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ABSTRACT: Simultaneous determination of pharmaceutical compounds and accurate quantitative 

prediction of them are of great interest in the clinical and laboratory-based investigations.  

This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and 

Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, 

montelukast (MONT), fexofenadine (FEXO) and cetirizine (CET) were studied as three 

pharmaceuticals whose UV-Vis absorption spectra highly overlap each other. The cross-validation 

leave-one-sample-out procedure was applied and the optimum number of factors was determined. 

The developed models were subsequently validated through testing with an independent dataset. 

Furthermore, a simple and fast method for wavelength selection (WS-PLS-1) in the calibration step 

was presented which involved the calculation of the Net Analyte Signal Regression Plot (NASRP) 

for each test sample. Highest prediction accuracies corresponded to WS-PLS-1 method with R2 values 

of 0.994, 0.982 and 0.999 for MONT, FEXO and CET, respectively. The best values of detection 

limit was also provided by WS-PLS-1 method which obtained to be 0.029, 0.049 and 0.054 mg/L  

for MONT, FEXO and CET, respectively. According to the results obtained, WS-PLS-1 method  

was shown to have the potential to be utilized as a promising tool in clinical and pharmaceutical 

applications. 
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INTRODUCTION 

There are three main pharmaceuticals that their 

discovery has had a significant impact on treatment 

strategies for the management of asthma: Montelukast 

(MONT), Fexofenadine (FEXO) and Cetirizine (CET). 

MONT is a potent and selective antagonist of  

the cysteinyl leukotriene receptor which is utilized for  

the treatment of asthma [1]. FEXO is a non-cardiotoxic  

and non-sedative terfenadine metabolite, which acts  

as a selective second-generation histamine H1 receptor antagonist, 

relieving the uncomfortable manifestations of rhinitis [2]. 

CET is a piperazine derivative and metabolite of hydroxyzine 

and is described as a long-acting non-sedating antihistamine 

with some mast-cell stabilizing activity. 

One of the main difficulties in accurate determination 

of pharmaceuticals in clinical and laboratory applications 

is the fact that drug components are usually in mixtures 

rather than being single. The conventional spectrophotometric 

methods use a separate number of wavelengths that  

are not frequently enough to offer the necessary information 

to resolve a system with severe spectra overlapping [3]. 

Multivariate methods, however, allow extracting 

analytical information and permit a rapid analytical 

response with minimum sample preparation, reasonable 

accuracy and precision without separation procedures. 

Among different regression methods commonly used 

for multivariate calibration, the factor analysis-based 

methods such as Partial Least Squares (PLS) have received 

considerable attention in the literature [4-6]. PLS offers  

a full-spectrum method and, therefore, efficient outlier 

detection methods are available from spectral residuals 

and chemically interpretable spectral information  

can be extracted from PLS analysis. This advantage allows 

for a rapid determination of mixture components often 

with no need of prior separation or sample pre-treatment [7]. 

PLS is a developed generalization of the Multiple Linear 

Regression (MLR). However, the ability to analyze highly 

collinear and noisy data is an advantage of PLS over 

MLR. MLR-based methods have the disadvantage that all 

significant components must be known, whereas the 

robust multivariate method of PLS can be calibrated  

by ignoring the concentrations of all other components 

except the analyte of interest (also known as leave-one-

out procedure) [8]. An excellent review of the 

multivariate statistical method has been presented  

by Martens & Naes [9]. 

PLS can also be coupled with other evolutionary 

mechanisms such as Genetic Algorithm (GA) for 

chemometric analysis of data and optimization of the 

procedure parameters. For instance, Khoshayand et al. [10] 

exploited GA for the wavelength selection in PLS 

calibration without loss of prediction capacity in 

simultaneous determination of paracetamol, ibuprofen 

and caffeine in pharmaceuticals. GAs are widely applied 

to solve extremely complex problems with objective 

functions that do not possess ‘nice’ properties such as 

continuity, differentiability, etc [10, 11]. A number of 

typical samples and discussions on genetic algorithms 

can be found elsewhere [12-14]. 

The PLS method differs from Principal Component 

Regression (PCR) in including the dependent 

(concentration) variable in the data compression and 

decomposition operations. In other words, both 

concentration and spectra data are actively used in the data 

analysis. Because PLS and PCR models require information 

only about a single species, they can be significantly easier 

to implement [8, 15]. 

Aside from multivariate analysis method, Artificial 

Neural Networks (ANN) can also be utilized in order to 

differentiate between the complex absorption spectra 

resulting from the mixture of components. A number of 

layers, each having some neurons, with the aid of weights 

and biases make the network flexible for solving 

nonlinear complex problems and handling complicated 

systems [16, 17]. Recently, there has been a growing 

interest among researchers in applying neural networks  

to simultaneous determination of different analytes  

in biological, pharmaceutical and agricultural samples [18-20]. 

Ni et al. [21], for example, used ANN method in simultaneous 

spectrophotometric determination of three pesticides 

in vegetable and fruit samples. Li et al. [22] tried the ANN 

method to solve the problem of simultaneous determination  

of components of similar character, namely, the mixture 

of fluorescent dyes. Their results also indicated that ANN 

was a much more feasible strategy compared to PCR and PLS. 

In respect of literature survey, no published method 

was reported for the simultaneously quantifying MONT, 

FEXO and CET that does not require a prior physical 

separation. This paper therefore aims to apply partial least 

squares technique and neural network modeling as  

two low-cost and rapid methods for simultaneous 

determination of these drugs by UV-Vis spectroscopy. 
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EXPERIMENTAL SECTION 

Materials 

Sodium montelukast (MONT), fexofenadine 

hydrochloride (FEXO) and cetirizine dihydrochloride (CET) 

were purchased from Sigma-Aldrich and methanol was 

prepared from Fluka Company. Stock standard solutions 

of MONT, FEXO and CET were prepared separately  

by dissolving 10 mg of each compound in 10 mL  

of methanol. The concentrations of each drug were  

1000 mg/L (ppm) which would equal to 1.64×10−3, 

1.86×10−3 and 2.17×10−3 mol L-1 of MONT, FEXO and 

CET, respectively. Fig. 1 displays the molecular 

structures of these drugs. 

 

Apparatus and software 

Recording of the absorption spectra were performed 

using a UV-Vis spectrophotometer (LABOMED 

Instrument, double beam– Model UVD-3200). All 

measurements were carried out at 22 ◦C using a quartz 

cuvette of 1.0 cm optical path. Partial Least Squares-1 

(PLS-1) and neural network modellings were 

implemented by MATLAB R2013a software 

(MathWorks). The MVC1 program featuring PLS-1  

was written by Olivieri et al. [23]. 

 

Procedures 

One component calibration 

In order to find the Linear Dynamic Range (LDR)  

for each drug, different volumes of stock solution of each 

component was added to 25 mL volumetric flask  

and diluted to the mark with methanol. The electronic 

absorption spectra of all drugs were recorded over  

the range of 195–400 nm. Absorption values were recorded 

at the wavelength of 211, 205 and 204 nm with different 

concentration of the MONT, FEXO and CET, 

respectively. The LDR for each compound was achieved 

by plotting absorbance values versus drug concentration. 

The LDRs were obtained to be 1.0–35.0, 1.0–28.0 and 

1.0–25.0 mg/L for MONT, FEXO and CET, respectively. 

 

Calibration and test sets 

By convenient dilution of the stock solutions,  

a calibration set of 36 samples, including binary- and 

ternary-component mixtures was built. Concentrations of 

the drugs used for the calibration set were in the range of 

2.0–12.0 mg/L. Standard solutions were prepared in 25 mL  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Molecular structure of montelukast (MONT), 

fexofenadine (FEXO) and cetirizine (CET) 

 

volumetric flasks by addition of suitable amounts of each 

stock solution and diluted by methanol to the mark. 

Similarly, 15 additional samples were prepared to serve 

as the test set. The UV-Vis spectra of the corresponding 

solutions were recorded in the same spectral conditions  

at ambient temperature and the obtained data were used 

for PLS-1 and ANN modeling. 

 

PLS modeling  

PLS is factor-based chemometric method which  

can analyze highly collinear, noisy data. PLS is commonly 
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applied to the simultaneous analysis of two datasets  

such as spectra and concentration. Based on a number of 

factors (latent variables), PLS builds a linear model  

such as y=Xb which allows the prediction of concentration (y) 

from measured spectra (X), where b contains the 

regression coefficients that are obtained during the 

calibration step [24, 25]. To be more specific, X is  

the  matrix of measured responses obtained from 

spectrophotometry, with n equal to the number of 

samples and m equal to the number of sensors (analytical 

wavelengths). y is the  concentration matrix of c 

analytes. b is the  vector of regression coefficients 

which is solved for when PLS is calibrated [26]. With b 

in hand, the calibrated model can then predict new 

unknown y concentrations from measured X spectra. 

 

ANN modeling 

In this study, a MultiLayer Perceptron (MLP) 

feedforward network was applied for modeling the 

concentrations of MONT, FEXO and CET. As 

schematically shown in Fig. 2, the MLP consists of three 

types of layers: an input layer, an output layer and  

a hidden layer, each layer contains a number of neurons 

which operate in parallel. These neurons are connected  

by weights that are modified during the learning phase [27]. 

Implementing ANN model normally requires a number of 

steps: data collection, data pre-processing, building the 

network, training, testing, validation and data post-

processing, successively. The whole procedure is 

summarized in the flowchart shown by Fig. 3. 

 

Data collection 

As a first step to designing an ANN model,  

the sample data is to be collected and prepared. In the present 

work, absorption measurement data of mixtures of 

MONT, FEXO and CET in the spectral range of 195-300 nm 

(106 points) were collected and fed to the system  

as model inputs. The concentration of the three above-

mentioned component in the samples were the target 

(measured) outputs of the network.  

 

Data pre-processing 

It is believed that neural network training can be made 

more efficient if certain pre-processing steps are 

performed on the raw input and target data. Randomizing 

and normalizing data are the most common practices of  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic representation of multi-layer feed-forward 

neural network architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Basic flowchart for designing artificial neural network 

model. 
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data pre-processing. Normalization procedure often 

makes the model more efficient as it prevents the learning 

algorithm from being confused by the unequal magnitude 

of different variables and consequently neglecting  

the variable with the smaller magnitude [28]. The data were 

scaled between -1 to 1 using the MATLAB function 

‘mapminmax’. The used equation is as follows: 

min

max min

x x
x̂ 2 1

x x

 
  

  

                                                 (1) 

where xmin and xmax are the minimum and maximum 

values of the unscaled dataset, xis the input value and x̂  

is the scaled input value. Other stages pertaining to the 

design of ANN model, including training and testing 

procedures, will be discussed subsequently in this paper. 

 

RESULTS AND DISCUSSIONS 

Spectral characteristics 

Fig. 4 shows electronic absorption spectra of MONT, 

FEXO and CET. As can be seen, the spectrum of each 

drug is highly overlapped with the others. Therefore, 

these compounds cannot be determined in the presence of 

each other by a uni-variate calibration procedure unless 

with previous separation. The multivariate calibration 

method can instead be applied for determination of each 

drug in the mixtures. All spectra were recorded in the 

region between 195 and 300 nm with 1.0 nm steps  

(106 points per spectrum). The same method was 

performed for samples in the test and unknown sets. 

 

PLS-1 method 

Calibration and validation 

In the first step to developing the PLS-1 model,  

a calibration set was built with a dataset of 36 samples, 

including binary- and ternary-component mixtures  

in order to take into account the different concentration 

ratios of analytes and to cover the range usually present 

in pharmaceutical samples. The combinations of 

concentrations of MONT, FEXO and CET in the 

calibration set is listed in Table 1. 

The full cross validation method suggested by 

Haaland & Thomas [29] was used for the accurate 

selection of the optimum number of factors. This 

consisted of removing one sample at a time from  

the calibration step and carrying out the calibration by  

the remaining samples. The concentration of the one sample  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Electronic absorbance spectra of MONT, FEXO and 

CET with a total concentration of 6 ppm (2 ppm each) in 

methanol. 

 

removed is expected with the achieved model. This step 

was repeated for each considered sample. The procedure 

can be repeated after fixing a different number of factors. 

Prediction Residual Error Sum of Squares (PRESS)  

was obtained from Eq. (2) and the best number of factors 

was selected in the minimum of PRESS values. In this 

equation, m is the number of samples in the calibration 

set and Ci,act and Ci,pred are the actual and predicted 

concentration of analyte in the th sample, respectively [30]. 

 
2

m
i 1 i,act i,pred

PRESS C C


                                    (2) 

Similarly, the Standard Error of Cross-Validation 

(SECV) can also be defined as: 

 
1 2

2
m
i 1 i,act i,pred

C C
SECV

m



 
 

  
 
 


                            (3) 

In order to determine the optimum number of factors, 

SECV was plotted as a function of different number of 

factors, as shown by Fig. 5. As observed in this figure, 

high cross-validation errors is observed in small numbers 

of factors. This error is significantly reduced by 

increasing the number of factors. The optimum number of 

factors was found to be 3 for MONT, 5 for FEXO and 8 

for CET at which SECV attained the least possible value. 

Afterwards, the developed PLS-1 model was applied to 

an independent test set including 15 artificial samples 

which were not used during calibration. The experimental 
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Table 1: Concentration of MONT, FEXO and CET in the calibration set. Concentration values are expressed as mg/L. 

Sample no. MONT FEXO CET Sample no. MONT FEXO CET 

Ternary mixtures 19 11 11 11 

1 12 12 12 20 11 11 3 

2 12 12 2 21 3 11 11 

3 2 12 12 22 3 3 11 

4 12 2 12 23 11 3 3 

5 2 2 12 24 3 3 3 

6 12 2 2 25 7 7 3 

7 2 12 2 26 7 11 7 

8 7 7 7 27 11 7 7 

9 7 7 2 28 7 3 7 

10 7 12 7 Binary mixtures 

11 12 7 7 29 4 4 - 

12 2 7 7 30 5 5 - 

13 7 2 7 31 6 6 - 

14 7 7 12 32 10 10 - 

15 6 5 7 33 7 - 6 

16 8 7 9 34 7 - 7 

17 10 9 11 35 11 - 8 

18 9 11 10 36 - 11 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Standard Error of Cross-Validation (SECV) vs.  

the number of factors in PLS regression. 

and predicted concentration of each analyte can be seen 

in Table 2. 

 

Analytical figures of merit 

Figures of Merit (FOM) determination is obviously  

an essential part in the validation of chemometric methods. 

Toward this end, FOM such as selectivity (SEL), 

sensitivity (SEN), analytical sensitivity (γ) and Limit of 

Detection (LOD) may be defined and applied to compare 

the analytical methods used in the present study.  

The Net Analyte Signal (NAS) for Analyte k (
*

k
r ) is defined  

as the part of the signal that is orthogonal to the signal of  

the interferences present in the sample [15]. Ranging from 0 to 1, 

SEL is a measure of how unique the spectrum of the 

analyte is compared with the other species. It requires 
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Table 2: Composition of test set and predicted values for MONT, FEXO and CET by PLS-1, WS-PLS-1 and ANN regression. 

Concentration values are expressed as mg/L. 

MONT FEXO CET 

Actual PLS-1 WS-PLS-1 ANN Actual PLS-1 WS-PLS-1 ANN Actual PLS-1 WS-PLS-1 ANN 

8.00 7.78 7.95 8.24 8.00 8.00 7.98 7.46 0.00 -0.14 -0.11 -0.23 

9.00 8.79 9.01 9.47 9.00 9.04 9.08 8.81 0.00 -0.04 -0.02 0.35 

3.00 3.38 3.22 2.60 0.00 0.30 -0.15 1.05 4.00 4.02 3.70 3.98 

4.00 4.15 4.02 3.48 0.00 0.26 -0.17 0.41 5.00 5.15 4.86 4.92 

12.00 12.12 12.03 11.90 0.00 -0.24 -0.05 -0.42 10.00 10.13 10.06 9.94 

0.00 0.04 0.01 0.25 12.00 11.62 11.52 11.77 12.00 12.00 11.93 11.61 

0.00 0.02 -0.02 0.32 10.00 9.50 9.64 9.99 10.00 10.07 10.03 10.16 

4.00 4.01 3.97 3.76 6.00 6.01 6.09 5.92 5.00 5.17 5.06 4.27 

5.00 5.35 5.32 5.40 4.00 3.90 3.88 3.59 6.00 5.99 6.06 5.90 

11.00 10.22 10.08 10.91 3.00 2.30 2.46 3.16 11.00 10.67 10.75 11.04 

3.00 2.87 3.00 2.85 11.00 9.96 10.16 10.76 3.00 2.85 2.93 2.79 

7.00 6.95 6.91 7.37 7.00 5.83 6.18 6.23 7.00 6.70 6.86 7.25 

3.00 3.16 3.13 2.71 7.00 5.73 6.02 6.31 7.00 6.87 6.79 7.05 

7.00 7.10 6.91 7.56 7.00 6.02 6.18 6.78 11.00 10.97 11.05 11.37 

2.00 2.39 2.35 1.55 2.00 2.78 2.42 3.09 2.00 2.38 2.11 2.47 

 

that the part of the total signal that is not lost due to 

spectral overlap, and can be defined in the multivariate 

context by resorting to NAS calculation [31]: 

*

k

k

s
SEL

s
                                                                     (4) 

where || || means the Euclidian norm of vector, sk is  

a spectrum containing analyte k at unit concentration and 

*

k
s  is its corresponding NAS [32]. The sensitivity 

determines the variations in the response as a function of 

the concentration of a particular analyte [31], and  

is stated by the following equation: 

*

k
SEN s                                                                     (5) 

The analytical sensitivity (γ), which is defined in 

analogy with univariate calibration, is the ratio between 

SEN and the instrumental noise (ε), according to Eq. (6): 

SEN
 


                                                                        (6) 

where ||ε|| is the amount of the instrumental noise. 

The value of ||ε|| may be estimated from the standard deviation 

in the NAS of several blanks. Concerning the limit of 

detection, the following simple equation has been 

proposed for its estimation [33]: 

*

k

3
LOD

s


                                                                    (7) 

In order to enhance both the predictive ability and 

sensitivity of the PLS-1 method, the wavelength selection 

approach was applied. The algorithm searches for the 

minimum error indicator (EI) as a function of a moving 

window, starting from the Net Analyte Signal Regression 

Plot (NASRP) for each sample [34, 35]. According to 

Skibsted et al. [36], it is generally expected that the  

non-related spectral variation is rather large in pharmaceutical 

spectroscopic applications and thus it is important to be 

removed. Towards this end, a region of most informative 

wavelength (sensors) has been selected to minimize  

non-modelled interferences. The optimum wavelength range 

was determined to be 264-300 nm for MONT, 217-260 nm 

for FEXO and 222-255 nm CET. 
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Fig. 6: Left panel: NASRP corresponding to FEXO using the calibration wavelength range 195-300 nm. Right panel:  

NASRP in the restricted sensor range of 217-260 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Standard Error of Cross-Validation (SECV) vs.  

the number of factors in WS-PLS-1 regression. 

 

As a typical example, an independent sample which 

was not used to make the calibration model was tested  

by the PLS-1 method. Fig. 6 shows the NASRP plots for 

the mentioned sample before and after applying wavelength 

selection methodology for FEXO. Fig. 6 (left panel) 

illustrates the NASRP for FEXO in the full spectral 

region of 195–300 nm. As observed, the data is highly 

distributed and linearity is not achieved, implying  

the presence of interferences which were not modeled 

during calibration. On the other hand, Fig. 6 (right panel) 

indicates that linearity is satisfactorily fulfilled  

in the restricted region of 217-260 nm, as suggested  

by the NASRP criterion. 

Similar to PLS-1 method, the optimum number of 

factors in WS-PLS-1 can also be determined by plotting 

SECV vs. the number of factors, as shown by Fig. 7.  

By moving from one factor to three, a drastic decline  

in validation error is realized for FEXO and CET, 

whereas the variation of that for MONT is moderate.  

It can be concluded that SECV of different components 

sooner converges to its minimum in WS-PLS-1 method 

comparing to PLS-1 method (see Fig. 5). 

In order to compare the prediction performance of the 

proposed WS-PLS-1 method with the earlier PLS-1 method, 

the developed WS-PLS-1 model was further simulated 

independently by a dataset of 15 samples. Table 2 lists 

the experimental and estimated content of MONT, FEXO 

and CET in these samples obtained by both methods. 

Comparing PLS-1 and WS-PLS-1, the agreement 

between the predicted data and the experimental results  

is higher regarding WS-PLS-1 method. It should be noted 

that the negative values seen in this table are actually 

denoting the zero amount of corresponding component 

(concentration) estimated by the model. 

 

Comparison of PLS and WS-PLS performances 

Table 3 shows several estimated FOM for MONT, 

FEXO and CET by PLS-1 and WS-PLS-1 models. 

According to Marsili et al. [15], analytical sensitivity  

is a measure which enables one to compare different 

analytical methods regardless of the specific technique, 

equipment, and scale employed. As observed by Table 3, 

the analytical sensitivity (γ) provided by WS- PLS-1  

was enhanced considerably for all three drugs compared 

to the former PLS-1 method. In respect of selectivities, 

the highest value corresponded to MONT which  

was achieved by PLS-1 method. In contrast, FEXO 

showed the highest selectivity among other components 

in WS-PLS-1 method. 
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Table 3: Analytical figures of merit of the spectrophotometric method by applying PLS-1 and WS-PLS-1  

regressions for MONT, FEXO and CET. 

 
PLS-1 WS-PLS-1 

Parameters MONT FEXO CET MONT FEXO CET 

No. of Factors 3 5 8 3 3 3 

SEN (AU*. L/mg) 0.25 0.06 0.04 0.05 0.06 0.05 

SEL 0.60 0.31 0.26 0.26 0.56 0.42 

γ (L/mg) 23 16 15 104 61 55 

LOD (mg/L) 0.128 0.185 0.203 0.029 0.049 0.054 

* AU is absorbance unit 

 

Table 4: Comparison of LOD (mg/L) with WS-PLS-1 regression described in this work with previously published works. 

 Limit of detection (mg/L) 

 This work Reported in literature 

MONT 0.029 0.293 [37] 0.1 [38] 0.009 [48] 0.003 [49] 0.01 [50] 0.2 [39] 0.094 [40] 
0.0052 

[51] 
0.075 [41] 

FEXO 0.049 3.007 [37] 0.01 [52] 
0.0125 

[53] 
0.12 [42] 

0.001 

[54] 
0.976 [43] 0.006 [55] 0.95 [44] 0.27 [45] 

CET 0.054 0.037 [56] 0.10 [57] 0.02 [58] 0.379 [46] 
0.0025 

[59] 
0.027 [60] 6.00 [47] 0.10 [45] - 

 

As can be seen in Table 3, while WS-PLS-1 method 

used less factors than PLS-1, it has improved LOD values 

almost four-fold. It can also be understood that the best 

LOD was obtained for MONT by both analytical methods. 

In order to challenge the detection performance of  

the proposed method, the LOD provided by WS-PLS-1  

in this work was compared with a number of studies which 

have been previously published regarding the determination 

of MONT, FEXO and CET. As shown in Table 4,  

the LOD offered by the present study for all three drugs  

is clearly below the average of those reported by other 

works which studied the determination of MONT [37-41], 

FEXO [37, 42-45], and CET [46, 47] indicating  

a very good LOD which was provided via WS-PLS-1 

method after selecting the appropriate wavelength range. 

 

ANN method 

In the second part of this work, the spectral data of 

each drug was used to develop a neural network model. 

For this purpose, the network parameters were specified. 

Among these parameters are; the number of hidden 

layer(s), number of neurons in each layer, transfer 

functions, training algorithm, performance function.  

In this study, one hidden layer with different number of 

neurons was tested with hyperbolic tangent sigmoid 

(‘tansig’) and Logistic sigmoid (‘logsig’) transfer 

functions. It was found that hyperbolic tangent sigmoid 

function provided the best fits to the data. 

In order to train the network, the absorption spectra of 

a set of 36 calibration data shown by Table 1 (the same as 

previously used by PLS-1 and WS-PLS-1 methods)  

was used as model inputs. Concentrations of the three 

pharmaceutical components in each sample was 

considered as model targets. Matlab function ‘mse’  

was utilized in order to measures the network's performance 

according to the mean-squared-errors (Eq. 8) and  

the network was trained using Levenberg-Marquardt 

(‘trainlm’) back-propagation training algorithm. 

 
2

n
i 1 i,pred i,act

1
MSE C C

n


                                     (8) 

In order to determine the optimum number of neurons 

in the hidden layer, a series of calibration was performed 

through several runs, in which the number of neurons  

was varied from 1 to 10. Each topology was run repeatedly 

to avoid random correlation due to the random initialization 
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Fig. 8: Standard Error of Cross-Validation (SECV) vs.  

the number of neurons in the hidden layer. 

 

of the weights [22]. The standard error of prediction 

committed by the cross-validation of the calibration set of 

each topology was calculated. As observed in Fig. 8,  

the optimum number of neurons in the hidden layer  

was found to be 2, 4 and 3 in the calibration of MONT, 

CET and FEXO, respectively. 

The developed model which was trained in the 

previous stage was further simulated by a test set of  

15 unknown data. The results obtained by ANN method 

is listed in Table 2 together with those predicted  

by the other methods investigated in this work and  

will be discussed subsequently. 

 

Comparison of the predictive abilities of proposed 

methods 

Once the optimal number of factors has been 

determined, the final calibration may be performed using 

all the calibration samples with the optimal number of 

factors (or neurons). As mentioned earlier, a set of 

independent test dataset of 15 samples which has not 

been used previously for calibration, was modeled by 

PLS-1, WS-PLS-1 and ANN methods. The predicted 

values of each component together with reference values 

can be seen in Table 2. Also, a residual analysis may be 

carried out by plotting absolute residual vs. the 

concentration of each analyte. Towards this end,  

the absolute residual was defined as the difference 

between actual concentration and the predicted value from  

a model. Fig. 9 demonstrates the residual values for  

the three drugs obtained by PLS-1, WS-PLS-1 and ANN 

models. As can be realized in these set of figures,  

the residual errors committed by WS-PLS-1 method  

are closely distributed around the zero-error line for all 

three components. Highest accuracies were obtained  

for prediction of CET with PLS-1 and WS-PLS-1 methods 

with all estimated concentrations close to the reference 

values. Prediction of FEXO seems to exhibit more 

deviations than the other components, however,  

this deviation between experimental and predicted values 

was mitigated by WS-PLS-1 method in comparison  

to the other regression models. In respect of MONT, 

model predictions are observed to be equally satisfactory 

given by each method. 

Table 5 shows a number of important statistical 

parameters such as the determination coefficient of 

prediction (R2
pred, Eq. 9), root mean square error of 

prediction (RMSEP, Eq. 10) and relative error of 

prediction (REP, Eq. 11).  

 

 

2
n
i 1 i,act i,pred2

pred 2
n
i 1 i,act

C C
R 1

C C






 







                                 (9) 

 
1 2

2
n
i 1 i,act i,pred

C C
RMSEP

n



 
 

  
 
 


                       (10) 

 

 

1 2
2

n
i 1 i,act i,pred

2
n
i 1 i,act

C C
REP% 100

C





 
 

  
 
 




                 (11) 

where Ci,act and Ci,pred is the actual and predicted 

concentration of a component in the i th sample, respectively. 

C  is the mean of actual concentrations in a particular 

set and n is the number of samples in the test set. 

This table also shows the values of the optimal 

number of factors and neurons used for both PLS-1 

methods and ANN in the calibration set. As can be seen 

Table 5, the predictive ability of PLS-1 method was 

clearly improved after selecting the optimum region of 

sensors. The results also indicate that predictions of PLS-1 

and WS-PLS-1 models for CET are in excellent agreement 

with experimental data, as high R2 values of 0.998 and 

0.999 was obtained for these methods, respectively.  

WS-PLS-1 also gave a lower RMSEP in all cases than 

PLS-1 and ANN methods. Looking carefully at Table 5, 
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Fig. 9: Residual errors of different methods vs. concentration plots for the three components of test set. 

 

it is understood that WS- PLS-1 method used less factors 

than PLS-1 and at the same time had a positive impact  

on the prediction accuracy for every component, however, 

this behavior was more pronounced in the case of FEXO. 

Based on the results, it can be deduced that WS-PLS-1 

method has successfully quantified the amount of each 

compound in the studied pharmaceutical samples. 

Therefore, WS-PLS-1 method may be used as a powerful 

chemometric tool in drug analysis applications combined 

with UV-Vis spectroscopy.  

CONCLUSIONS 

The present work studied the simultaneous 

quantification of MONT, FEXO and CET with the aid of 

UV-Vis spectroscopy combined with different 

chemometric techniques. In order to identify the most 

suitable chemometric method, various calibration models 

including PLS-1, WS- PLS-1 and ANN were developed 

and validated by an independent test set of drug mixtures. 

The cross-validation leave-one-sample-out procedure  

was applied in the present work to obtain the optimum factors 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

R
e
si

d
u

a
l 

0           2          4           6           8          10        12 

Concentration (mg/L) 

0           2          4           6           8          10        12 0           2          4           6           8          10        12 

ANN PLS-1 WS-PLS-1 

ANN PLS-1 WS-PLS-1 

ANN PLS-1 WS-PLS-1 

0           2          4           6           8          10        12 0           2          4           6           8          10        12 0           2          4           6           8          10        12 

0           2          4           6           8          10        12 0           2          4           6           8          10        12 0           2          4           6           8          10        12 

Concentration (mg/L) Concentration (mg/L) 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

5 

 

 

 

 
 

0 

 

 

 

 

 

-5 

R
e
si

d
u

a
l 

R
e
si

d
u

a
l 



Iran. J. Chem. Chem. Eng. Hassaninejad-Darzi S.K. et al. Vol. 36, No. 3, 2017 

 

92 

Table 5: Statistical parameters and optimum number of factors for calibration and test sets by PLS-1, WS-PLS-1 and  

ANN regression for three drugs. 

 
MONT FEXO CET 

Parameters PLS-1 WS-PLS-1 ANN PLS-1 WS-PLS-1 ANN PLS-1 WS-PLS-1 ANN 

Aa 3 3 2 5 3 4 8 3 3 

RMSEP 0.284 0.277 0.353 0.670 0.511 0.540 0.179 0.138 0.303 

R2
pred 0.993 0.994 0.991 0.966 0.982 0.978 0.998 0.999 0.994 

REP (%) 4.55 4.45 5.54 10.27 7.75 8.01 2.47 1.90 4.16 

 

during calibration. Performance of ANN was also 

optimized through manipulating different network 

parameters and architectures. It was found that PLS-1 and 

ANN methods exhibited satisfactory performances.  

In addition, applying wavelength selection methodology 

for PLS-1 model have had a positive impact on prediction 

performance of PLS-1 model. Several figures of merit 

such as LOD and analytical sensitivity were calculated 

and their values were significantly enhanced by WS-PLS-

1 rather than PLS-1 method. Specifically, LODs provided 

by WS-PLS-1 method were found to be 0.029, 0.049 and 

0.054 mg L−1 for MONT, FEXO and CET, respectively. 

The results indicated that WS-PLS-1 is capable of 

capturing the interactions between components with 

highly-overlapped absorption spectra with a good degree 

of accuracy. 
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