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Evaluation of Physiological Indices, Yield and its Components
as Screening Techniques for Water Deficit Tolerance in

Oilseed Rape Cultivars

B. Pasban Eslam'

ABSTRACT

Water deficit is an important factor limiting crop production worldwide. Drought stress
can be managed by improving the availability of soil moisture conserved and selecting
drought tolerant genotypes. Several physiological indices including stomatal conductance
(K)), relative water content (RWC), leaf temperature (T}) and crop temperature stability
(CTS) along with yield, its components and seed glucosinolate content were measured in
five oilseed rape genotypes of Brassica napus L. (Talayeh, Fornax, Okapi, Regent X Cobra
and SLM046) under non-stress and water deficit conditions imposed from late flowering
(80% flowering) to maturity in a loam soil at the Research Center for Agriculture and
Natural Resources of East Azarbaijan, Iran (46°2°E, 37°58’N) over two successive years
(2001-2003). According to the significant decrease of K;and RWC and significant increase
of T, caused by water deficit in both years, it seems that, these indices could reflect the
drought effects occurring from late flowering in oilseed rape crops. K, and T, values also
differed significantly among genotypes and therefore these indices could be used to screen
oilseed rape genotypes for tolerance against late season drought. Water deficit
significantly decreased the number of pods per plant and seed yield in Talayeh and
Fornax. Significant positive correlation was observed between these traits during both
years (r=0.88 and 0.89, respectively). It seems that when water deficit occurs from late
flowering, decreased seed yield mainly via decreasing number of pods per plant is
observed in oilseed rape..Okapi and SLM046 showed lower T, value (30.6 and 29.7°C,
respectively), a higher K; value'(0.350 and 0.355 cm s! respectively) and seed yield (5,241
and 5,245 Kg ha’, respectively) under the water deficit condition. Okapi and SLM046 are
therefore more suitable for cultivating in areas with late season water deficit stress.

Keywords: Leaf temperature, Oilseed rape, Relative water content, Seed yield, Water deficit.

INTRODUCTION

Water deficit is a major limiting factor in
crop production ~ worldwide. In most
cropping situations, soil moisture deficit
builds up during the late phase of crop
growth when many field crops are
particularly sensitive. Oilseed rape is no
exception to this (El Hafid ef al., 1998). The
most critical time for water supply is during
the flowering and seed filling stages
(Richards and Thurling, 1978). Since yield
and drought tolerance are controlled at

separate loci (Morgan, 1984), it may be
possible to identify and transfer the
physiological traits responsible for drought
resistance to high-yielding and
agronomically acceptable cultivars (Kumar
and Singh, 1998). Interspecific and
intraspecific  variation were found in
Brassica napus L. for the response to
drought (Richards and Thurling, 1978; Rao
and Mendham, 1991) and several
physiological ~ characters  which  may
contribute to continued growth under water
deficit stress have been identified. For
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Table 1. Weather records for two growing seasons in Khosroshahr Station.

Mean Rainfall Relative
Temperature (°C) (mm) Humidity (%)
Month 2001 2002 2003 2001 2002 2003 2001 2002 2003
April - 9.7 8.9 - 79.9 71.9 - 61.4 62.6
May - 13.1 14.7 - 61.6 13.2 - 61.8 51.1
June - 20.7 19.9 - - 14.3 - 38.5 54.8
July - 25.1 273 - - - - 389 42.8
August - 254 - - - - - 389 -
September 223 22.3 - - - - 31.8 404 -
October 17.5 18.5 - 5.3 4.5 - 39.0 474 -
November 53 10.3 - 523 12.9 - 66.1 59.6 -
December 3.1 0.4 - 26.6 22.5 - 78.2 81.0 -
January 1.8 -1.5 - 11.6 7.8 - 71.6 719 -
February - 1.4 - 0 14.6 - 74.0 71.3 -
March 6.9 4.1 - 324 39.8 - 61.0 65.8 -
The values are related to experimental periods.
Table 2. Soil characteristic in the experimental field.
Soil depth FC “ (%) WP * (%) AWC “ (%)

(cm) 2001/02 2002/03 2001/02 2002/03 2001/02 2002/03

0-25 21.5 22.0 12.0 13 9.5 9.0

25-60 22.5 22.5 12.0 12.5 10.5 10.0

60-90 16.0 16.5 9.0 9.5 7.0 7.0

“ Field capacity; ” Wilting point, © Available water capacity.

example, osmotic adjustment is considered
to be an adaptive trait by which an increase
in the solute content of cells can lead to
maintenance of turgor and ‘turgor-related
processes at low water potentials (Kumar et
al., 1984; Singh et al.,~1990; Kumar and
Elson, 1992; Kumar and Singh, 1998). As
water deficit develops, stomata close
progressively, transpiration decreases and
canopy temperature rises:Kumar er al.
(1984), Singh et al. (1985) and Kumar and
Singh  (1998) . have » reported close
associations between osmotic adjustment
and both stomatal conductance and canopy
temperature in oilseed Brassica species.
Singh et al. (1985) stated that transpirational
cooling (canopy temperature minus air
temperature) could effectively be used as a
technique to screen Brassica genotypes for
drought tolerance under a receding soil
moisture condition. Pasban Eslam et al.
(2000) reported that late season drought in

temperature) and they indicated significant
positive correlation of crop temperature
stability with stomatal conductance, water
potential, relative water content and seed
yield. They suggested that this index may be
more accurate than leaf temperature. Kumar
and Singh (1998) showed a significant
correlation among seed yield with osmotic
adjustment, transpirational cooling and
stomatal conductance in oilseed Brassica
species. Lehman et al. (1993) studying
bentgrass clones suggested that relative
water content would better predict
maintained growth under increasing water
deficit than the simple measure of leaf water
pontential.

Richards and Thurling (1978) found that
late season drought lead to abortion of more
than 50 percent of the pods in B. napus L.
and B. rapa L., however, the remaining pods
had more and heavier seeds. Jensen et al.
(1996) reported that water deficit stress

oilseed rape, reduce crop temperature occurring during both the vegetative growth
stability ~ (differences  between  daily and pod filling stages in oilseed rape,
minimum and maximum air to crop decreased number of seeds per m’, oil yield,
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Table 3. Mean of traits measured on oilseed rape genotypes during 2001-2003.

K, a RWC"® T, ¢ CTS“
Stress level Genotype (cms™) (°C)
2001-2002
Non-stress Talayeh 0.52 0.81 26.9 1.17
Fornax 0.52 0.78 27.3 1.26
Okapi 0.63 0.82 27.5 1.26
RegentX Cobra 0.49 0.82 27.1 1.22
SLMO046 0.72 0.83 27.6 1.17
Stress Talayeh 0.25 0.70 30.9 1.13
Fornax 0.25 0.66 30.5 1.16
Okapi 0.34 0.63 30.4 1.12
Regent X Cobra 0.22 0.65 31.1 1.11
SLMO046 0.39 0.66 304 1.15
LSD(0.05) * 0.054 0.108 0.497 0.093
2002-2003
Non-stress Talayeh 0.56 0.87 26.5 1.16
Fornax 0.53 0.84 27.3 1.26
Okapi 0.73 0.89 27.0 1.25
Regent X Cobra 0.50 0.86 26.8 1.23
SLMO046 0.62 0.88 27.2 1.18
Stress Talayeh 0.27 0.72 31.7 1.15
Fornax 0.24 0.82 30.8 1.40
Okapi 0:36 0.83 30.7 1.14
Regent X Cobra 0.24 0.79 30.8 1.12
SLMO046 0.32 0.79 29.0 1.24
LSD(0.05) 0.054 0.076 0.677 0.253

¢ Stomatal conductance;  Relative water content; © Leaf temperature, d Crop temperature

stability, ¢ Least significant difference.

harvest index and seed yield. Irrigation after
anthesis in oilseed rape increased the
number of seeds per pod and harvest index
and thus gave better seed yield (Rao and
Mendham, 1991).

The glucosinolate content of seeds is an
important quality attribute of oilseed rape,
and it is increased by drought (Jensen et al.,
1996). Thus the correlation of seed
glucosinolate ~ with physiological indices
may be useful to select for drought tolerance
varieties having low seed glucosinolate
under stress.

In spit of several reports about the drought
stress effects on B. Rapa L. and B. juncea L.
genotypes especially in temperate and warm
areas, limited studies have reported on cold
tolerant fall oilseed rape genotypes. Also
late season drought is the main challenge
against development of fall oilseed
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cultivation in cold areas of Iran. The
objectives of this study were to evaluate the
physiological indices in relation to the
screening of cold tolerant oilseed rape
genotypes for drought tolerance and to study
yield and its component in B. napus L.

genotypes under water deficit stress
occurring during seed filling stage.
MATERIALS AND METHODS

The experiment was carried out at the
research farm of Research Center for
Agriculture and Natural Resources of East
Azarbaijan, Iran (46°2’E, 37°58'N) over two
years (2001-2003). The prevailing weather
characteristics during the growing season are
summarized in Table 1. The experiment was
factorial based on a randomized complete
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block design with three replications. Five
genotypes productive and suitable for cold
areas of Iran -Talayeh, Fornax, Okapi,
RegentxCobra and SLM046- were evaluated
under non-stress and water deficit conditions
in a loam soil. Water stress was applied on
MAD (mean allowable depletion). Plants
were irrigated at 25 and 40 percent available
soil water depletion in non-stress and
stressed plots, respectively (Table 2). The
stress was imposed from late flowering
(80% flowering) to maturity. To prevent
precipitation on stressed plots, polyethylene
rain shelters were used during rainy periods
(one time for 2 hours during the first year).
The plot size was 5%2.1 m seeds were sown
at the bottom of furrows in a 30+60 cm
system (one pair of rows in each furrow with
30 cm spacing, and 60 cm spacing between
two paired rows) on 11 September. Plants
were thinned to a spacing of 10 cm within
rows, four weeks after sowing. Crop
management practices were operated as
needed during the growing season.

The youngest fully-expanded leaves were
used for various measurements and (the
characteristics were measured five “days
from late flowering (26 May) until leaf
senescence (20th and 26th June for stress
and non-stress plots, respectively. Stomatal
conductance (K;) was determined with an
AP, prometer (Delta-T Devices, UK).
Relative water content (RWC) was obtained
by floating the leaf discs (3 discs from each
leaf with a 20 mm diameter) on distilled
water for 4 hours at 5°C under dim light.
The turgid = weight (TW) was then
determined after floating, and the dry weight
(DW) after the samples were dried for 24
hours at 80°C. Fresh weight (FW), TW and
DW were used to calculate RWC as RW(C=
FW-DW/TW-DW (Jensen et al., 1996;
Lazcano- Ferrat and Lovatt, 1999). A hand-
held infrared thermometer (Class 2, Testo,
Germany) was used to measure leaf
temperature (T)). For this characteristic ten
measurements were taken on each plot and
averaged for statistical analysis (Ray et al.,
1998). We used the following relationship to
determine crop temperature stability (CTS)
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as CTS= Ta(max.) — Ta(min.)/Tc(max.)-
Tc(min.), where Ta(max.)-Ta(min) and
Tc(max.)-Tc(min.) are the differences
between maximum and minimum air and
crop leaf temperatures a during 24 hour
period, respectively (Pasban Eslam et al.,
2000). Measurements of K;, RWC and T,
were made at 1,200 to 1,400 hours when
Brassica species tend to show the greatest
genetic variability in response to drought
stress (Singh et al., 1990).

Finally, the seed yield, its components and
the percentage of seed oil were measured.
Also, seed /glucosinolate content was
determined by high performance liquid
chromatography (Kaushik and Agnihotri,
1999).

Statistical “evaluation of the data were
performed using the MSTAT-C and SPSS
software packages.

RESULTS

Leaf Traits

Water deficit decreased K; and RWC and
increased T; significantly in all genotypes
over two years. However, stress significantly
decreased CTS in the first year. Among the
genotypes, Okapi and SLMO046 showed
higher amounts of K; in both irrigation
treatments and years. The lowest values of
leaf temperature under a stress condition
belonged to these genotypes in both years.
SLMO046 showed the lowest increase of T
affected by drought. Differences among the
genotypes for K, and T, were significant, but
not for RWC (Table 3).

Yield and Yield Components

Water deficit imposed from late flowering
to maturity significantly decreased the
number of pods per plant and seed yield in
Talayeh and Fornax in both years. Water
deficit significantly decreased the 1,000-
seed weight, seed oil percentage and harvest
index during 2001-2002. Genotypes were
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significantly different in terms of the
number of pods per plant, number of seeds
per pod and 1,000-seed weight in 2001-2002
and seed oil percentage in both years. Okapi
and SLM046 emerged a higher number of
pods per plant and seeds per pod in both
irrigation treatments in 2001-2002 (Table 4).
The highest number of pods per plant
belonged to Fornax in both irrigation
treatments in 2002-2003. In all water
conditions and years, RegentX Cobra had the
highest percentages of seed oil (Table 4).
Okapi and SLMO046, especially under water
deficit, showed the highest seed yields
among genotypes.

Correlations between Traits

Correlations between K;, RWC and T, in
both years and between these traits and CTS
in 2002-2003 were significant (Table 5).
Seed yield was positively correlated with K|
and RWC and negatively With T,. Seed
glucosinolate  content was negatively
correlated with K, and positively with T} in
2001-2002. The correlation coefficient for
the number of pods per plant with seed yield
was both positive and significant (Table 5).

DISCUSSION

Since K; and RWC were decreased and T,
was increased significantly by water deficit
stress in both years (Table 3), it seems that
these indices. could reflect the stress effects
occurring from late flowering on the oilseed
rape crop. K; and T, significantly differed
among genotypes (Table 3). Okapi and
SLMO046 had higher amounts of K; and
lower amounts of T, under water stress
during two years (Table 3). Both genotypes,
especially under the water deficit condition,
produced the highest seed yield (Table 4).
Therefore K; and T; could be used to screen
oilseed rape genotypes for tolerance against
water deficit during the seed filling stage.
The results showed a significant correlation
between K;, RWC and T, in both years
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(Table 5); Pasban Eslam et al. (2000)
reported a similar correlation in B.napus L.
and B.rape L. Since the correlation of seed
yield with K; and RWC was positive and
significant and its correlation with T, was
negative and significant (Table 5), it seems
that screening the oilseed rape genotypes by
these characteristics may give rise to higher
yields under a drought stress environment.
Kumar and Singh (1998) also reported a
significant correlation of seed yield with
osmotic adjustment, transpirational cooling
and K, in oilseed Brassica species. In our
study seed glucosinolate content was
negatively correlated with K, and positively
with T, in 20012002 (Table 5). Thus,
selection of oilseed rape genotypes by these
indices;” may- also select for low seed
glucosinolate under drought conditions.
Singh cet7al. (1985) and Kumar and Singh
(1998) suggested that transpirational cooling
could be used to screen large numbers of
germplasm lines of Brassica species for
drought tolerance. Golestani Araghi and
Assad (1998) reported that T, and stomatal
resistance are beneficial drought resistance
indicators in wheat. It has been revealed
more accurately that RWC predicts the
growth maintained under increasing water
deficit than the simple measure of water
potential in Bentgrass (Lehman et al., 1993).
El Hafid et al. (1998) indicated that stomatal
resistance, RWC and greater osmotic
adjustment are possible measures to
determine the drought resistance of a spring
durum wheat cultivar.

In the present study, water deficit during
the seed filling period significantly
decreased CTS only in first year (Table 3),
and there were no significant differences
among genotypes for CTS. However, Pasban
Eslam et al. (2000) noted that CTS which
reflects crop temperature stability under
daily air temperature alterations, and higher
stability of crop temperature under drought
periods, could be an indicator of water
absorption and the evaporative ability of a
plant under stress condition. To obtain more
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reliable results, however, it is better to
evaluate a large number of B.napus L.
genotypes under stress conditions over
several seasons.

Since water deficit significantly decreased
the number of pods per plant and seed yield
(Table 4), and there was a significantly
positive correlation among these traits
(Table 5), it seems that occurring water
deficit from late flowering, decreases seed
yield mainly via decreasing the number of
pods per plant in oilseed rape. Limitation of
carbohydrate supplies to pods can lead to
pod abortion in oilseed rape during the late
flowering and pod filling stages (Habekotte,
1993). Drought occurring at flowering stage,
significantly increases the rate of pod
abortion, thus decreasing final seed yield in
soybean (Liu et al., 2003; 2004). Elias and
Copelan (2001) reported that weather
conditions, especially precipitation, affected
both the initiation of pod formation and the
duration between pod formation and
maturity in oilseed rape. Richards and
Thurling (1978) indicated that late season
drought could lead to abortion of more than
50 percent of pods in B. napus L. and B.
rapa L., however remaining pods had more
and heavier seeds. Results showed that water
deficit significantly decreased the 1,000-
seed weight, seed oil percentage and harvest
index during 2001-2002 (Table 4). Jensen et
al. (1996) revealed thatwater deficit stress
occurring during both vegetative growth and
pod filling stages in oilseed rape, decreased
the number of seeds per m?, oil yield,
harvest index and:seed yield. Findings about
the adverse effects of drought on 1,000-seed
weight, harvest index and seed oil percent in
oilseed rape are reported (Richards and
Thurling, 1978). It seems that when the plant
growth stage that is confronted with drought,
the stress level and its duration are usually
the main factors  affecting those
characteristics. Water deficit stress increased
seed glucosinolate (Table 4), but the
amounts were always below acceptable
levels (20u mol g") in terms of European
Union Standards for marketing oilseed rape
(Jensen et al., 1996).
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Among the genotypes Okapi and SLM046
had higher and lower values of K| (in both
irrigation patterns) and T, under stress
conditions, respectively (Table 3). These
genotypes demonstrated higher amounts of
pod per plant and seeds per pod in both
irrigation conditions in 2001-2002 (Table 4).
Finally Okapi and SLMO046, especially
under water deficit, had the highest seed
yield (Table 4). Therefore among the studied
genotypes, Okapi and SLMO046 are more
suitable to cultivation in areas with late
season water deficit.

This study .demonstrated the need for a
further assessment of water deficit tolerance
mechanisms. in oilseed rape with clear
drought cycles and measurements at specific
stages of crop growth, using a suitable range
of genotypes. An economically viable
oilseed rape-line to extend the crop rotation
in dryer cropping areas appears possible,
given the wide genotypic variation available.
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