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A Dynamic Programming Solution to Solute Transport and
Dispersion Equations in Groundwater

M. Mirabzadeh® and K. Mohammadi?’

ABSTRACT

The partial differential equations for water flow and solute transport in a two-
dimensional saturated domain are rendered discrete using the finite difference technique;
the resulting system of algebraic equations is solved using a dynamic programming (DP)
method. The advantage of the DP algorithm is that the problem.is converted from solving
an algebraic system of order NC(NL-1) xNC(NL-1) into one of solving a difference equa-
tion of order NCxNC over NL-1 steps and involving NL-1 matrix inversions of order
NCxNC. The accuracy and precision of the solutions are shown by comparing the results
with an analytical solution and calculation of mass/the balance. In addition, the perform-
ance of the DP model was compared with the results of the MOC model developed by US
Geological Survey. In all cases, the DP model showed good results with sufficient accu-

racy.
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INTRODUCTION

In Iran, groundwater is an important source
of irrigation water. In fact, it fulfills more
than 50 percent of the country’s.total irriga-
tion needs. Groundwater has'played amajor
role in increasing food-production and
achieving food security. Groundwater, a re-
newable source of water, has the remarkable
distinction of being/a highly dependable and
safe source of water supply for agriculture,
domestic and industrial needs. Increased use
of chemical fertilizers coupled with im-
proper water management practices has re-
sulted in the deterioration of groundwater
quality in several parts of the country.
Every year, amost 17.5 BCM of agricultural
wastewater is returned to aguifers which
account for amost 35% of groundwater ex-
traction (1). This recycling of water causes
secondary salinization in irrigated areas.

Solute transport models are being used to

study groundwater quality and water pollu-
tion in the subsurface. Several methods have
been used to generate a better and faster
model, for example: Reddell and Sunada
(20); Chatwal et al. (6); Cheng and Hodge
(7); Gray and Pinder (11); Grove (12);
Huyakorn et al. (13); Konikow and Brede-
hoeft (14); and Bouhroum and Bai (5). In
addition, certain advances in analytical solu-
tions have been made by some other re-
searchers such as Basha and El Habel (2)
and Sim and Chrysikopoulos (21). They
have developed one-, two-, and three-
dimensional analytical solutions for solute
transport in saturated, homogeneous porous
media. However, numerical algorithms are
still the only solution to complex problems
in the field of solute transport in groundwa-
ter.

In this paper, a numerical model to solve
the solute transport and dispersion equation
in groundwater is developed. The purpose of
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the simulation model is to compute the con-
centration of a non-reactive dissolved
chemical species in an aquifer at any given
time and place. The partial differential equa-
tions are made discrete using the finite dif-
ference technique and the resulting system
of algebraic equations is solved using a dy-
namic programming (DP) method which is
used here for the first time. Bellman (4),
Callins (8) and Collins and Angel (9) ap-
plied this technique to the solution of para-
bolic and dliptic partial differential equa-
tions. A dynamic programming method was
then used by Mirabzadeh (16, 17, 18, 19) to
solve the flow equation in two and three di-
mensions for heterogeneous and anisotropic
aquifers. The higher speed of this agorithm
compared with the other matrix solutions
such as Jacobi, Guass-Sidel, and Successive
over Relaxation (SOR) has been the motiva-
tion for using the method in this research (9,
17).

Convective transport, hydrodynamic dis-
persion, and chemical reactions are the three
main processes in solute transport. Among
these, the first two phenomena are more im-
portant in most cases and those have been
considered in this model. Because convec-
tive transport and hydrodynamic dispersion
depend on the velocity of groundwater flow,
the solute transport eguation is a. nonlinear
equation and must be considered in conjunc-
tion with the groundwater flow equation.
The computer program  solves two simulta-
neous partial differential equations- one is
the groundwater flow:equation and the sec-
ond one is the solute transport equation.

A solution to the solute transport equation
in two dimensions has been obtained using a
dynamic programming technique. In this
paper, the analytical solution (2) and the
method of characteristics were used to verify
the developed agorithm. The method of
characteristics was originally applied to
transport in porous media by Garder et al.
(11) in order to calculate miscible displace-
ment in a reservoir simulation. This method
was later implemented in a two-dimensional
solute transport model by Konikow and
Bredehoeft (14); their code is commonly
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referred to as MOC. The method of charac-
teristics uses a conventional particle tracking
technique for solving the advection term.
For more detail about this method, one can
refer to Zheng and Bennett (22).

Theoretical Development

In a Cartesian coordinates, the governing
equation for two dimensiona fluid flow in a
saturated porous medium by using the conti-
nuity equation and Darcy’s low, is:

0 oh) o oh oh
Ty — |+ =| T, — |=S5—+
ax[ e 6xj+8y( WayJ ot a

where hiis hydraulic head [L]; tistime [T];
g is source/sink term [L/T] with a positive
sign for the source and negative for sink
terms; S is storage coefficient; and T, and
Tyy are transmisivity [L%T] in x and y direc-
tion, respectively. Transmisivity is defined
asfollows:

|.TiJ'J= bl.K i (2
where b is the saturated thickness of the ag-
uifer [L]; and [Kj] is the hydraulic conduc-
tivity tensor. It is assumed that the coordi-
nate system is oriented with the conductivity
tensor, so that Kj;= 0 for i #]j.

The solute transport equation describing
convection and dispersion of a nonreactive
dissolved chemical speciesin groundwater is
asfollows (14):
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where C is the concentration of the dissolved
chemical species[M/L?]; C'isthe concentra-
tion of dissolved chemical in a source or
sink fluid [M/L?]; n. is the effective poros-
ity; Vx and Vy are Darcy’s velocities in X
and y directions, respectively [L/t]; and D;;
is the coefficient of the hydrodynamic dis-
persion [L%T]. The dispersion coefficient for
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two-dimensional flow in an isotropic aquifer
may be written as (4):

= (Vx )2 +a (Vy )2 (4
XX L ‘V‘ T ‘V‘
2
w = O (VX )2 L (Vy) (5
VI VI

V.V, (6
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where o, and or are the longitudinal and
transverse dispersivities of the aguifer, re-
spectively [L]; and |V | isthe maghitude of
the velocity [L/T].
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Finite Difference Formulation

The two-dimensional model presented here

is based on an implicit finite difference
scheme using the dynamic programming
solution.

Flow Equation

The compact finite difference form . of
eguation (1) isgiven by:

WX 1y sy + WX NG + WG PG

+ Wy )Nty = Weg shg ) = RE,
(7

i=2,...,NL-1
j =JD(),..., K@)
wherei, j, k are, respectively, the indicesin
the x, y, and 4ime dimensions and JD(i),
JF(i) are.the column numbers at the begin-

ning and the end of each row, respectively.

Ay
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Solute Transport Equation

Using the finite difference discretization
approach, equation (3) can be written as:
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where  J= 0 [h(i—l,n - h(i,J)]k <0 and
=1 [h(i—l,n - h(i,j)]k >0

a so the same thing for o, as, and oy.
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Dynamic Programming Solution

In this section, the proposed relationships
for solving the resulting algebraic equations
are presented. In order to solve equation (7)
subject to the boundary conditions, we de-
fine the vectors H;, Wi, and R’; with the di-
mension of N(i)= NC-2 for each row:

H = h?ff) W, = [Wxa,j)h(ki,j)
R = R(ki,j)
i=2,NL-1 j=JD()...JF(3)

Using the above definitions, equation (7)
may be rewritten as follows:

FipHay tFoHay —GoHp + W =R,

i=23..,NL-1
(11

Vectors Hpy, Hinyy, and Wi are known from
the boundary conditions, F; and F.,) arethe
diagonal matrices, and G is.a tridiagonal
matrix with the components defined by the
coefficients of the system of eguations (7) as
follows:

Fi =diag(f) f=WX;, o
WC .y =]
Wy, ., i1-j=1
Gy =194y Gip= e
() [ (:l)] (M) _Wy(i,j) j—i =1
0 otherwise
Using dynamic programming, eguation

(11) may be cast in the following form:
Hi =AiyHay + By (12

Solving (11) for Hgy and using H¢.yy) = A
Hg + B gives the following equation:

-1
H(i) = F(ifl)(G(i) - F(i)A(i)) H(ifl)

+ (Gm - F(i)A(i))_l(EnB(i) + W~ Rin)
(13
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Comparing (12) and (13) yield the follow-
ing recurrence relations:

A(i—l) = F(i—l)(G(i) - I:(i)A(i)yl (14

By =A +W-R,) (15

FY(F,B "

(i-1) (=07 i1\ () ()

The initial conditions for (14) and (15) are
derived from (12) setting i = NL
Aney =0 Bne-y = Hne-g

Then, the backward solution of (14) and
(15) will give the matrices A and the vec-
tors Bg). Equation (12) may now be solved
for H(i) by utilizi ng A(i) and B(i).

Equation (9) can be solved in the same
way. In each time step, after calculating the
dispersion coefficient tensor, matrices Ac
and vectors B¢y .and Cgy will be computed in
a similar-procedure to A ,(14), B ,(15),
and Hg ,(12), respectively.

RESULTS AND DISCUSSION

In order to verify that the numerical model
is solving the governing equations correctly,
it is necessary to compare the results to
known solutions or results from other mod-
és. The solution developed by Basha and El
Habel (2) was used to verify the model
against the analytical solution. A one
dimensional solute transport in saturated
mediain x direction was solved analytically.
Table 1 shows the parameters that were used
in this solution. Figure 1 shows the compari-
son between the analytical solution and DP
model. The mean absolute error was 0.8 per-
cent and the root mean square error between
two methods was 0.03 percent which shows
good agreement between results.

Table 1. Parameters used in the analytical
solution.

Parameter Value
AX 25m
Length (L) 100 m
Initial Concentration (Cy) 0 myg/lit
Velocity (V) 0.25m/s
Dispersivity (o) 10m
Injected Mass (C') 1 mg/lit
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Figure 1. Comparison between the analytical-solution and the DP model.

In addition, the model was compared to the
results abtained from the MOC model (14).
A mass balance test was used as a measure
of the numerical accuracy of the solutionsin
DP and MOC comparisons. Here, the model
uses, as the mass residua, M,, a criterion
compared with the difference between the
initial mass, M;, and the net mass flux, N;.
100M, (16
M, —N,

Error =

where'M, = AMg - N and AMg is the change
in mass stored in the aquifer [M].

One recharge well and one extraction well
were considered in a 2192x2466 m domain.
The left and right sides of the domain were
impermeable and the northern and southern
sides of the domain had constant head
boundaries with a 22.5 m and 30 m water
elevation, respectively. Figure 2 shows the
result for test problem number 1 and the fol-
lowing parameters were used in the compu-
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Figure 2. Comparison of the computed concentration between the DP and MOC models
after 30 months for test problem number 1.
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Figure 3. Mass balance error for test problem 1.

tations:

K = 1.5x10° m/s AX=Ay =274m
b=6.1m S=03
a,=305m C' = 220 mg/lit
oT / ol =0.3 Co =0.0 mg/llt

q(3,5) =0.028 m*/s
q (6, 4) =-0.028 m¥/s

Figure 3 presents the mass balance error.for

the dynamic programming method and
method of characteristic.

In test problem 2, the effect of dispersion
was eliminated (o, = 0.0) and other parame-
ters remained the same as in test problem
number 1. Again, Figure 4 shows the results
of the solute concentration after 2 1/2 years
and Figure 5 shows the mass balance errors
for this period.

DP Model
MOC Model

2

3

4

5

Figure 4. Comparison between the computed concentrationsin test problem 2.
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Figure 5. Mass balance error in test praoblem 2.
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