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ABSTRACT: Hartree-Fock (HF) and Density Functional Theory (DFT) methods employed
to study the effect of conformational change on the *3C chemical shifts of 6-mono axial and equatorial
substituted and 6,7-di axial-axial, equatorial-equatorial and axial-equatorial substituted
derivatives of 5,6,7,8-tetrahydrodibenzo[a,c]cyclo-octene. The geometry of the conformers
have been optimized in the gas phase employing the 6-311G(d,p) basis set. The 3C chemical shifts
were calculated by Gauge Including Atomic Orbitals (GIAO) method. The correlation between calculated
13C chemical shifts in the gas phase and experimental ones in CDClI; solvent is linear with squared
regression coefficient of 0.96. Also the calculated 3C chemical shift in the gas phase by the HF
method shows better correlation with experimental ones compared with DFT method. Calculations
of both the paramagnetic and .diamagnetic shielding of carbon atoms demonstrate that
the difference between experimental *3C chemical shifts of the axial and equatorial substituted
carbon atoms are more due to the paramagnetic than the diamagnetic shielding.
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INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy
has become a powerful tool in chemistry and molecular
biology [1-4]. There is no straightforward relationship between
the structural properties of a molecule and the measured
NMR signals, therefore, a reliable method to predict NMR
chemical shifts is needed. Ab initio and DFT calculations
could be used to calculate the NMR spectra [5].

Chemical shift is the most important parameters available
in NMR. Both proton and **C chemical shifts provide
chemists with a wealth of structural information. Many
ab initio methods have been developed to predict the chemical
shifts in terms of the chemical properties of atoms,
by shielding tensor [6-20]. London's Gauge Including
Atomic Orbitals (GIAO) was used by Ditchfield [6,7]
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Scheme 1: The 6-mono-substituted and 6,7-di-substituted derivatives of 5,6,7,8-tetrahydrodibenzo[a.c]cyclo-octene.

to devise a method for calculating chemical shielding
constant that has been demonstrated to be quite accurate
and popular especially when was practically implemented
in the context of highly correlated ab initio methods.

There have been many attempts for calculating
the shielding constant o, but none of the theoretical
approaches has yielded exact values. If such calculations
were possible, the spectrum could be exactly predicted.
Theory and experiment lead to the conclusion that
the reduction of the field, B, and the associated resonance
frequency is determined mainly by the distribution of
the electron density in a molecule. The chemical shifts
are therefore considerably affected by substituents which
specifically influence the electron distribution.

The chemical shielding tensor can be identified
as the second derivative of the energy with respect to the
external magnetic field, B, and the magnetic moment, mj,
of nucleus j.
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With a,p=d,y,z. The following derivatives as the
paramagnetic and diamagnetic component of the
magnetic shielding tensor can be obtained [6,7,15,16].
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The o and o could be described as diamagnetic
and paramagnetic contributions (Eq. (2)). o% is shown
as unperturbed diamagnetic shielding contribution
(Eg. 3), where o” involves both the unperturbed
(first sentence) and the perturbed (second sentence)
paramagnetic shielding contributions (Eg. (4)). In this
article, we used-the trace of the shielding tensors, since
in many situations.especially in the gas phase and
in liquid environments it is adequate to compare the trace
of tensors by experiment.

There were a few calculations on conformational
dependence of 3C chemical shifts, due to insufficient
experimental data, so the important structural parameters,
which_affect the C chemical shifts by conformational
changes, have not been formulated yet.

The 5,6,7,8-tetrahydrodibenzo[a,c]cyclo-octene and
their ~ 6-mono-substituted  and  6,7-di-substituted
derivatives (Scheme 1) were studied by force field
molecular mechanics and semiempirical calculations and
by H and 3C NMR spectroscopy [21-24].

5,6,7,8-tetrahydrodibenzo[a,c]cyclo-octene shows two
local minimum energy conformations; Twist Boat (TB),
and Twist Boat Chair (TBC) as the lower energy one
(Schemes 2 and 3) [24].

The  6-mono-substituted and  6,7-di-substituted
derivatives of 5,6,7,8-tetrahydrodibenzo[a.c]cyclo-octene
with hydrogen, fluorine (without experimental results),
chlorine, bromine, and methyl substitution (Scheme 1)
are used as the model compounds, which show
conformational equilibrium in solution at room
temperature [22,24]. Their 3C NMR spectra [23] show
that carbon atoms with equatorial substituent show
higher chemical shift the axial ones (Table 3). In the
present paper a correlation between calculated and
experimental values of *C chemical shifts were obtained.
Also the effect of neighboring atom as axial or equatorial
substituent on the *3C chemical shift are studied.
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Scheme 2: Twist Boat (TB).

Computational details

The molecular geometry optimization of the TBC
conformational forms of the 6-mono-substituted and
6,7-di-substituted derivatives of 5,6,7,8-
tetrahydrodibenzo[a.c]cyclo-octene (Scheme 3) in the gas
phase performed using Hartree-Fock (HF) as an all-electron
linear combination of atomic orbitals and Density Functional
Theory (DFT) calculations via the Spartan’10 computational
package [25]. We used Becke’s hybrid three-parameter
exchange functional [26,27] and the correlation functional of
the Lee, Yang, and Parr (B3LYP) method [28].

The basis set in our calculation combined with both
HF and B3LYP methods is 6-311G(d;p). Vibrational
frequencies have been calculated at the same level
of theory for characterization of stationary points
(no imaginary frequencies were observed).

Exact prediction of molecular response properties
to external fields has notable significance in different areas
of chemical physics. These especially refer to the second-
order Nuclear Magnetic Response (NMR) properties, therefore
techniques based on the magnetic resonance have gained
fundamental significance in chemistry with one important
parameter; isotropic (oiso) shielding. In the present paper,
the 13C shielding parameters calculations have been
carried out on the basis of GIAO method at HF/6-311G(d,p)
and B3LYP/6-311G(d,p) levels of theory using Spartan'10
computational package [20]. Tetra Methyl Silane (TMS)
was assumed as the standard for calculating the chemical
shifts from shielding isotropic values. Diamagnetic and
paramagnetic shielding values were calculated to study
their effects on **C chemical shift.
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Scheme 3: Twist Boat Chair (TBC).

RESULTS AND DISCUSSION

The shielding parameters of 6,7,8, and 9 carbon atoms
in the conformer of 6-mono-substituted and 6,7-di-
substituted derivatives of 5,6,7,8-
tetrahydrodibenzo[a.c]cyclo-octene (Scheme 1) are given
in-Table 1. These parameters are diamagnetic shielding
(ouia), unperturbed paramagnetic shielding (opara),
perturbed paramagnetic shielding (o'para), iSOtropic
shielding (oiso), and chemical shift (9).

We used isotropic shielding values of carbon atoms
in TMS to calculate the chemical shifts. The relation between
isotropic shielding and chemical shift is given by:

&= Giso, TMS ~ Ciso ®)

The calculated isotropic shielding values of carbon
atoms of TMS in the gas phase at HF/6-311G(d,p) and
B3LYP/6-311G(d,p) is given in Table 2. The
experimental chemical shifts in CDCl; were taken from
a previous work [23]. The experimental chemical shifts
and the calculated one’s are presented in Table 3.

In a molecule, shielding of an atom like carbon
is greatly affected by the neighboring groups. The results
showed that the chemical shifts in substituted carbon
atoms in equatorial position are a few ppm more than
the axial substituted carbon atoms; this could be
attributed to the C-X bond length. The increasing
of electronegativity in substitution atoms attracts
the electron cloud of substituted carbon atoms, this leads
to deshielding of carbon atoms and increasing
in chemical shift value. However C-X distances
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Table 1: 13C shielding parameters of the 6-mono-substituted and 6,7-di-substituted derivatives of 5,6,7,8-
tetrahydrodibenzo[a.c]cyclo-octene in HF and B3LYP method with 6-311G(d,p) basis set using GIAO approximation.

é HF/6-311G(d,p) B3LYP/6-311G(d,p) A
Molecule Atom
Gdia Opara 6 para Giso 5 Giia Opara 6’ para Giso Ganiso )

C5 250.11 | -10.86 | -74.58 | 164.66 | 31.49 | 252.32 | -7.39 -98.03 146.90 | 22.59 | 37.48

C6 251.00 | -11.64 | -73.30 | 166.05 | 30.10 | 252.49 | -11.12 | -91.90 149.46 | 14.61 | 34.92

N c7 251.00 | -11.64 | -73.30 | 166.05 | 30.10 | 252.49 | -11.13 | -91.87 149.48 | 1456 | 34.9
C8 250.11 | -10.86 | -74.58 | 164.66 | 31.49 | 252.32 | -7.39 -98.03 146.90 | 22.59 | 37.48

C5 25049 | -9.25 -80.22 | 161.02 | 35.14 | 253.00 | -5.65 | -104.31 | 143.03 | 25.16 | 41.35

C6 248.48 | -9.85 | -121.65 | 116.98 | 79.17 | 250.44 | -9.18 | -150.84 90.43 80.28 | 93.95

@ c7 251.26 | -9.96 -81.56 | 159.74 | 36.41 | 252.82 | -9.32 | -100.74 | 142.76 | 19.57 | 41.62
C8 24987 | -9.77 -70.63 | 169.48 | 26.68 | 252.17 | -6.27 -93.55 152.35 | 31.95 | 32.03

C5 249.80 | -10.39 | -81.79 | 157.62 | 38.54 | 251.98 | -7.26 | -105.98 | 138.74 | 35.07 | 45.64

C6 248.04 | -0.21 | -136.91 | 110.92 | 85.23 | 250.13 0.09 -166.44 83.78 78.50 | 100.6

" c7 250.69 | -9.06 -80.67 | 160.96 | 35.19 | 252.21 | -8.69 -99.18 14434 | 23.71 | 40.04
C8 250.23 | -9.08 -72.18 | 168.97 | 27.19 | 25259 | -5.93 -95.05 151.60 | 27.28 | 32.77

C5 250.57 | -11.25 | -80.10 | 159.22 | 36.93 | 252.94 | -7.92 | -104.12 | 140.904 | 19.09 | 43.48

C6 252.67 | -15.56 | -100.81 | 136.30 | 59.86 | 254.35 | -14.35 | -128.45 | 111.548 | 67.90 | 72.83

@ Cc7 251.79 | -10.96 | -84.10 | 156.73 | 39.42 | 253.26 | -10.20 | -103.71 | 139.354 | 25.69 | 45.03
C8 250.09 | -10.36 | -70.01 | 169.72 | 26.43 | 252.25 | -6.91 -92.72 152.62 | 29.85 | 31.76

C5 250.60 | -11.19 | -84.28 | 155.13 | 41.02 | 252.87 | -7.66 | -109.06 | 136.15 | 42.22 | 48.23

C6 252.15 | <1539 | -104.04 | 132.71 | 63.45 | 253.80 | -13.66 | -131.95 | 108.19 | 61.20 | 76.19

1 © Cc7 251.62 | -10.97 | -83.78 | 156.87 | 39.28 | 253.13 | -10.15 | -103.02 | 139.96 | 32.94 | 44.42
C8 250.26 | -9.76 -74.18 | 166.32 | 29.84 | 25250 | -6.74 -97.46 148.29 | 23.78 | 36.09

C5 250.44 | -10.60 | -81.47 | 158.37 | 37.79 | 25283 | -7.25 | -105.87 | 139.71 | 17.82 | 44.67

C6 252.37 | -14.16 | -102.61 | 135.59 | 60.56 | 253.87 | -12.21 | -130.70 | 110.96 | 77.04 | 73.42

@ c7 251.75 | -10.45 | -85.54 | 155.75 | 40.40 | 253.23 | -9.34 | -105.90 | 138.00 | 28.63 | 46.38
Cc8 250.13 | -9.60 -71.17 | 169.37 | 26.79 | 252.31 | -6.08 -94.23 152.00 | 29.02 | 32.38

C5 250.49 | -9.96 -86.17 | 154.37 | 41.79 | 252.73 | -6.27 | -111.26 | 13521 | 45.28 | 49.17

C6 252.04 | -11.72 | -106.95 | 133.36 | 62.79 | 253.50 | -9.27 | -134.26 | 109.97 | 67.54 | 74.41

4 c7 25154 | -10.37 | -85.27 | 155.91 | 40.25 | 253.04 | -8.93 | -105.44 | 138.67 | 36.66 | 45.71

\_ C8 250.28 | -8.77 -76.16 | 165.34 | 30.81 | 252.52 | -6.12 -99.28 14712 | 22.71 37.26/
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Table 1: 13C shielding parameters of the 6-mono-substituted and 6,7-di-substituted derivatives of 5,6,7,8-
tetrahydrodibenzo[a.c]cyclo-octene in HF and B3LYP method with 6-311G(d,p) basis set using GIAO approximation (continued)

4 HF/6-311G(d.p) B3LYP/6-311G(d,p) )
Molecule Atom
Gdia Opara 6 para Giso 3 Giia Opara 6’ para Giso )

cs 250.08 | -10.93 | -78.68 | 160.46 | 35.60 | 252.32 | -7.32 | -103.26 | 141.75 | 42.63

c6 250.71 | -14.40 | -68.92 | 167.39 | 28.76 | 252.01 | -13.16 | -90.30 | 14854 | 35.84

e @ c7 251.63 | -10.45 | -81.11 | 160.07 | 36.09 | 252.80 | -9.96 | -100.31 | 14253 | 41.84

cs 250.19 | -10.15 | -71.28 | 168.75 | 27.40 | 252.43 | -6.61 | -93.92 | 151.89 | 32.49

cs 250,61 | -9.90 | -8245 | 15826 | 37.90 | 25257 | -6.42 | -106.86 | 139.30 | 45.08

c6 251.00 | -11.43 | 7839 | 161.17 | 34.98 | 252.19 | -9.00 | -101.44 | 141.75 | 42.63

e © c7 25149 | -10.45 | -82.32 | 158.72 | 37.43 | 252.66 | <0.86 | -101.81 | 14099 | 43.38

cs 249.95 | -10.04 | -74.82 | 165.00 | 31.06 | 25227 | -652 | 98.16 | 147.59 | 36.79

cs 25026 | -8.12 | -77.60 | 16453 | 31.62 | 252.82 | -437 | -101.20 | 147.26 | 37.12

c6 24879 | 755 | -125.70 | 11554 | 8061 | 250.87 | -6.64 | -154.64 | 8959 | 94.79

1o @2) c7 24879 | -7.55 | -125.69 | 11555 | 80.61 | 250.87 | -6.64 | -15464 | 8959 | 94.79

cs 25026 | -8.12 | -77.60 | 16453 | 31.62 | 252.82 | -437 | -101.20 | 147.26 | 37.12

cs 24986 | -8.66 | -79.58 | 161:62 | 34.54 | 252.18 | -557 | -103.28 | 14334 | 41.04

c6 24756 | 057 | -139.05 | 100.08 | 87.08 | 249.68 | 099 | -168.15 | 8252 | 101.86

- () c7 24756 | 057 | 139,05 | 109.08 | 87.08 | 249.68 | 098 | -168.06 | 82.60 | 101.78

cs 249.86 | -8.66 | 79.58 || 161.62 | 34.54 | 252.19 | -556 | -103.28 | 14334 | 41.04

cs 250.58 |=7.58 | -78.98 | 164.02 | 32.13 | 25321 | -4.04 | -102.98 | 146.19 | 38.19

c6 24803 | -8.23 | -121.70 | 118.10 | 78.05 | 250.05 | -7.62 | -150.11 | 92.32 | 92.06

b @) c7 248.19°| 064 | -139.21 | 10062 | 86.53 | 25030 | 145 | -168.88 | 82.88 | 1015

cs 249.60 | 953 | -77.05 | 163.02 | 33.14 | 251.89 | -6.25 | -100.38 | 145.26 | 39.12

cs 25049 | -11.08 | -75.04 | 164.37 | 31.78 | 252.80 | -7.71 | -98.26 | 146.84 | 37.54

c6 25346 | -15.63 | -104.65 | 133.19 | 62.96 | 255.10 | -14.33 | -131.96 | 108.81 | 75.57

e, @2 c7 25346 | -15.63 | -104.65 | 133.19 | 62.96 | 255.10 | -14.32 | -131.96 | 108.82 | 75.56

cs 25049 | -11.08 | -75.04 | 164.37 | 31.78 | 252.80 | -7.70 | -98.27 | 146.84 | 37.54

cs 250.78 | -10.87 | -8331 | 156.60 | 39.55 | 253.10 | -7.57 | -107.84 | 137.68 | 46.70

c6 252,64 | -15.87 | -10857 | 128.20 | 67.96 | 254.34 | -13.85 | -137.08 | 10342 | 80.96

e, ) c7 252,64 | -15.87 | 10857 | 128.20 | 67.96 | 254.32 | -13.79 | -137.17 | 10337 | 8101

cs 250.78 | -10.87 | -8331 | 156.60 | 39.55 | 253.11 | -7.45 | -107.68 | 137.97 | 46.41

cs 25081 | -10.23 | -81.13 | 150.45 | 36.71 | 253.08 | -7.27 | -104.75 | 141.06 | 43.32

c6 25326 | -14.55 | -104.26 | 134.46 | 61.70 | 254.94 | -13.12 | -132.45 | 109.37 | 75.01

1. (&) c7 25297 | -14.36 | -108.25 | 130.35 | 65.80 | 25456 | -12.48 | -136.83 | 105.25 | 79.13

\_ cs 25061 | -1101 | -79.79 | 15081 | 3635 | 25279 | 751 | -103.60 | 14168 | 4270 )
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Table 1: 13C shielding parameters of the 6-mono-substituted and 6,7-di-substituted derivatives of 5,6,7,8-
tetrahydrodibenzo[a.c]cyclo-octene in HF and B3LYP method with 6-311G(d,p) basis set using GIAO approximation (continued).

4 HF/6-311G(d,p) B3LYP/6-311G(d,p) )
Molecule Atom
Gdia Gpara G'para Giso S Gdia Opara G,para Giso 1)
C5 250.37 | -9.95 -76.83 | 163.59 | 32.56 | 252.72 | -6.51 | -100.61 | 145.60 | 38.78
C6 253.14 | -13.41 | -107.64 | 132.08 | 64.08 | 254.62 | -11.28 | -135.99 | 107.35 | 77.03
11d, (a,a)
C7 253.14 | -13.41 | -107.65 | 132.08 | 64.08 | 254.62 | -11.29 | -135.88 | 107.44 | 76.93
C8 250.37 | -9.95 -76.83 | 163.59 | 32.56 | 252.72 | -6.51 | -100.62 | 145.59 | 38.79
C5 250.70 | -9.35 -86.28 | 155.06 | 41.09 | 253.02 | =6.04 | -111.25 | 135.73 | 48.65
C6 25241 | -12.45 | -111.62 | 128.33 | 67.82 | 253.90 | -9.34 | -141.10 | 103.46 | 80.92
11d, (e.e)
Cc7 252.41 | -12.45 | -111.62 | 128.33 | 67.82 | 253.90 | -9.34 | -141.10 | 103.46 | 80.92
C8 250.70 | -9.35 -86.28 | 155.06 | 41.09 | 253.02 | -6.05 | -111.24 | 135.73 | 48.65
C5 250.69 | -9.05 -84.04 | 157.59 | 38.56 | 252.98 | -6.25 | -107.92 | 138.81 | 45.57
C6 252.84 | -12.97 | -106.82 | 133.06 | 63.10 | 254.32 | -10.66 | -136.67 | 106.99 | 77.39
111d, (a,e)
c7 252.81 | -11.37 | -110.21 | 131.23 | 64.92 | 254.20 | -8.80 | -139.05 | 106.36 | 78.02
Cc8 250.54 | -9.72 <82.44 | 158.38 | 37.77 | 252.73 | -5.96 | -107.14 | 139.64 | 44.74
C5 250.04 | -10.42 | -75.21 | 164.40 | 31.75 | 252.36 | -6.45 | -98.99 | 146.92 | 37.46
C6 251.67 | -13.27 | -76.76 | 161.64 | 34.52 | 252.52 | -12.02 | -98.61 | 141.89 | 42.49
lle, (a,a)
C7 251.67 | -13.27 -76.76 161.64 | 34.52 | 252,52 | -12.03 | -98.67 141.81 | 42.57
C8 250.04 | -10.42 | -75.21 | 164.40 | 31.75 | 252.34 | -6.45 | -99.09 | 146.80 | 37.58
C5 250.60 | -9.47 -82.73 | 158.40 | 37.75 | 252.60 | -5.78 | -107.31 | 139.50 | 44.88
C6 251.38 | -11.37 | -83.30 | 156.70 | 39.45 | 252.32 | -8.70 | -107.56 | 136.06 | 48.32
lle, (e,e)
Cc7 251.39 | -11.37 | -83.34 | 156.67 | 39.48 | 252.35 | -8.68 | -107.81 | 135.87 | 48.51
C8 250.60 | -9.47 -82.70 | 158.43 | 37.72 | 25259 | -5.90 | -107.23 | 139.46 | 44.92
C5 250.04 | -10.04 | -80.96 159.04 | 37.12 | 252.28 | -6.49 | -105.72 | 140.07 | 44.31
C6 251.23 | -12.55 | -75.88 | 162.80 | 33.36 | 252.24 | -11.51 | -97.54 | 143.18 | 41.20
Ille, (a,e)
Cc7 251.64 | -10.06 | -84.03 157.55 | 38.60 | 252.55 | -7.50 | -107.82 | 137.23 | 47.15
cs 250.57 | -9.48 | -78.08 | 16301 | 33.14 | 25262 | -5.94 | -10151 | 145.17 | 39.21
o %
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Table 2: 3C Chemical shift of the tetra methyl silane in HF and B3LYP method with 6-311G(d,p) basis set
using GIAO approximation.

HF/6-311G(d,p) (gas)

B3LYP/6-311G(d,p) (gas) w

184.38 )

k Giso 196.15
90
i 80
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Experimental chemical shift in CDCl; solvent (ppm)

Fig. 1: The relationship between calculated chemical shift
in gas phase and experimental one’s in CDCI solvent.

in equatorial conformers are relatively the same as
axial conformers (Table 4). This confirms that the
electronic environment of carbon atoms has .not
changed, so the diamagnetic shielding (ouia) oOf
substituted carbon atoms has not changed. It is
a well-known fact that the change in_environment
of carbon atoms is one of the most conclusive factors
in variation of chemical shifts.

Studying both the paramagnetic and diamagnetic
shielding of carbon atoms (Table 1) demonstrates that
the difference between isotropic shielding values of the axial
and equatorial substituted carbon atoms (C6 in 6-mono-
substituted and C6 and C7 in 6,7-di-substituted derivatives
of 5,6,7,8-tetrahydrodibenzo[a.c]cyclo-octene) is related
to the paramagnetic shielding (cpara + G'para) mMore than
the diamagnetic shielding (ogia). Paramagnetic shielding
(opara + O'para) IS affected by electron currents induced
by electric field due to interference effects of other atoms
especially neighboring atoms. The equatorial substituted
carbon atoms have higher negative paramagnetic
shielding value than axial substituted carbon atoms. Also
the difference between experimental 3C chemical shift
values of the axial and equatorial substituted carbon
atoms (Table 3) show that the paramagnetic shielding

is affected on chemical shift more than the diamagnetic
shielding.

The computed results in Table 3 in HF/6-311G(d,p)
level of theory, show a better agreement with the
experimental ones compared with B3LYP/6-311G(d,p)
level of theory. The Root-Mean-Square Deviation
(RMSD) of HF calculated chemical shifts with
the experimental ones is-2.70 ppm, while the RMSD
of B3LYP calculated chemical shifts with experimental
ones is 9.00 ppm. The most prominent differences
between the calculated and experimental results
are obtained for 6-mono-Br substituted. These differences
in HF method are 7.17 and 8.94 ppm and for B3LYP
method are 20.03 ‘and 20.56 ppm for axial and
equatorial positions respectively.

The relationship between calculated chemical shift
in gas phase and experimental ones in CDCls solvent is
linear with squared regression coefficient of 0.96 (Fig. 1).
This suggests that the increase in theoretical and
experimental chemical shift is quite applicable. Although,
electron correlation effects in HF calculations are not
checked such as B3LYP method [10,11], the calculated
results that were obtained with HF method in gas
phase are in greater conformity with the experimental
results than B3LYP method.

CONCLUSIONS
The present work clarified conformational effect
on the *3C chemical shifts of 6-mono axial and equatorial

substituted and 6,7-di axial-axial and equatorial-
equatorial  substituted  derivatives of  5,6,7,8-
tetrahydrodibenzo[a,c]cyclo-octene. In general,

the carbon atoms with equatorial substitutions show
chemical shifts down fields than the carbon atoms with
axial substitutions. The contribution of paramagnetic and
diamagnetic shielding of carbon atoms in isotropic
shielding demonstrates that the difference between °C
chemical shift values of the axial and equatorial
substituted carbon atoms (as obtained experimentally or
theoretically) is related to the paramagnetic shielding
more than the diamagnetic shielding.
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Table 3: C Chemical shift of the 6-mono-substituted and 6,7-di-substituted derivatives of 5,6,7,8-tetrahydrodibenzo[a.c]cyclo-
octene in HF and B3LYP method with 6-311G(d,p) basis set using GIAO approximation and experimental values of them

K Molecule Atom HF/6-311G(d,p) B3LYP/6-311G(d,p) Experimental’ HF-Exp BSLYP-Exp\
C5 36.93 43.48 39.65 -2.72 3.83
Ic. () C6 59.86 72.83 58.43 1.43 14.4
c (a
Cc7 39.42 45.03 38.73 0.69 6.30
C8 26.43 31.76 27.07 -0.64 4.69
C5 41.02 48.23 43.54 -2.52 4.69
Ic. (0 C6 63.45 76.19 61.86 1.59 14.33
c (e
Cc7 39.28 44.42 39.99 -0.71 4.43
C8 29.84 36.09 30.93 -1.09 5.16
C5 37.79 44.67 40.50 -2.71 417
Id. (@) C6 60.56 73.42 53.39 7.17 20.03
, (@
c7 40.40 46.38 39.44 0.96 6.94
C8 26.79 32.38 28.04 -1.25 434
C5 41.79 49.17 44.26 -2.47 4,91
Id ©) C6 62.79 74.41 53.85 8.94 20.56
, (e
Cc7 40.25 45.71 41.12 -0.87 4,59
C8 30.81 37.26 32.52 -1.71 4,74
C5 31.78 37.54 32.58 -0.80 4.96
C6 62.96 75.57 61.29 1.67 14.28
llc, (a,a)
Cc7 62.96 75.56 61.29 1.67 14.27
c8 31.78 37.54 32.58 -0.80 4.96
C5 39.55 46.70 41.64 -2.09 5.06
C6 67.96 80.96 67.79 0.17 13.17
llc, (e,e)
Cc7 67.96 81.01 67.79 0.17 13.22
Cc8 39.55 46.41 41.64 -2.09 477
C5 36.71 43.32 38.19 -1.48 5.13
C6 61.70 75.01 61.54 0.16 13.47
llc, (a,e)
Cc7 65.80 79.13 65.16 0.64 13.97
C8 36.35 42.70 38.29 -1.94 441
€5 31.75 37.46 32.89 -1.14 4,57
C6 34.52 42.49 35.40 -0.88 7.09
lle, (a,a)
C7 34.52 42.57 35.40 -0.88 7.17
c8 31.75 37.58 32.89 -1.14 4.69
C5 37.75 44.88 40.90 -3.15 3.98
C6 39.45 48.32 4251 -3.06 5.81
lle, (e,e)
Cc7 39.48 48.51 42.51 -3.03 6.00
Cc8 37.72 44.92 40.90 -3.18 4.02
C5 37.12 44.31 33.23 3.89 11.08
C6 33.36 41.20 39.05 -5.69 2.15
lle, (a,e)
Cc7 38.60 47.15 40.42 -1.82 6.73
\_ c8 33.14 39.21 35.40 2,26 381/

i. Isakson R, Rashidi-Ranjbar P, Sandstrom J, Synthesis and chromatographic resolution of some chiral four-carbon 2,2'-bridged

biphenyls. Some unusually high selectivity factors, J. Chem. Soc. Perkin Trans. 1. 1147-1152, 1991.


http://pubs.rsc.org/en/content/articlelanding/1991/p1/p19910001147
http://pubs.rsc.org/en/content/articlelanding/1991/p1/p19910001147
www.sid.ir

Iran. J. Chem. Chem. Eng.

Table 4: C-X distances in equatorial and axial conformers of the 6-mono-substituted and 6,7-di-substituted derivatives of
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Vol. 34, No. 4, 2015

5,6,7,8-tetrahydrodibenzo[a.c]cyclo-octene in HF and B3LYP method with 6-311G(d,p) basis set

é Bond length (A) N
Molecule C-X bond
RHF/6-311G(d,p) B3LYP/6-311G(d,p)

1b, (a) Cé-F 1.380 1.412
1b, () Cé-F 1.382 1.413
Ic, (@) Cé6-Cl 1.822 1.846
Ic, () Cé6-Cl 1.825 1.848
Id, (a) C6-Br 1.991 2.013
Id, (e) C6-Br 1.993 2.014
le, (@) C6-CH; 1.532 1.535
le, () C6-CHs; 1.532 1.536
Cé-F 1.375 1.406

11b, (a,a)
C7-F 1.375 1.406
Cé6-F 1.376 1.406

11b, (e,e)
C7-F 1.376 1.406
Cé-F 1.369 1.400

I11b, (a,e)
C7-F 1.374 1.403
Cé6-Cl 1.816 1.840

lic, (a,a)
C7-Cl 1.816 1.840
C6-Cl 1.815 1.837

llc, (e,e)
C7-Cl 1.815 1.837
Cé6-Cl 1.803 1.826

Ilc, (a,e)
c7-Cl 1.809 1.833
C6-Br 1.987 2.015

11d, (a,a)
C7-Br 1.987 2.014
C6-Br 1.982 2.005

11d, (e,e)
C7-Br 1.982 2.004
C6-Br 1.969 1.993

111d, (a,e)
C7-Br 1.974 1.996
C6- CH; 1.533 1.536

lle, (a,a)
C7-CH;, 1.533 1.536
C6- CHs 1.537 1.539

lle, (e,e)
C7- CH; 1.536 1.539
C6- CH; 1.534 1.536

Ile, (a,e)

\_ C7-CH;, 1.534 1.537 Y,
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