J

R(z / J , t) P(z / K)R(K,t)
⊆

= ∑                                 (23) 

in (23), P(z/K) is 1 if subset K is observable and 0 if not. 

 
Comprehensive model and design procedure 

The precise and fault tolerance requirements  
have been discussed sufficiently in previous sections. 
Now that the definitions of required terms are determined, 
we can go through the comprehensive model which utilize 
all mentioned criterion in order to suggest us a comprehensive 
instrumentation network. Precision is interpreted in this 
model as the accuracy of the UKF obtained estimations 
that will be used in control and monitoring applications. 
Reliability and redundancy degrees as the corresponding 
definitions presented in section 3. In our model, precision 
is treated as the optimization criterion while cost and fault 
tolerance criteria take the role of constraints in this 
optimization problem.  Accordingly. the eligibility of 
networks can be judged by estimation accuracy in some 
or all variables of great importance for designer;  
in general, the optimization object suggested in this model 
can be represented by any function of MRMSE ( i

cP ).  

This metric which we name it Instrumentation Criterion (I.C) 
is shown by (24). 
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( ) ( )i
cinstrumentation Criterian I.C F P , i 1, 2,...n= =    (24) 

Definition of function F( i
cP ) is highly independent  

on the requirements of the control and monitoring systems. 
For instance, in an application that precise estimation of 
all variables is important equally, F( i

cP ) can be defined  

as sum of i
cP  and in an application that estimation of some 

variables are more important than others, the weighted 
sum of i

cP  values is the proper selection criterion. Such  

a model that satisfies all mentioned characteristics  
can be shown in (25). 
Min (Instrumentation Criterion)                                  (25) 

*
j ji

j
S.t. (C S ) Cost≤∑  

*R(network) R≥  
*SRD SRD≥  

*WRD WRD≥  

Where Sji represents the integer number showing  
the placement of the variable of sensor type j at network 
location i. For any sensor placed on variable i,  
its Corresponding Variance δi2 is entered in R.  
The Instrumentation Criterion (I.C) for any sensor network 
is highly dependant on accuracy of sensors that matrix R 
feeds to the model. 

Now that the accurate model of the optimization 
problem is in hand, a component tool is necessary  
to solve this problem. Accordingly, a combinational particle 
swarm optimization algorithm will be utilized as a search 
engine to solve optimization problem in (25). The CPSO 
should be modified so that before selecting the particles 
in a repetition, the determined constraints are checked 
inside the engine to verify that whether cost and fault 
tolerance inequalities are satisfied or not. If any of these 
requirements are not fulfilled, the engine puts away the 
corresponding the particle and chooses another one 
according to the engine’s defined regulations. This 
scenario goes on until CPSO gathers enough competent 
particles to form a swarm to survive. Then, most eligible 
particles are detected and other particles in the swarm  
is replaced by new particles driven from the eligible ones.  

Any particle of the swarm used here is a string whose 
length is set equal to number of variables whose values 
are desired to be estimated. Any index of the string  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Block diagram of the overall instrumentation design 
based on CPSO, two sided arrows represent two sided relationships. 
 
can be assigned to an integer representing the type of 
sensor used for that variable. CPSO algorithm is modified 
so that observability, cost, reliability and redundancy 
degree constraints are validated for any topology before 
assigning that topology to a particle. 

Before CPSO starts searching, all the necessary 
information related to the instrumentation should be 
provided for the search engine. This includes all the 
CPSO parameters, constraints, cost function and data 
reconciliation algorithm (Fig. 1). The block diagram 
shown in Fig. 1 shows the relevant modules involved  
in the optimization problem along with the interactions 
between them. For more illustration, the suggested 
algorithm will be presented in next section. 
 
RESULTS  AND  DISCUSSION 
Implementing the design procedure in the case study 
and results 

The case study used in this paper is an nonlinear 
CSTR that Bhushan & Rengaswamy [17] introduced  
in their article (Fig. 2). This process involves an exothermic 
liquid-phase reaction. The process involves an 
exothermic liquid-phase reaction: A(l) → B(l) + C(g).  
As shown, the temperature controller (TC) controls  
the temperature of the reactor by manipulating  
in the reactor is controlled by the level controller (VC) 
which manipulates the outlet flow rate from the reactor. 
The pressure in the reactor is controlled by changing 
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Fig. 2: The schematic diagram of CSTR process. 
 
the vent gas flow rate. Both the reactor and the jacket  
are modelled with perfectly mixed tank dynamics.  

The CSTR model equations are given as follows: 
Global mass balance: 

dVF Fi dt
− =                                                                  (26) 

Component mass balance (CA): 

F dCi A(C C ) rAi A AV dt
− − =                                        (27) 

Overall heat balance on the reactor (Result obtained 
assuming constant heat capacities and densities): 

ci A
i

p p

UA(T T )F r ( H) dT(T T)
V C V C dt

−−Δ
− + − =

ρ ρ
                 (28) 

Overall heat balance on the jacket: 

c c c
ci

j j j pj

F UA(T T ) dT
(T T)

V V C dt
−

− + =
ρ

                                (29) 

Gas phase balance: 

A vg
dnr V F
dt

− =                                                             (30) 

E / RT
A d A 0r C C k e−=                                                      (31) 

Elemental mass balances in valves and pumps, 
assuming no accumulation: 

3 2 2 4 cF F 0 , F F 0 , F F 0− = − = − =                       (32) 

Pressure in the Reactor (where Vg is the vapor space 
and is assumed constant, assuming ideal behavior):  

gPV nRT=                                                                   (33) 

As shown in Fig. 2, variables T, V, P are controlled 
via three PI control-loops, using variables F, Fci, F4  
as manipulated variables. Writing dynamic equations  
for these three closed-loops and denoting proportional and 
integral constants by Kpi and Kli respectively,  
the following equations are obtained. 

1 1 1 1

1
p I p I 1

dFdUdT 4K K T K k U
dt dt dt

+ − − =                     (34) 

2 2 2 2

2
p I p 2I

dUdV dFK K V K k U
dt dt dt

+ − − =                    (35) 

3 3 3

vg3
p I3 p I 3

dFdUdPK K P K k U
dt dt dt

+ − − =                   (36) 

Equations (34-36) should be inserted in the new state 
equation of the system. But, dynamics of other inputs are 
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Table 1: Available sensors for instrumentation design:V: Volume; C: Concentration; T: Temperature; P: Pressure; F: Flow. 
 V1 V2 V3 C1 C2 C3 T1 T2 T3 P1 P2 P3 F1 F2 F3 

Failure Rate (×10-2) 1/81 1/50 1/28 1/80 1/50 1/28 1/88 1/49 1/23 1/90 1/48 1/22 1/82 1/44 1/2 

Cost ($) 3000 2200 1600 2500 1800 800 1500 1000 400 1400 1000 800 4500 300
0 2200 

Accuracy (%) 0.1 2 5 0.5 2 4 0.1 1 5 0.1 3 6 0.1 3 5 

 
considered as before. The model parameters along with 
their nominal operating values are presented in Table 4. 

In this case study, the measurable variables are V, CA, 
T, TC, P, F4, F, Fvg, Fc, Fi, Ti, CAi, Tci, F2, and F3. Thus, 
there should be five types of sensors to cover these  
15 variables. For each type of sensor, three different sensor 
sets are considered. The failure rates of these sensors 
along with their corresponding cost and precision values 
have been tabulated in Table 1. 

The CPSO algorithm used here is the one suggested 
by Jaboui et al. [18] and parameters of search engine are 
set as follows: ω=1.1, c1=0.6, c2=0.5, υmax = 2, υmin = -2 
and α=1.2. Moreover, 20 particles and 100 iterations  
have been considered in this CPSO. 

Now that our model of the instrumentation for  
the purpose of overall design has been created and CPSO 
is ready to use, implementation of the instrumentation procedure 
on the case study will be straightforward. We perform  
the design procedure for different costs with keeping 
reliability and weak redundancy degree constraints fixed 
at the values of 0.8 and 4 for all scans. Five types of 
sensors are available and each type consist of three sets of 
sensors so that in spite of their similar structures, they 
differ in their precision and failure rates. Increasing the 
bound cost in design sensor network enables us to take 
advantage of using more precise and expensive sensors  
in our design and thus, increases time consumption of 
search engine since it should examine more variety of 
networks constructed by combination of available sensors. 

Weak redundancy degree and network reliability are 
set 4 and 0.8 in our all scans while cost constraint varied 
in designs and takes different values [$30000, $35000, 
$40000, $45000]. The search engine is forced to looking 
for the most deserved network that satisfies specified 
constraints. The selection criterion is the precision,  
i.e. if the search engine runs into two networks that both 
satisfying all constraints, it will select the one with less 
estimation error and put away the other one which 
produce less accurate estimations. 

In all designs, the WRD constraint is set four but  
no limit is imposed on SRD. This is due to the fact that this value 
is zero for all topologies in this plant; hence, the topology 
of the plant enforces us to put sensors on variables F2, F3 
and F14 in order to get the estimations of these variables. 
The search is carried out ten times so that it does not fall 
into local optimization points. The best network among 
the ten obtained solutions is chosen as the main solution for 
that design problem. The spectrum of cost versus MRMSE 
values for all designs are shown in Fig. 3. Note that lower 
bold line in Fig. 3 represents the candidates out of all  
ten solutions for cost constraints. The best and worst 
solutions obtained in each case are tabulated in Table 2. 
The effect of repeating scans is clearly observed by 
comparing the two solutions that they are considerably 
different from each other. 
 
Verification Tests 

One remarkable advantage of search engines is their 
inherit capability to deal with large-scale designs in which 
analytical methods fails to be successful. But no profit  
is free; the cost of achieving such a valuable ability should be 
paid. This payment includes lack of optimality guarantee  
in obtained results. The proposed CPSO algorithm which 
was utilized to offer the best possible networks enforced to 
fulfill the requirements of the design problem, but there is  
no appropriate tool that assures us the obtained solution is 
the optimal network among all the other practical networks that 
can be built by the given sets of sensors. On the other hand, 
it should be checked that whether the suggested solution 
satisfies all the design constraints or not. The mentioned 
issues necessitate applying verification tests on the obtained 
results. Thus, three tests were conducted to verify whether 
the obtained solution satisfies the defined metrics or not. 

Our case study consists of 15 variables to measure, 
and too many feasible networks can be constructed  
by combination of variables; thus, performing an exhaustive 
search to verify the results is not practical. If we consider 
different possible types of sensors given in Table 1. 
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Table 2: The best and worst solutions obtained for different reliability constraints. 
 V CA T Tc P F4 F Fvg FC Fi Ti CAi Tci F2 F3 Cost* MRMSE WRD R Cost($) 

Best × 1 3 3 3 1 × 1 1 × 1 × 2 1 1 30000 0.0313 4 0.8166 29300 

Worst × 1 1 3 × 1 3 1 3 × 1 × 2 1 1 30000 0.0441 4 0.8180 29800 

Best × 1 × 2 3 1 × 1 1 1 1 × 1 1 1 35000 0.0260 4 0.8655 34800 

Worst 4 3 3 × × 1 × 1 1 1 2 1 1 1 1 35000 0.0324 4 0.8303 33400 

Best 1 × × 3 3 1 1 1 1 1 1 × 1 1 1 40000 0.0231 5 0.8654 39300 

Worst × 2 × 3 3 1 1 1 1 1 1 1 2 1 1 40000 0.0296 6 0.8658 39700 

Best 1 1 1 3 1 1 1 1 1 1 1 × 1 1 1 45000 0.0183 7 0.8713 44200 

Worst 3 1 1 × 2 1 1 1 1 1 1 1 1 1 1 45000 0.0232 8 0.8702 44900 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: The MRMSE values for different cost constraints 
obtained by CPSO-based design, the bold upper and lower 
lines shows the worst and best solutions. 
 
to measure each variable, there will be 384,422,112 
observable networks. Each scan on average took  
570 seconds to complete, considering that there are ten scans 
for each design, the average time for a typical design will 
be 95 minutes. So, implementing four designs took 
almost 6 h and 20 min, whereas performing an exhaustive 
search, i.e. without any search engine, will take more than 
ten years for such a plant! 

Obviously, it is not possible to perform  
a comprehensive verification for our design results. 
However, in order to assess the presented approach 
performance, 200 randomly chosen networks are shown 
with their corresponding costs and MRMSE values  
in Fig. 4. In this figure the circles represent the solutions 
suggested by the CPSO that all are below or as high as 
the dots. Although this type of verification can not  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: 200 networks have been chosen randomly in order to 
verify the result of the design; the circles are the solutions of 
our design that all are below or as high as the dots. 
 
completely approve the results, it can lend additional 
support to the performance of the presented method. 

In all designs the reliability constraint has been 
considered to be 0.8. The reliability of the solutions  
in each scans have been tabulated in Table 2. In order  
to verify these values and make sure that solutions fulfil 
the reliability requirements of the problem, we took a number 
of randomly chosen networks and let their sensors fail 
according to their reliability to see that whether the new 
obtained network is observable or not, the statistical 
reliability is obtained by division of the observable 
network to the total number of networks. The diagram of 
the statistic reliability versus the number of networks 
undertaken in this test for all searches is depicted in Fig. 5. 
As seen as the number of networks applied in the test 
increases the reliability approaches the mentioned 
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Table 3: Weak redundancy degree verification for five design sets. 

 
Table 4: Nomenclatures and Nominal Values of the CSTR. 

Notation Variable  

V Volume of reactor 48 ft3 

CA Reactant Concentration in 
reactor 0.2345 lb.mol of A/ft3 

T Reactor temperature 600° R 

F Outlet flow rate 40 ft3/h 

N No. of moles of vapor 28.3657 lb. mol 

P Pressure in vapor space 2116.79 lb/ft2 

Fvg Vent flow rate 10.6137 lb. mol/h 

Fi Inlet feed flow rate 40 ft3/h 

CAi Inlet reactant concentration 0.5 lb. mol of A/ft3 

TC Jacket temperature 590.51º R 

FC Coolant flow rate 56.626 ft3/h 

Ti Inlet feed temperature 530º R 

Vj Volume of jacket 3.85 ft3 

Kθ Frequency factor 7.08 × 1010  h-1 

Cd Catalyst activity 1 

E Activation energy 29,900 btu/lb. mol 

R Universal gas constant 1.99 btu/lb. molºR 

U 
RD 

WRD 
SRD 
NFT 

MRMSE 

Heat-transfer coefficient 
Redundancy Degree 

Weak Redundancy Degree 
Strong Redundancy Degree 

Network Fault Tolerence 
Modified Root Mean Square 

Error 

150 btu/h.ft 

Obsv 
MTTNO 

CSTR 
CPSO 

Observability 
Mean Time to Non-

Observabiliy 
Continuous Stirred Tank 

Reactor 
Combinatorial Partical 
Swarm Optimization 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: The reliability validation through failure experiment; 
the dotted line represents the reliability constraint of our 
design and the colored dots at the end of each diagram are 
above it. 
 
corresponding reliability values. Note that the statistic 
reliability obtained with low number of repetitions cannot 
be valid for verification of real network reliability, but  
as more experiments are conducted the reliability gets closer 
to the expected value. The lines drawn in dots indicate  
the design reliability constraint which is 0.8 for all scans.  
As seen in the plot, all diagrams converge to their expected 
value and all are above the limit line used in this design. 

Reliability and cost validations have been investigated. 
Now only WRD values remain to be verified. Table 3 
shows the verification results for weak redundancy 
degree. For each design, two networks have been shown. 
The first is the initial one, indicating the main solution 
suggested by the CPSO algorithm, while the second one 
represents the network that has been obtained after 
occurrence of some sensor failures in the initial network. 

Cost*  V CA T Tc P F4 F Fvg FC Fi Ti CAi Tci F2 F3 

30000 
Initial Net × 1 3 3 3 1 × 1 1 × 1 × 2 1 1 

Last Net × F F 3 F 1 × 1 1 × 1 × F 1 1 

35000 
Initial Net × 1 × 2 3 1 × 1 1 1 1 × 1 1 1 

Last Net × F × 2 F 1 × 1 1 1 F × F 1 1 

40000 
Initial Net 1 × × 3 3 1 1 1 1 1 1 × 1 1 1 

Last Net F × × 3 F 1 1 1 1 F F × F 1 1 

45000 
Initial Net 1 1 1 3 1 1 1 1 1 1 1 × 1 1 1 

Last Net F F F 3 F 1 1 1 1 F F × F 1 1 
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St
at

is
tic

 R
el

ia
bi

lit
y 

 
Statistical Validation for Cost Constraint=$30,000
Statistical Validation for Cost Constraint=$35,000
Statistical Validation for Cost Constraint=$40,000
Statistical Validation for Cost Constraint=$45,000
Reliability Constraint Line in Design

0 100 200 300 400 500 600 700 800 900 10000.7

0.75

0.8

0.85

0.9

0.95

 1

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

Iran. J. Chem. Chem. Eng. A New Comprehensive Sensor Network Design Methodology ... Vol. 31, No. 3, 2012 
 

155 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The sensor failure diagram of the design undertaken 
for Cost Constraint=$45,000, it approves that at most seven 
failures can occur in this network. 
 

Examining Table 3 infers that the networks have been 
remained observable after specified failures appear in the 
sensor sets. Of course, the networks with fewer failures 
that are located between initial sensor set and its 
corresponding Minimum Sensor Set (MSS) are feasible 
too. For instance, in each sensor failure, a new observable 
network is obtained. This procedure continues until  
it reaches a node that has the minimal number of sensors 
and hence no extra sensor failure can occur, indicating 
that sequence of failures ends at this node. The number of 
failures in this sequence determines the weak redundancy 
degree of initial network which is more than four in all 
designs. For instance, the initial network shown in Fig. 6 
that shows the solution suggested by CPSO in the design 
cost constraint = $45000, has a WRD value of 7 and can 
tolerate a sequence of seven failures, S13, S11, S10, S5, S3, 
S2 and S1 causing all networks laid between upper and 
lower networks to be feasible and observable. At last,  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: The real and estimated plots for F. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8: The real and estimated plots for Fi. 
 
to compare the effect of investing more money  
on the estimation accuracy of variables, the estimated and 
real values of variables F, Fi and CAi for cost=$30,000 
and $45000 are shown in Figs. 7, 8 and 9. As seen, thanks 
to more investment in the network, the accuracy of states 
have been improved drastically. 

 
CONCLUSIONS 

A reliable and precise sensor network design has been 
proposed in this paper as a new comprehensive 
methodology. The efficiency and accuracy of this method 
has been approved by different test scenarios which were 
undertaken on the CSTR study in a large-scale design. 
However, the presented method can be established  
in an industrial software similar to the common data 
reconciliation packages available in the market.  
Our future work includes preparing such a software. 
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Fig. 9: The real and estimated plots for CAi. 
 
In addition, fault detective and diagnosis considerations 
can be added to the suggested model as the final 
complement. 
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