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Development of Reservoir Operation Policies Using Integrated

Optimization-Simulation Approach

B. Zahraiel, and S. M. Hosseini>*

ABSTRACT

This study is focused on developing an integrated optimization-simulation based genetic
algorithm model (IOSGA) to develop the operational policies for. a multi-purpose
reservoir system. The objective function of the optimization model is considered to be a
linear function of Reliability (Rel), Resiliency (Res), and Vulnerability (Vul) of the river-
reservoir system. Genetic Algorithm (GA) is employed to solve the optimization model in
which the coefficients of reservoir operation policy equations are considered as decision
variables. These coefficients are formulated in the form of fuzzy numbers to be able to
capture the variations in releases and in water demands. Due to significant variations of
agricultural water demands during different months-and years, a water demand time
series is considered as one of the inputs of the optimization model. Zayandeh-Rud River-
reservoir system, in central part of Iran, is considered the case study. The results of the
proposed approach are compared with those of the classic three cyclic algorithm in which
the reservoir releases are the decision variables of the optimization model and the IOSGA
model in which the coefficients of reservoir operation policies are considered to be classic
(non-fuzzy) numbers. The results of the study indicated that the developed algorithm can
significantly reduce the time and costs of modeling efforts and the run-time of the GA
model, while it has also improved. the overall performance of the system in terms of Rel,
Res, and maximum Vulnerability (Vul,,,) and the coefficient of efficiency (CE) and
standard error (SE).

Keywords: Genetic algorithm, Reliability, Reservoir operation optimization, Resiliency,

Vulnerability, Zayandehsrud Reservoir.

INTRODUCTION

Development of optimization and
simulation models for defining reservoir
operation policies has been the focus of
attention’ of . researchers for many years.
Simonovic et al. (1992) and Labadie (2004)
reviewed the state of the art in the field of
reservoir operation optimization. Among
different optimization methods, genetic
algorithms (GAs) represented efficient and
robust search methods for non-linear
optimization problems and have been quite
successfully applied to a number of reservoir
operation optimization problems (East and

Hall, 1994; Wardlaw and Sharif, 1999;
Chang et al., 1998; Chang et al., 2005).
Oliveira and Loucks (1997) proposed a GA
optimization model to derive multi-reservoir
operation policies, taking into account the
information needed to define both system
releases and individual reservoir storage
targets.

In most of the previous studies, a three-
cycle algorithm has been employed for the
development of reservoir operation policies.
This  algorithm  cycles  through a
deterministic or stochastic optimization
model, a multiple regression analysis, and a
hydrological simulation. In this process, the
optimal releases, obtained from the
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optimization model which determines the
optimal reservoir release time series, are
regressed to determine the monthly
operating rules as a function of actual or
forecasted inflows to the reservoir and the
extent of water storage in the reservoir. In
this approach, reservoir releases or storages
are usually the decision variables of the
optimization model.

Many research workers applied multi-
cycle algorithms to find the optimal
operation policies for river-reservoir
systems. Young (1967) derived operation
rules using simple and multiple linear
regressions in which reservoir releases were
estimated as based on inflow and reservoir
storage. Bhaskar and Whitlatch (1980)
considered a quadratic loss function and
derived monthly releases through regression
analysis by finding the relationship between
optimal releases as input, and response
variable to specified state variables of a
system as predictors. Karamouz and Houck
(1982) developed reservoir operation rules
by deterministic optimization, using the
DPR model which had an algorithm based
on deterministic dynamic programming with
a regression analysis. They employed. a
hydrological simulation model to asses.the
performance of the system. Karamouz et al.
(1992) defined operation rules by coupling
the regression analysis ~and real-time
simulation with the optimization routine.

The major shortcoming with the three-
cycle algorithms is that the optimization
loop does not get any. feedback from final
results of hydrological - simulation which
shows the actual performance of a system
using reservoir operating rules. Therefore,
however the optimized series of releases and
reservoir storages might show a good
performance of a system, improper form of
the operation policies might result in low
efficiency of the overall modeling efforts.
Another problem with using such search-
based methods as GA in this type of
optimization problem is the run-time and
convergence speed. Selection of monthly
releases or reservoir storages as the decision
variables increases the population size and
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run-time of the model significantly and in
many practical studies, it becomes needed to
start with a proper initial solution, which is
not easy to find either.

To tackle these shortcomings, in this
paper, an integrated approach has been
developed in which the coefficients of the
operation policies are taken as the decision
variables of the optimization model. For this
purpose, a model is developed which is
capable of carrying out all the three cycles
of the previous approaches namely: reservoir
operation optimization; regression analysis,
and hydrological simulation. This model
which is abbreviated as IOSGA in this paper
has helped. in significantly reducing the
needed runtime. of the modeling efforts and
improving-the overall performance of the
operation policies. Figure 1 shows the
general frameworks of the three-cycle
algorithm and the IOSGA model.

Overview of the Three Cyclic Algorithm
and IOSGA Model

As can be seen in Figure 1-a, the three
cyclic algorithm which is considered as a
base for evaluating the performance of the
IOSGA model, entails the following three
major steps:

1. Optimization, in which a GA model is
used to find the optimal series of
reservoir releases. Equation (1) is here
considered as the objective function
while Equations (5), (6), and (7) include
the constraints of the model.

2. Fuzzy regression analysis, in which the
optimized values of monthly releases are
considered as the dependent variable and
monthly inflow series and optimized
values of reservoir storage along the
monthly demands are considered as
independent variables of the regression
equations. The cross validation technique
has been employed and 12 policy
equations are determined for different
months of the year. A linear
programming model has been developed
to determine the fuzzy coefficients of the
regression equations. In this step, the
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Figure 1. General framework of (a) The three-cycle algorithm and (b) The IOSGA model (R;: Release
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coefficients of the operation policies).

variations of ~water demands in the
planning time. horizon are taken into
account while the uncertainty of governing
variables in the system (monthly inputs,
demands, = and storages) are also
incorporated by adding fuzziness to the
coefficients of regression. Because of the
importance of this step in formulating the
best form of the operating policies, three
different equations namely Equations (8),
(9), and (10) are taken into consideration.
3. The results of step 2 are employed in a

hydrological simulation model for
evaluating the performance of the
developed policies in achieving the
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reservoir
objectives.
In the IOSGA model, as demonstrated in
Figure 1-b, the three abovementioned steps
have been summarized in one. For this
purpose, the GA optimization model is
formulated to find the optimal coefficients
of the reservoir operation policies. As
mentioned before, in the three cyclic
algorithm, the optimization model does not
receive any feedback from the long-term
simulation of the system which is carried out
based on the developed operation policies.
Therefore, however the optimization results
might be satisfactory in terms of different

operation optimization
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Figure 2. Flowchart of the GA model in the three cyclic algorithm.

evaluation criteria, inefficiency of the
operation policies might result in poor
performance of the system. But, the [OSGA
model incorporates the efficiency of the
operation policies in the optimization
process, and therefore it is expected that the
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IOSGA model improves the value of
objective function for the long-term
simulation of the system. More details of the
optimization model, operation policy
formulations as well as results are presented
in the forthcoming sections of the paper.
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IOSGA Model Formulation

The IOSGA model is developed using
binary genetic algorithm (BGA) code in
Fortran Language. The objective function of
the IOSGA model (Z) is formulated as a
linear function of the normalized values of
Reliability (Rel), Resiliency (Res), and
Vulnerability (Vul) of the system
(Merabtene et al., 2002), as follows:

Min Z= w; (I-Rel)+w, (I-Res)+w; Vul

3
O w,=1) (1)
i=I

where:

Reliability (Rel) is defined. as the ratio of
the Number of months with Satisfactory
performance (NS) to~the total number of
operational time periods (7):

NS

Rel=— 2)
T

Throughout .. the ~ study, satisfactory

performance is achieved when a reservoir is
capable of meeting all the demands,
whenever a shortage encountered, it will be
considered as a failure. Resiliency (Res) is
used to define the ability of a water supply
system to recover to an "acceptable state",
following a failure:

Res=Prob(R,, > D

w>Du|R,<D,) @)
where D, and R, are water demand and
release volumes in month #, respectively.

Vulnerability (Vul) criterion is introduced as

t+1

437

the ratio of the total water deficit to the total
demand during the 'planning horizon (7).
T
>(D,—R)
Vl/tl _ 1=l

T

2D,

t=1

when R, <D, (4)

The weights w;, w,, and w; are to represent
the conflict between system stability and
system failure mode indicating the relative
importance of the above mentioned criteria
used for assessing the performance of the
system. Throughout the study, it is assumed
that the three criteria (Rel, Res, and Vul) are
of the same importance and therefore, the
weights are considered to be equal (w,= w,=
ws= 1/3). Figure 3 schematically indicates
that the objective function can model simple
performance failures (space near the origin)
to major catastrophes (space near the dash-
lines). In Figure 3, the maximum acceptable
and feasible space of the risk criteria for a
specific operation policy which has been
defined for minimizing failure in water
supply (1-Rel), water shortage intensity
(Vul), and non- recovery speed from failure
mode (1-Res) is schematically indicated.

The constraints of IOSGA and the three
cyclic algorithm models are defined as
follows:

1). Mass balance equation for reservoir
storage:

Sr+1 :St +Ir _Rr

where:

t=1,.,T (5
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Figure 4. Fuzzy membership functions and relationships between regression coefficients in the three
operation policies.

R,: Reservoir release in time ¢,

I;: Reservoir inflow in time ¢,

S;: Reservoir storage at the“beginning. of
time ¢, and

T: Planning horizon.

It should be mentioned that the reservoir
inflows which are used in this study are the
net values of inflows including monthly
reservoir infiltration, evaporation losses, as
well as precipitation over the reservoir.

2). Reservoir storage and release boundary
conditions:

Siin< SE Sy 1=1,..., T

O0<R=ZR yuxt=1,...,T

where:

Spin: Minimum reservoir storage,

Smax: Maximum reservoir storage, and

R, ey Maximum release capacity of the
reservoir outlet gates in time ¢ which is a
function of reservoir storage.

(6)
(N

Operation Policy Equations

In the IOSGA model, three different forms
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of operation policies in the forms of fuzzy
linear regression are considered as follows:

Operation policy 1): (r°,k'r’). R=
(a].ka). I+ (b ,k,b) . S+d (8)

Operation policy 2): (r5,k*r)). R=
(S, k’a}) I+ (b5, kb)) . S+ (c5.kscl)
D, +e )

Operation policy 3): (5,k’r). R=
(aS,kj'a}). [ 1,- D+ (b, k3b;) . S+f (10)

where:
D,: Water demand in time period ¢,

c c c c,
r’,a; b

1

The center of the fuzzy

coefficients of monthly release, inflow,
storage, and demand variables, respectively,

K s s s,
r,a;,b; e

1

The spread of the fuzzy

coefficients of monthly release, inflow,
storage, and demand variables, respectively,

klsi: The skew factors of membership

functions for fuzzy coefficients of
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independent variable i in the ;™ operation
policy, and

d, e, f: Constants of the regression
equations.

It should be noted that the Eqgs. 8 to 10 are
selected based on the previous studies by
Karamouz et al. (1992) and Torabi (1996) in
which they used classic linear regression as
follows:

Operation policy 4)
RT :al It+b1 .ST +d
Operation policy 5)

Y
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Rt:a2‘1t+b2‘st+C2‘Dt+e (12)
Operation policy 6)

R =ay-(I,-D,)+bs-S,+f (13
where:

a; ,b; ,c; ,d,e, f : Coefficients of classic
linear regression equations.

In this study, both operation policy
Equations of (1) to (3) and (4) to (6) are
used in the IOSGA model and the results are
compared.

Figure 4 shows the membership functions
and the relationships between the regression
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variables in the operation policies in
Equations (1) to (3), schematically. In
IOSGA model, the optimal values of fuzzy
coefficients parameters as well as constant
values have been considered as decision
variables, therefore the model can be used to
find their optimal values.

The parameters of the operation policy
equations namely: a;,b/,c;; a;,b’,c/; and
d, e, f, during the twelve months of the year
are selected as the decision variables of the
IOSGA model and therefore the total
number of decision variables (chromosome
length) for the operation policies in
Equations (1), (2) and (3) are amounted to

7x12=84,10x12=120, and 7x12 =84.
The skew factors (k’l) are also considered

as the decision variables in the IOSGA
model. The upper and lower limits of the
coefficients are considered to be free, while
the skew coefficients are limited to [0, 1].
The defuzzifier method, which has been
used, is centroid deffuzzifier. Figure 5
indicates schematically the flowchart of the
optimization algorithm in IOSGA model.

The next step in using IOSGA Model is to
assess the long-term performance. of the
system using the optimal operation policies
developed by the model. For_this purpose,
system performance is simulated using
leave-one-out-cross-validation technique
(LOOCV).

In the LOOCV method, for each specific
month, the data for the rest of months is
used for calibrating the operation policies
and the derived policy is employed for
reservoir operation simulation in that
specific month. This process is repeated for
all the available historical data.

Minimize

Z=(+k)ay Y IO+ A+k)b; D [SO|+A+k) e D |D@)|+d
t=1 t=1

Subject to:

The Formulation of Models in the Three
Cyclic Algorithm

Figure 2 shows the algorithm of the GA
model in the three cyclic algorithm. The
model is developed using binary genetic
algorithm (BGA) code in Fortran Language.
The objective function and the constraints of
the GA optimization model in the three
cyclic algorithm is the same as in IOSGA
model as shown in Equation (1) and
Equations (5) to (7), respectively. The
decision variablesin this model are reservoir
releases in different months of the planning
horizon. Therefore, the total number of
decision variables are equal to 7TxI2 in
which <7"is the number of years in the
planning herizon.

The next step, as shown in Figure 1-a, is
the regression analysis to estimate the
parameters in the operation policy equations.
The operation policies shown in Equations
(8).to (10) are employed. The following
Linear Programming Problem (LPP) needs
to be solved in order to find the fuzzy
coefficient parameters based on the long-
term optimal operation results.

Tanaka et al. (1982) formulated a LPP to
determine the fuzzy number coefficients
with asymmetric membership functions
where data available is non-fuzzy. In the
present study, LPP approach is employed to
estimate the coefficients of the operation
policies in the three operation policies
shown in Equations (8) to (10). Based on
Yen et al. (1999), the fuzzy linear regression
with triangular membership function is
capable of reflecting the uncertainty in
regression coefficients. The LPP formulation
for the second operation policy [Equation
10] is presented here as an example (Yen et
al., 1999) (Equations 14, 15):

3 (14)

t=1

(A=hyk ()@ + (1= hyk, S@)B: +(1—h)k, D) —d —I(t)a — S(t)b — D(t) ¢ = —R(r) (1)

J(l—h)l(t)ag +(1-mS®b, +(A-h)D(t)c, +d +1({t)a, + S(t)b5 + D(t)c; 2 R(t)
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Figure 6. The box-plot of the historical (a) Demands and b) Inflows to the Zayandeh-rud Reservoir.

where a;,b;,c; refer to the spread of the

fuzzy membership functions for . the
coefficients of the inflow,. storage, and the
water demands, respectively, ki is the target
level of belief (this term is.considered as a

measure of goodness of fit), as,b,,c; refer

to the center of fuzzy membership functions
for the coefficients of inflow, storage, and
water demand, (respectively, and k; refers
toskew factor of these variables.

The optimized values of skew factors for
the fuzzy coefficients must be estimated
through sensitivity analysis. In the present
study, the optimal values of the skew factors
estimated by the IOSGA model are
employed as input values for these
parameters in the three cyclic algorithm.

The next step in this process is the
reservoir operation simulation for assessing
the performance of the system using the
optimal operation policies. The LOOCV
method is also used for simulation of the
system performance as explained in the
previous section of the paper.
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Case Study

Zayandeh-rud Reservoir with a watershed
area of about 41,500 Km?® is located in a
semi-arid region in central part of Iran. This
reservoir has been constructed for supplying
the agricultural, domestic, and industrial
water demands. The total capacity of the
reservoir is about 1,450 million cubic
meters. Monthly inflows and water demands
in a 29 year time horizon were employed for
evaluating the performance of the models
developed in this study (Figure 6).

The variations of water demands are
estimated based on climatic variations
recorded in the climatological stations in
Zayandeh-rud basin. As can be seen in
Figure 6, the highest ranges of variations in
water demands have occurred in the months
of May to July. It should be mentioned that
in the three cyclic algorithm model, the
number of decision variables is equal to
29%12= 348, whereas for IOSGA model it



Zahraie and Hosseini

Table 1. The evaluation criteria for selecting the best form of policy equation in two approaches.

Operation

Evaluation Criteria
Rel

Model policy Skew factors %) ?_e)s X\’lecwf\x/[)a
80 90 100
l_ . 1 -_—
Three cyclic O Ki=008:k=023 8 80 75 033 160
algorithm Two  k=0.16;k; =0.05;k; =0.11 93 83 79 055 139
(with FLR?) s ;
Three  k;=0.28; k;=0.17 92 8l 73 049 165
JOSGA model Four - 80 77 75 0.76 250
(with CLR") Five - 85 84 81 034 245
Six - 84 82 80 035 260
One  k/=0.08;ky=023 88 86 84 023 105
IOSGA model 2 12 12
(with FLR") Two k. =0.16;k; =0.05:k; =0.11 98 97 96 053 99
Three  k;'=0.28; k;=0.17 94 95 95 045 124

“ Million cubic meters.

” CLR and FLR refer to classic and fuzzy linear regression, respectively.

is varied depending on the formulation of
operation policies as explained before.

RESULTS AND DISCUSSION

To select the best set of parameters of GA
model, a sensitivity analysis has been carried
out. The GA operators that were used in
IOSG and the operation optimization models
in the three cyclic algorithm include. two-
point crossover, tournament selection, and
uniform mutation operators. The trend of
GA convergence and  the {best set of
parameters of the GA model in the two
models, which were obtained by sensitivity
analysis are shown in Figure 7.

The best set of GA operators in the
IOSGA model, include: Population size= 40;
Tournament selection size= 4; two-points
crossover  probability=  0.70;  uniform
mutation probability= 0.006, and in three
cyclic algorithms: population size=1800;
tournament selection size= 4; two-points
crossover  probability=  0.60; uniform
mutation probability= 0.0025. The number
of function evaluations needed for
convergence of the [IOSGA model has been
920, which is about 56 percent less than the
number of function evaluations needed for
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the convergence of the optimization model
in the three cyclic algorithm (2200). It
should” also be remembered that without
considering a good initial solution (good
initial population) in the three cyclic
algorithm, the convergence of GA is nearly
unattainable.

As indicated earlier, the skew factor values
(k) for each coefficient in the three
operation policies have also been considered
as decision variables in the IOSGA model.
The optimal values of these parameters are
shown in Table 1. These values are used in
the three cyclic algorithm as well.

For selecting the best form of fuzzy linear
regression in either one of the approaches,
the efficiency of the system in water supply
(Rel), the speed of system recovery (Res)
following occurrence of a failure and the
maximum vulnerability of the system
(Vuly,,) are also considered with the results
shown in Table 1. As evident from this
table, when comparing the IOSGA model
with fuzzy operation policies and the three
cyclic algorithm with the same group of
operation policies, the IOSGA model is of a
higher efficiency in terms of reliability in
supplying demands, and of maximum
vulnerability as compared with the three-
cycle model. The speed of system recovery
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in the three cyclic model is higher than that
in IOSGA model.

In the mean time, to investigate the effects
of fuzzy linear regression on the results,
IOSGA model has also been solved using
the classic linear regression’  (CLR)
(operation policies 4, 5, and 6). The results
have been shown in Table 1. As can'be seen
from the table, the fuzzy operation policies
show a better performance in terms of all the
three criteria except for the  resiliency
criterion, when using the operation policy 4.

Table 2 shows the percentage of
improvement of Rel, Res and Vul,,, of the
results of IOSGA model applying operation
policies 1 to:3.to the same model when using
operation policies 4 to 6 and the three cyclic

1000

Generation

Figure 7. Trend of GA convergence and optimum set of parameters of GA in (a) IOSGA model and
(b) Three cyclic algorithm.

algorithm. The results in Table 2 indicate a
higher efficiency of [IOSGA model in terms
of reliability of supplying demands and
maximum vulnerability while using fuzzy
operation policies of Equations (8) to (10).
Comparing the results of the IOSGA model
using the fuzzy operation policies 1 to 3 also
shows that the second operation policy
[Equation (9)] outperforms the other two
policies. As it can be seen in the above table,
the operation policies have been improved
by incorporating variable demands, D..
Figure 8 shows the comparison between
monthly water demands and the release
fuzzy membership functions determined
using the IOSGA model with the operation
policy 2. As it can be observed, the spread of

Table 2. The improvement percentage of the results of IOSGA model with FLR compared with IOSGA

with CLR and the three cyclic algorithm.

Evaluation Criteria

Operation
Model :
ode policy Rel Res Voo
80 90 100

. One 0 8 12 230 34

Th 1
algrszt(lz’l)lllcl ° Two 5 17 22 -4 29
Three 2 17 30 -8 25
IOSGA model One 10 12 12 -70 58
(with CLR) Two 15 15 19 56 60
Three 12 16 19 29 52
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fuzzy membership functions cover the
variability of demands in different months.
The conformity of optimized monthly
releases (using the operation policy 2) of the
three cyclic algorithm and the range of
monthly  releases fuzzy  membership
functions obtained from IOSGA model is
investigated and shown in Figure 9. This
figure indicates that the release's fuzzy
membership function obtained from IOSGA
model is capable of covering the range of
monthly releases obtained from the three
cyclic algorithm. During the last months of
the year (October to December), the range of
releases of the IOSGA model is lower than
the releases obtained from the three cyclic
algorithm which is more compatible with the
low water demands during these months.

The population size, number of
generations, and the number of parameters
are playing their main roles in the run-time
of GA models. The values of these
parameters for both models are listed in
Table 3. As seen in the table, by using the
IOSGA model developed in this study,
population size is decreased by about 98
percent (1,800 to 40) and number of
decision variables is also reduced from 348
to 87.

To evaluate the suitability of the IOSGA
and the three cyclic models for supplying
demands, two criteria< were chosen to
analyze the degree of goodness of fit as
follows:

1). The coefficient of efficiency (CE):

D,

> [, -

12)

t=1
where D is average monthly demand
(Nash and Sutcliffe 1970). Closer CE to one

indicates better fit.
2). Standard error (SE):

1< .
F [Rz_Dt]
SE=1—=

(13)

Closer SE to zero shows a better fit. The
values of CE for IOSGA model and the
three cyclic algorithm (with the operation
policy 2) are estimated as 0.90 and 0.87,
respectively. The second criterion figures for
IOSGA model and the three cyclic algorithm
are estimated as 0.26 and 0.29, respectively.
The IOSGA model has a higher CE while a
less SE, which shows a better consistency
between'the release and demand series.

CONCLUSIONS

An integrated approach for development of
reservoir operation policies is presented here
in which the decision variables of the model
are fuzzy coefficients of the reservoir
operating rules. This setup for the optimization
model helped in reducing the modeling efforts
as compared with the three-cycle modeling
approach (optimization, regression analysis for
development  of  operation policies,
hydrological simulation for assessing the
performance of the system using the operation
policies).

The results of application of the model to the
Zayandeh-Rud River-reservoir system in
central part of Iran using GA as the solution to
the optimization model has shown that the run-
time of the model has been significantly
reduced while the performance of the system,
with respect to the reliability of meeting of the
demands as well as vulnerability, being
improved. On the other hand, the statistical

Table 3. Evaluation of the long-term performance of the optimal operation policies through different models.

GA parameters

Population size No. of function evaluation

Model No. of parameters
Three-cycle modeling 348°
approach
I0SGA model 87"

1800
40

2200
920

“ According to the R,; t=1, ..., 348

» According to the regression coefficients of operation policy two (12x7) and their skew factors (3).
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Figure 9. Conformity of the optimized release fuzzy membership function obtained from IOSGA model
and the range of optimized releases by three cyclic algorithm using operation policy 2 in either model.

criteria for evaluating the model suitability
indicate that the IOSGA model shows better
performance the the three cyclic model in
terms of supplying demands. The results also

indicate

that  when the water demands,

including the values of monthly demands in
the operation policies are varied, it helps in
improving the long-term efficiency of the

system performance.
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