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ABSTRACT: Spherical mesoporous silica MCM-41 was synthesized for adsorptive removal  

of sulfur compounds from fossil fuels using 1mM solution of dibenzothiophene (DBT) in dodecane 

as model oil. The prepared silica adsorbent has been characterized by nitrogen adsorption-desorption 

analysis as well as Small Angle X-ray Scattering (SAXS), and transmission and Scanning Electron 

Microscopy (SEM) methods. Results showed that the prepared mesoporous adsorbent has ordered 

pore structures with surface area of 1106 m2/g and mean pore diameter of 3.54 nm. SEM 

micrographs indicated that prepared mesoporous silica (MCM-41) has spherical morphology  

with the narrow size distribution in the range of 200-300 nm. Hexagonal structure of pores has also 

been confirmed by high resolution transmission electron microscopy and SAXS pattern. High 

performance liquid chromatography analysis has also been utilized to study the kinetics of the DBT 

adsorption from dodecane solution by means of the synthesized silica. Results showed that 0.03 g/mL 

of mesoporous silica has capability to adsorb more than 42% of DBT (a sulfur containing 

compound) from dodecane solution. The improvement of mass transfer via adsorption DBT by  

the prepared nanosorbent is an efficient method for enhancement of biodesulfurization kinetic. 
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INTRODUCTION 

Energy consumption of world has been tremendously 

increased due to growth of industrial activities; however, 

limited reservoirs of fossil fuels in addition to enormous 

extraction of them make their quality decrease [1]. 

Presence of undesired contaminants such as sulfur, 

nitrogen and heavy metals in remained reservoirs of fossil 

fuels reduces both the viscosity and molecular weight  

 

 

 

enrichment of crude oil resulting in diminished fuel 

ignition index. Sulfur content is one of the most 

important obstacles causing damage of crude oil refinery 

systems and environmental pollution. Sulfur oxides  

in combination with water vapor can cause corrosive wear 

and premature engine failure [1,2].  

Sulfur reduces catalyst efficiency in modern vehicles,  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: m-kazemzad@merc.ac.ir 

1021-9986/14/3/          8/$/2.80 

 

Arc
hive

 of
 S

ID

www.SID.ir

mailto:m-kazemzad@merc.ac.ir
www.sid.ir


Iran. J. Chem. Chem. Eng. Ahmadi Nasab N. et al. Vol. 33, No. 3, 2014 

 

38 

and vehicles operating with higher sulfur gasoline have 

higher emissions than vehicles operating on lower sulfur 

gasoline. Frankly, sulfur is the third element of heavy oil 

after carbon and hydrogen with concentration more than 

14% whereas crude oil contains 0.05-5% sulfur 

(organosulfur) depending on the source of crude oil [3-5]. 

In this regard, regulations are now put in place  

by states, regional and international agencies. According 

to Environmental Protection Agency (EPA) amount  

of sulfur in diesel oil should not be above 15 mg/L.  

By the same regulations no more than 15% of aromatic 

compounds are allowed in diesel oils [6-10].  

Among the various methods applied for removal of 

sulfur, hydrodesulfurization is conventionally applied 

more than other techniques. However, this method 

requires high pressure which is either economically 

undesirable or makes fuel properties decay through 

degradation of special compounds. In addition, about 

70% aromatic sulfur compounds such as 4- and 4, 6- alkyl 

substituted dibenzothiophene and also hetrocyclic 

polyaromatic sulfur compounds could not be completely 

removed by this method. There are many attempts to find 

new benign and mild methods for sulfur removal beside 

to greenhouse emission reduction [3, 11-16]. 

Biological desulfurization is a new microbial method, 

capable of selective desulfurization without the fuel 

properties loss [1, 2, 16]. Biological oxidation of sulfur  

to sulfate takes place through a 4 step continuous process 

where dibenzothiophene (DBT) will change to 2-hydroxy 

biphenyl [17-20]. However, kinetics of microbial 

desulfurization is slow and its activity is affected by mass 

transfer rate of reactants us from organic phase to  

aqueous phase and then onto the surface of living cells [21-25]. 

The key point should be application of surfactants  

and/or nanoadsorbents to overcome mass transfer 

problem [26, 27]. So, the mass transfer and steric effect 

can be eliminated by stable, recoverable high surface area 

adsorbents which it is possible to control both their pore 

size and shape [28]. 

Mesoporous silica is a suitable choice for the above 

application because of its large surface area, structure 

stability and existence of a great number of ordered 

pores. The pore size distribution of mesoporous silica 

compounds are in the range of 2-50 nm making it suitable 

for such applications like drug releasing adsorption, 

catalysis, and waste treatment. The compound is an ideal 

choice as a host for adsorption of guest molecules with 

different shape, size and properties e.g. sulfur [10, 29-33]. 

Herein, the synthesis of mesporous silica (MCM-41) 

and optimizing condition of DBT adsorption onto  

its surface from dodecane solution as model oil is 

determined by application of High Performance Liquid 

Chromatography (HPLC) analysis. 

 

EXPERIMENTAL  SECTION 

Materials 

DBT (98%), 2-HBP (99%), n-dodecane, 

tetraethylorthosilicate (TEOS 99%), CTAB, solvents and 

all other chemicals has been purchased from Merck and 

utilized without further purification.  

 

Synthesis of spherical mesoporous silica MCM-41  

MCM-41 nanoadsorbent has been synthesized  

at room temperature in according to the procedure introduced 

by Melendez-Ortiz et al. [31]. In a typical procedure 0.5 g 

of Cetyl Trimethyl Ammonium Bromide (CTAB)  

was dissolved in 96mL of deionized water under  

mild stirring.  After a clear solution has been obtained, 

34ml of ethanol and 10mL of 25% ammonia solution have 

been added to the above transparent solution following  

by stirring for 5 min again. Finally, 2ml of TEOS was added 

to this mixture, and obtained solution stirred for 3 h  

at room temperature and solid product was filtered, washed 

and dried at room temperature for 24 hours. CTAB 

template was removed by heat treatment of dry powder  

in a furnace at 540oC for 9h [31]. 

 

Characterization of nanosorbent 

The ordering and structure of the prepared silica’s 

pores were studied by Small Angle X-ray Scattering (SAXS) 

method applying PANalytical X’Pert MPD instrument 

operating at 40V and 40 mA with Cu Kα (λ=1.5406Å)  

as X-ray source. The morphology and microstructure  

of the sample were also investigated by scanning electron 

microscopy (SEM) (Streoscan 360, Leica Cambridge) 

with an accelerating voltage of 20 kV. Transmission 

Electron Microscopy (TEM) analysis was also carried out 

by Philips electron microscope (model CM 200) with 

200KV field emission gun.  

Barrett-Joyner-Halenda (BJH) pore size and 

Brunauer-Emmett-Teller (BET) surface area 

measurement methods using N2 adsorption-desorption 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Iran. J. Chem. Chem. Eng. Application of Spherical Mesoporous Silica MCM-41 ... Vol. 33, No. 3, 2014 

 

39 

Table 1: Properties of the prepared MCM-41 samples. 

Wall Thickness (nm) Mean diameter of pores (nm) /g)2mSurface area ( )/g3cmTotal pore volume ( 

0.87 3.54 1106 0.977 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: SAXS pattern of synthesized MCM-41 sample. 

 

 

isotherm have been performed by the Micromeritics 

Gimini III 2375 instrument. The sample was heated  

at 200 oC for 10 h before analysis in order to evacuate  

its pores before surface analysis. 

 

Adsorption of DBT from model oil 

Different amounts of MCM-41 nanosorbent was 

dispersed by sonication in 10 ml aliquots of dodecane for 

10min. Samples containing 0.05, 0.1, 0.15, 0.2, 0.25, 0.35 

and 0.5 g of adsorbent were deagglomerated by slight 

mixing with shaker at 30 oC for  4h before HPLC 

analyses. 

 

HPLC Analysis 

HPLC analyses of DBT have been performed by 

Gradient HPLC instrument equipped with UV detector 

(λ=280 nm), thermo stated ODS-3 column (250 mm × 4.6 

mm × 5 µm) and Eurochrom 2000 software. Flow rate of 

acetonitrile-water mixture solvents (ratio of 4:1) and 

column temperature has been set to 1mL/min and 25 oC, 

respectively.  

 

RESULTS  AND  DISCUSSION  

Nanosorbent Characterization 

Fig. 1 shows SAXS pattern of the prepared MCM-41 

sample. Peaks observed in 2θ = 2.52, 4.30, 4.94 and 6.47 

are clearly in accordance with hexagonal structure of MCM-41.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Nitrogen adsorption–desorption isotherms of the 

prepared mesoporous silica sample (MCM-41). 

 

The low intensity peaks of (110), (200) and (210) 

observed in this figure related to two dimensional 

hexagonal structure of sample. 

Surface analysis of samples using BJH model are 

shown in Fig. 2 which are in good agreement with type 

(IV) isotherms of IUPAC classification [34]. Mean pore 

diameter calculated by BJH models for the sample is  

3.54 nm. Table 1 lists the surface area as well as other 

data obtained by the BET-BJH models. 

Fig. 3 shows the SEM image of the mesoporous silica 

powders. This figure indicates homogeneous and 

spherical morphology of adsorbent powder. It is observed 

that particle sizes are in the range of 200-300 nm. TEM 

studies confirmed the same morphology reported for 

MCM-41 as well as its hexagonal meso-structure [31,34] 

(Fig. 4). Pore diameter and wall thickness obtained from 

the HRTEM image (inset of Fig. 4) are also depicted in 

this image. Results are in good agreement with data 

obtained by BET-BJH surface analysis. 

 

Adsorption properties of adsorbent from DBT- dodecane 

solution  

Fig. 5 shows the DBT concentration curve vs. time of 

infiltration with various amounts of dispersed adsorbent.  

Fig. 6 on the other hands illustrate the percent of DBT 

adsorption against mass of adsorbent in different times. 

Referring to these results, the adsorption rate is very high 
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Fig. 3: SEM image of the prepared MCM-41 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: TEM image of the prepared MCM-41 samples 

(estimation of wall thickness and pore diameter). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Adsorption of DBT with different amount of the 

prepared MCM-41 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Adsorption of DBT with different amount of the 

prepared MCM-41 samples at different time. 

 

at first hour, but the whole process is completed after 

3h.According to adsorption experiments, 29, 37, 39, 42, 

43 and 45 percent of DBT could be adsorbed after 3 h 

using 0.15, 0.2, 0 25, 0.3, 0.35 and 0.5 g of adsorbents.  

Results showed that saturation of DBT adsorption from 

the suspensions containing 0.05 and 0.1 g of adsorbent 

are occurred faster than other ones and their adsorption 

percent in the final solution have been determined to be 

8% and 15%, respectively. Based on these data and 

considering the slope of curves, there is no direct relation 

between amount of adsorbent and that of adsorption rate. 

From the view of the kinetic and economic approach, the 

best results obtained while using 0.03 g/ml of adsorbent 

for 3 h. Considering Fig. 7, it seems that agglomeration 

of particles in higher amounts of adsorbent takes place 

which may consequently reduce the surface to volume 

ratio of the adsorbent resulting in lower efficiency of 

adsorption in comparison with that of theoretically 

predicted amount. 

 
CONCLUSIONS 

In this study, spherical mesoporous silica MCM-41 

was synthesized as an eco-friendly nanosorbent using  

a quaternary ammonium template, CTAB in basic water-

ethanol mixture. It has been applied for adsorptive 

removal of sulfur compounds from fossil fuels using 

1mM solution of DBT in dodecane as model oil. This 

investigation shows that the synthesized MCM-41 

mesoporous silica is an efficient adsorbent of DBT from 

model oil. The optimized condition determined in this 

research for DBT adsorption by the synthesized 

mesoporous silica (1mM solution of DBT in dodecane  

as model oil) is 0.03 g/ml of adsorbent for 3 h of 

treatment. 
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Fig. 7: SEM image of agglomerated MCM-41 particles in 

high concentration suspension (0.05 g/ml). 
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